

BCS of Images and Video J. E. Fowler

CS Overview Images Video Multiview Perspectives

Block-Based Compressed Sensing of Images and Video

James E. Fowler

Department of Electrical & Computer Engineering Geosystems Research Institute Mississippi State University

March 2010

Outline

1

BCS of Images and Video

J. F. Fowler

Multiview

Perspectives

Compressed Sensing (CS)

- Overview of CS
- Projected Landweber (PL) Recovery

2 CS for Images

- Acquisition
- Block-Based CS (BCS)
- BCS-SPL
- Results

3 CS for Video

- OS for Video
- Motion-Compensated BCS-SPL (MC-BCS-SPL)
- Results

5

4) CS for Multiview Image Sets

- Disparity-Compensated BCS-SPL (DC-BCS-SPL)
- Results
- Perspectives

Compressed Sensing (CS)

BCS of Images and Video

CS Overview

PL Recovery

Multiview Perspectives

What is CS?

Emerging mathematical paradigm permitting:

- Sampling at sub-Nyquist rates via linear projection onto a measurement basis of lower dimension
- Exact reconstruction when signal is sparse in some transform domain
- Approximate reconstruction when signal is compressible in some transform domain
- Random measurement matrix works universally for all signals with high probability
- Also know as: compressive sensing, compressive sampling

Goal

BCS of Images and Video

CS Overview Overview of CS

PL Recovery

Video

Multiview

Perspectives

Recover vector $\mathbf{x} \in \Re^N$ from

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} \in \Re^M$$

- $\Phi: M \times N$ measurement matrix, $M \ll N$
- Usually, Φ is a random matrix
- Subsampling rate, or subrate, is *M*/*N*

The measurement process Φx is accomplished within sensing device:

 x is acquired and simultaneously reduced in dimension

BCS of Images and Video J. E. Fowler

CS Overview Overview of CS PL Becoverv

Images

Video

Multiview

Perspectives

Fundamental Tenet of CS

Recovery is exact if x is sufficiently sparse:

L-sparsity: only L coefficients of

 $\check{x}=\Psi x$

are nonzero for some transform $\boldsymbol{\Psi}$

Approximate Recovery

Real-world signals—often not sparse but compressible:

 $|\check{x}_n| < Cn^{-1/p}$

where *p* ≤ 1, *C* < ∞, and *x*_n are sorted coefficients of *x*Recovery is close to *L*-sparse approximation to *x*

BCS of Images and Video

CS Overview

Overview of CS PL Recovery

Images

Video

Multiview

Perspectives

Ideal Recovery: ℓ_0

• Find \check{x} with smallest ℓ_0 norm consistent with y:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{\Psi}\mathbf{x}\|_0$$
 s.t. $\mathbf{y} = \mathbf{\Phi}\mathbf{x}$

Computationally infeasible for all but the smallest of problems

BCS of Images and Video J. E. Fowler

CS Overview Overview of CS PL Recovery

- Images
- Video
- Multiview
- Perspectives

Practical Recovery: Basis Pursuit (BP)

Convex relaxation of ℓ_0 problem:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{\Psi}\mathbf{x}\|_{1}$$
 s.t. $\mathbf{y} = \mathbf{\Phi}\mathbf{x}$

- Implemented via linear programming
- High computational complexity in practice
- Relaxed/greedy variants of BP, e.g.:
 - gradient projection sparse reconstruction (GPSR)
 - sparsity adaptive matching pursuits (SAMP)

Project Landweber (PL) Recovery

BCS of Images and Video

CS Overview Overview of CS PL Recovery Images

Video

Multiview

Perspectives

Approximate Recovery

 For compressible signals, relax equality constraint and replace constrained l₁ recovery with unconstrained optimization:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{\Psi}\mathbf{x}\|_1 + \lambda \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2$$

- Popular solution: iterative thresholding, a specific instance of a projected Landweber (PL) algorithm
- PL algorithms are
 - Fast
 - Easy to implement
 - Flexible—can add other criteria
- Most common PL approach: iterated hard thresholding (IHT)

Project Landweber (PL) Recovery

BCS of Images and Video J. E. Fowler

CS Overview Overview of CS PL Recovery Images Video Multiview Perspectives

Iterated Hard Thresholding (IHT)

Given initial transform-coefficient approximation $\check{\mathbf{x}}^{(0)}$:

$$\begin{split} \check{\mathbf{x}}^{(i)} &= \check{\mathbf{x}}^{(i)} + \frac{1}{\gamma} \boldsymbol{\Psi} \boldsymbol{\Phi}^{T} \left(\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\Psi}^{-1} \check{\mathbf{x}}^{(i)} \right), \\ \check{\mathbf{x}}^{(i+1)} &= \begin{cases} \check{\mathbf{x}}^{(i)}, & \left| \check{\mathbf{x}}^{(i)} \right| \geq \tau^{(i)}, \\ 0 & \text{else} \end{cases} \end{split}$$

where

- $\gamma:$ scaling factor
- $au^{(i)}$: threshold for iteration i

CS Acquisition of 2D Images

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Acquisition

- BCS
- BCS-SPL
-
- Video
- Multiview
- Perspectives

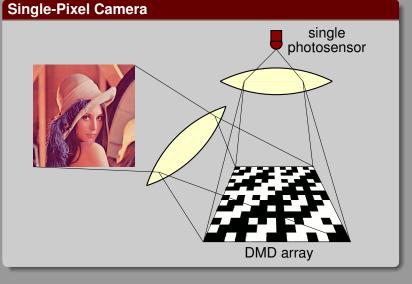
CS Acquisition of 2D Images

- Significant interest in CS for 2D imagery
- CS promises digital cameras:
 - Smaller
 - Ocheaper
 - Broader spectral range

Single-Pixel Camera

Takhar et al., SPIE El 2006

- Uses digital micromirror device (DMD) to optically perform inner products in measurement process
- DMD can effectuate a ±1 Rademacher measurement matrix


CS Acquisition of 2D Images

BCS of Images and Video

J. E. Fowler

CS Overview

- Images
- Acquisition
- BCS
- Results
- Video
- Multiview
- Perspectives

BCS of Images and Video

J. E. Fowler

CS Overview

- Images
- Acquisitio
- BCS
- BCS-SPL Results
- Video
- Multiview
- Perspectives

Straightforward CS for 2D Images

Straightforward application of CS to 2D images:

- "Rasterize" N × N image X into N²-dimensional vector x
- Apply $M imes N^2$ measurement matrix ${f \Phi}$
- ${\circ}\,$ Apply 1D CS recovery algorithm (BP, GPSR, PL, etc.) with Φ
 - Use $N^2 \times N^2$ transform Ψ (1D representation of a 2D transform)
- "Unrasterize" \hat{x} to produce image \hat{X}

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Acquisitio

BCS

Results

Video

Multiview

Perspectives

Straightforward CS for 2D Images

Problems:

- Ocomputationally expensive reconstruction
- Huge memory to store random sampling operator, $O(N^4)$
- Recovery is "blind" to the fact that data is an image:
 - Searches simply for consistent, sparse solution
 - Not necessarily visually pleasing
 - Ignores known attributes of images, like smoothness

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Acquisitio

BCS

BCS-SP

Video

Multiview

Perspectives

Solution: Block-Based Compressed Sensing (BCS)

- Image partitioned into $B \times B$ blocks
- x_j: block j of image
- Measurements:

$$\mathbf{y}_j = \mathbf{\Phi}_B \mathbf{x}_j$$

- Φ_B : $M_B \times B^2$ random matrix
- The global measurement matrix is then block-diagonal:

$$oldsymbol{\Phi} = egin{bmatrix} oldsymbol{\Phi}_B & 0 & \cdots & 0 \ 0 & oldsymbol{\Phi}_B & \cdots & 0 \ dots & & \ddots & dots \ 0 & \cdots & 0 & oldsymbol{\Phi}_B \end{bmatrix}$$

BCS of Images and Video

J. E. Fowler

CS Overview

- Images Acquisition
- BCS
- BCS-SPI
- Video
- Multiview
- Perspectives

Recovery of BCS-Acquired Images

Possible approaches:

- Recover blocks independently—bad idea; severe blocking
- Apply BP-based ℓ_1 recovery (or fast variant) with block-diagonal Φ —does not exploit image properties

Better Approach: BCS-TV

Candès, Romberg, & Tao, CPAM 2006

- BP-based l₁ recovery using total variation (TV)
- Implicitly imposes smoothness by pursuing sparsity in the domain of a discrete gradient

BCS-SPL for 2D Images

BCS of Images and Video

J. F. Fowler

- BCS-SPI

- Multiview
- Perspectives

Our Preferred Approach: BCS-SPL

Gan, DSP 2007

- Couple PL reconstruction with a smoothing 0 operator
- Very fast
- Practical—scales well with image size
- Good visual quality
- Block CS with smoothed PL (BCS-SPL)

BCS-SPL for 2D Images

SPL Reconstruction

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Acquisitio

BCS-SPL

Results

Video

Multiview

Perspectives

 \bigcirc

Adds Wiener filter to remove blocking artifacts Algorithm:

function $\mathbf{x}^{(i+1)} = \text{SPL}(\mathbf{x}^{(i)}, \mathbf{v}, \boldsymbol{\Phi}_{B}, \boldsymbol{\Psi}, \lambda)$ $\hat{\mathbf{x}}^{(i)} = \text{Wiener}(\mathbf{x}^{(i)})$ for each block j $\hat{\hat{\mathbf{x}}}_{i}^{(i)} = \hat{\mathbf{x}}_{i}^{(i)} + \mathbf{\Phi}_{B}^{T}(\mathbf{y} - \mathbf{\Phi}_{B}\hat{\mathbf{x}}_{i}^{(i)})$ $\check{\check{\mathbf{x}}}^{(i)} - \mathbf{\Psi}\hat{\hat{\mathbf{x}}}^{(i)}$ $\check{\mathbf{x}}^{(i)} = \text{Threshold}(\check{\check{\mathbf{x}}}^{(i)}, \lambda)$ $\bar{\mathbf{x}}^{(i)} = \mathbf{\Psi}^{-1} \check{\mathbf{x}}^{(i)}$ for each block j $\mathbf{x}_i^{(i+1)} = ar{\mathbf{x}}_i^{(i)} + \mathbf{\Phi}_B^T (\mathbf{y} - \mathbf{\Phi}_B ar{\mathbf{x}}_i^{(i)})$ Linear initialization: $\mathbf{x}_i^{(0)} = \mathbf{\Phi}_B^T \mathbf{y}_i$

BCS-SPL for 2D Images

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Acquisition

BCS-SPL

Results

Video

Multiview

Perspectives

SPL Reconstruction

Attempts to impose:

Consistency with observations (Landweber step)

- Sparsity (thresholding)
- Smoothness (Wiener filtering)

Advantages

- Simple implementation
- Easy to extend:
 - Redundant, directional transforms
 - More sophisticated thresholding/shrinkage
 - See poster tomorrow...

BCS of Images and Video

J. E. Fowler

CS Overview

- Images
- Acquisitio
- BCS
- Results
- Video
- Multiview
- Perspectives

Comparisons—512 \times 512 images; 32 \times 32 blocks

- BCS-SPL with popular transforms:
 - BCS-SPL-DWT
 - BCS-SPL-DCT
- BP-based l₁ reconstruction with total-variation smoothing:
 - BCS-TV
- - BCS-GPSR-DWT

BCS of Images and Video J. E. Fowler

CS Overview

Lenna

Images Acquisition

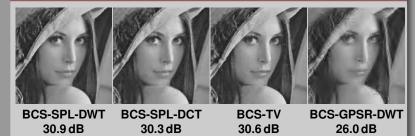
BCS-SPI

Results

Video

Multiview

	Subrate (M/N)				
Algorithm	10%	20%	30%	40%	50%
BCS-SPL-DWT	27.8	30.9	32.9	34.6	36.2
BCS-SPL-DCT	27.2	30.2	32.2	34.1	35.7
BCS-TV	27.9	30.6	32.6	34.3	35.9
BCS-GPSR-DWT	22.7	26.0	28.1	29.9	31.3


BCS of Images and Video J. E. Fowler

CS Overview

Images Acquisition BCS BCS-SPL Results Video Multiview

Perspectives

Lenna for subrate = 20%

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Acquisitio

BCS-SPI

Results

Video

Multiview

Perspectives

Observations

Reconstruction quality:

- BCS-SPL-DWT, BCS-SPL-DCT, and BCS-TV close in performance
- BCS-GPSR-DWT significantly worse

Execution times:

- BCS-SPL-DWT, BCS-SPL-DCT: 2-3 min.
- BCS-GPSR-DWT: 20–50 sec.
- BCS-TV: 3–4 hrs.

CS for Video

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Video

CS for Video MC-BCS-SPL Results

Multiview

Perspectives

CS Acquisition for Video

- BCS samples every frame identically, e.g., using single-pixel camera frame-by-frame
- A 3D sampling of video "volume" impractical

Straightforward Reconstruction

- Reconstruct 2D frames independently using 2D transform Ψ
- Reconstruct 3D "volume" using 3D transform Ψ (e.g., Wakin *et al.*, *PCS 2006*)
- Neither exploits temporal redundancies due to frame-to-frame motion
- Memory and computational complexity of 3D recovery is substantial

CS for Video

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Video CS for Video

MC-BCS-SPL Results

Multiview

Perspectives

Motion-Compensated CS Reconstruction

- Use neighboring frame(s) to make motioncompensated prediction, x_c, of current frame x
- Modify CS reconstruction of x to use x_c

Approach 1: Initialization

Kang & Lu, ICASSP 2009

- 2D CS reconstruction initialized using \mathbf{x}_c rather than usual initialization (e.g., $\Phi^T \mathbf{y}$)
- Works for any single-frame CS reconstruction
- We use BCS-SPL:
 - MC-BCS-SPL (Initialization)

CS for Video

BCS of Images and Video

J. E. Fowler

CS Overview

- Images
- Video
- CS for Video MC-BCS-SPL Results
- Multiview
- Perspectives

Approach 2: Residual Reconstruction

- Mun & Fowler, to be submitted 2010
 - Apply CS reconstruction to motion-compensated residual
 - Residual should be much sparser than original frame
 - Works for any single-frame CS reconstruction
 - We use BCS-SPL:
 - MC-BCS-SPL (Residual Reconstruction)

MC-BCS-SPL (Residual Reconstruction)

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Video CS for Video MC-BCS-SPL Results

Multiview

Perspectives

Given:

- Reference frame, x_r
- Motion-vector field, MV
- Block-based measurements of current frame,
 - $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$
- Output Description 10 and 10 and

Algorithm:

- Motion-compensated frame: $\mathbf{x}_c = MC(\mathbf{x}_r, MV)$
- Projected residual: $\mathbf{r} = \mathbf{y} \mathbf{\Phi} \mathbf{x}_c$
- Reconstructed residual: $\hat{r} = \text{SPL}(r, \Phi, \Psi)$
- Reconstructed current frame: $\hat{\mathbf{x}} = \mathbf{x}_c + \hat{\mathbf{r}}$

Single-Frame Results for MC-BCS-SPL

BCS of Images and Video

CS Overview

Images

Video CS for Video MC-BCS-SPL Results

Multiview

Perspectives

Football—SIF frame, quarter-pixel ME, subrate = 10%

BCS-SPL-DCTMC-BCS-SPL-DCTMC-BCS-SPL-DCT23.9 dBInitializationResidual24.4 dB26.2 dB

Single-Frame Results for MC-BCS-SPL

BCS of Images and Video

CS Overview

Images

Video CS for Video MC-BCS-SPL Results

Multiview

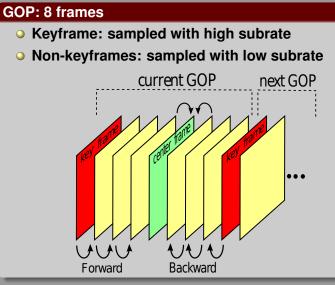
Perspectives

Susie—SIF frame, quarter-pixel ME, subrate = 10%

BCS-SPL-DCT MC-BC 28.4 dB Initia

MC-BCS-SPL-DCT Initialization 30.3 dB MC-BCS-SPL-DCT Residual 40.5 dB

Multiple-Frame MC-BCS-SPL


BCS of Images and Video

J. F. Fowler

 \bigcirc

Video AC-BCS-SPL

Multiview

Multiple-Frame MC-BCS-SPL

BCS of Images and Video

- J. E. Fowler
- CS Overview
- Images
- Video CS for Video MC-BCS-SPL Results
- Multiview
- Perspectives

Idea: "Bootstrap" determination of motion fields

- Reconstruct each frame of GOP individually with BCS-SPL
- Determine motion fields for reconstructed frames
- For each non-keyframe x:
 - Use MC-BCS-SPL to redo reconstruction \hat{x}
 - $\circ\,$ Estimate new motion field using new \hat{x}
 - Repeat...
- First half of GOP predicted in forward direction
- Second half of GOP predicted in backward direction (start with keyframe of next GOP)
- Iterative reconstruction of center frame alternates between directions

Results for Video

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Video

CS for Video MC-BCS-SPL

Results

Multiview

Perspectives

Comparisons

BCS-SPL

- Independent frame-by-frame BCS-SPL
- MC-BCS-SPL
 - Residual reconstruction
 - Forward/backward GOP processing

3D-BCS-SPL

- Video "volume" partitioned into 3D blocks
- BCS-SPL reconstruction uses block-based 3D transform
- No motion compensation
- All techniques use:
 - Same frame-by-frame 2D block-based sampling
 - Block DCT transform (2D or 3D)
 - Keyframe subrate = 70%

Results for Video

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Video CS for Vid

Results

Multiview

Results for Video

BCS of Images and Video J. E. Fowler

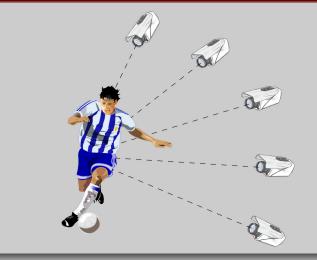

CS Overview

Images

CS for Vide

Results

Multiview



BCS of

Multiview Image Sets

Multiview Image Acquisition

Images and Video J. E. Fowler

Images

Video

Multiview

Results

Multiview Image Sets

BCS of Images and Video J. E. Fowler

CS Overview

Images

Video

Multiview

DC-BCS-SPI Results

Perspectives

Middlebury Multiview Database

Monopoly

Aloe

Disparity-Compensated BCS-SPL (DC-BCS-SPL)

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Video

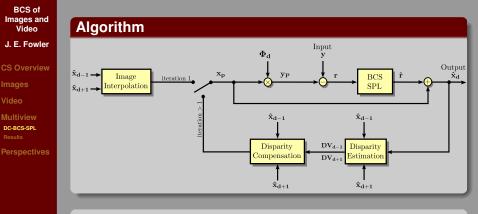
Multiview DC-BCS-SPL Results

Perspectives

Trocan *et al.*, *ICME 2010* & *ICIP 2010*

DC-BCS-SPL

- Adapt MC-BCS-SPL to multiview scenario
- Predict current image x_d using disparity compensation (DC) between:
 - reconstructed left image, $\hat{\mathbf{x}}_{d-1}$
 - reconstructed right image, $\hat{\mathbf{x}}_{d+1}$

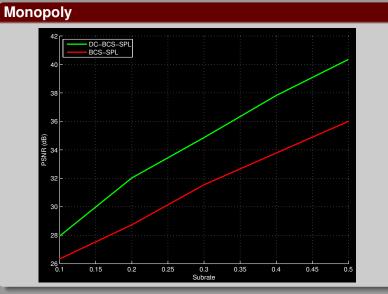

• disparity-vector (DV) fields, DV_{d-1} and DV_{d+1}

BCS-SPL reconstruction from DC residual

DC-BCS-SPL

- All images of multiview set reconstructed individually with BCS-SPL
- DV determined from reconstructed images

Results for Multiview


Results for Multiview

BCS of Images and Video J. E. Fowler

CS Overview

Video

Multiview DC-BCS-SPL Results

Results for Multiview

BCS of Images and Video J. E. Fowler

CS Overview

Video

Multiview DC-BCS-SPL Results

Perspectives

BCS of Images and Video

CS Overview

Images

Video

Multiview

Perspectives

General Observations

- Sparsity alone is not sufficient for image reconstruction with good visual quality
- Reconstruction should capitalize on known properties/processes for imagery (smoothness, motion compensation, ...)
- It is easy to incorporate image-relevant criteria into the Projected Landweber (PL) formulation

Perspectives

BCS of Images and Video

J. E. Fowler

CS Overview

Images

Video

Multiview

Perspectives

Caveat—CS is not Compression

- It is tempting to couple random CS projections with scalar quantization to produce a "compressed" bitstream
- "[...] compressive sampling combined with ordinary quantization is a bad compression technique"—Goyal, Fletcher, Rangan, SP Magazine 2008
- CS really makes sense only as dimensionality reduction that takes place simultaneously with data acquisition within the sensing device
 - reduce sensing cost when each sample is expensive to acquire
 - reduce storage/transmission cost in severely resource-constrained sensors

For Further Information...

References

BCS of Images and Video

J. E. Fowler

- CS Overview
- Images
- Video
- Multiview

- S. Mun and J. E. Fowler, "Block Compressed Sensing of Images Using Directional Transforms," *ICIP 2009*
- M. Trocan, T. Maugey, J. E. Fowler, and B. Pesquet-Popescu, "Disparity-Compensated Compressed-Sensing Reconstruction for Multiview Images," submitted to *ICME 2010*
- M. Trocan, T. Maugey, E. W. Tramel, J. E. Fowler,
 B. Pesquet-Popescu, "Compressed Sensing of Multiview Images Using Disparity Compensation," submitted to *ICIP 2010*
- S. Mun and J. E. Fowler, "Residual Reconstruction for Block-Based Compressed Sensing of Video," to be submitted

For Further Information...

BCS of Images and Video J. E. Fowler

MATLAB Source Code

CS Overview Images Video

Multiview

Perspectives

• BCS-SPL Version 1.2

http://www.ece.msstate.edu/~fowler/

