
First-order logic

• First-order logic (FOL) models the world in terms of

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only one

“value” for any given “input”

• Examples:

– Objects: Students, lectures, companies, cars ...

– Relations: Brother-of, bigger-than, outside, part-of, has-color,

occurs-after, owns, visits, precedes, ...

– Properties: blue, oval, even, large, ...

– Functions: father-of, best-friend, second-half, one-more-than ...

Syntax of FOL

S := <Sentence> ;

<Sentence> := <AtomicSentence> |

          <Sentence> <Connective> <Sentence> |

          <Quantifier> <Variable>,... <Sentence> |

          "NOT" <Sentence> |

          "(" <Sentence> ")";

<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |

                    <Term> "=" <Term>;

<Term> := <Function> "(" <Term>, ... ")" |

          <Constant> |

          <Variable>;

<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";

<Quantifier> := "EXISTS" | "FORALL" ;

<Constant> := "A" | "X1" | "John" | ... ;

<Variable> := "a" | "x" | "s" | ... ;

<Predicate> := "Before" | "HasColor" | "Raining" | ... ;

<Function> := "Mother" | "LeftLegOf" | ... ;

Constants, Functions, Predicates

• Constant symbols, which represent individuals in the world

– Mary

– 3

– Green

• Function symbols, which map individuals to individuals

– father-of(Mary) = John

– color-of(Sky) = Blue

• Predicate symbols, which map individuals to truth values

– greater(5,3)

– green(Grass)

– color(Grass, Green)

Variables, Connectives,

Quantifiers

• Variable symbols

– E.g., x, y, foo

• Connectives

– Same as in PL: not (¬), and (!), or ("), implies (#), if

and only if (biconditional $)

• Quantifiers

– Universal %x or  (Ax)

– Existential &x or (Ex)



Quantifiers

• Universal quantification

– (%x)P(x) means that P holds for all values of x in the
domain associated with that variable

– E.g., (%x) dolphin(x) # mammal(x)

• Existential quantification

– (& x)P(x) means that P holds for some value of x in the
domain associated with that variable

– E.g., (& x) mammal(x) ! lays-eggs(x)

– Permits one to make a statement about some object
without naming it

Sentences are built from terms and atoms

• A term (denoting a real-world individual) is a constant symbol, a

variable symbol, or an n-place function of n terms.

x and f(x1, ..., xn) are terms, where each xi is a term.

A term with no variables is a ground term

• An atom (which has value true or false) is either

an n-place predicate of n terms, or,

¬P, P"Q, P!Q, P#Q, P$Q where P and Q are atoms

• A sentence is an atom, or, if P is a sentence and x is a variable,
then (%x)P and (&x)P are sentences

• A well-formed formula (wff) is a sentence containing no “free”

variables. That is, all variables are “bound” by universal or

existential quantifiers.

(%x)P(x,y) has x bound as a universally quantified variable, but y is free.

Translating English to FOL
Every gardener likes the sun.

(%x) gardener(x) # likes(x,Sun)

You can fool some of the people all of the time.

(&x)(%t) (person(x) ^ time(t)) # can-fool(x,t)

You can fool all of the people some of the time.

(%x)(&t) (person(x) ^ time(t) # can-fool(x,t)

All purple mushrooms are poisonous.
(%x) (mushroom(x) ^ purple(x)) # poisonous(x)

No purple mushroom is poisonous.

¬(&x) purple(x) ^ mushroom(x) ^ poisonous(x)

(%x) (mushroom(x) ^ purple(x)) # ¬poisonous(x)

There are exactly two purple mushrooms.

(&x)(&y) mushroom(x) ^ purple(x) ^ mushroom(y) ^ purple(y) ^ ¬(x=y) ^

(% z) (mushroom(z) ^ purple(z)) # ((x=z) " (y=z))

Clinton is not tall.

¬tall(Clinton)

X is above Y if X is on directly on top of Y or there is a pile of one or more
other objects directly on top of one another starting with X and ending
with Y.

(%x)(%y) above(x,y) _ (on(x,y) v (&z) (on(x,z) ^ above(z,y)))

Quantifiers

• Universal quantifiers are often used with “implies” to form “rules”:

(%x) student(x) # smart(x) means “All students are smart”

• Universal quantification is rarely used to make blanket statements

about every individual in the world:

(%x)student(x)!smart(x) means “Everyone in the world is a student and is smart”

• Existential quantifiers are usually used with “and” to specify a list of

properties about an individual:

(&x) student(x) ! smart(x) means “There is a student who is smart”

• A common mistake is to represent this English sentence as the FOL

sentence:

(&x) student(x) # smart(x)

– But what happens when there is a person who is not a student?



Quantifier Scope

• Switching the order of universal quantifiers does not change the

meaning:

– (%x)(%y)P(x,y) '(%y)(%x) P(x,y)

• Similarly, you can switch the order of existential quantifiers:

– (&x)(&y)P(x,y) ' (&y)(&x) P(x,y)

• Switching the order of universals and existentials does change meaning:

– Everyone likes someone: (%x)(&y) likes(x,y)

– Someone is liked by everyone: (&y)(%x) likes(x,y)

Connections between All and Exists

We can relate sentences involving % and &

using De Morgan’s laws:

(%x) ¬P(x) '¬(&x) P(x)

¬(%x) P ' (&x) ¬P(x)

(%x) P(x) '¬ (&x) ¬P(x)

(&x) P(x) '¬(%x) ¬P(x)

Quantified inference rules

• Universal instantiation

– %x P(x) ( P(A)

• Universal generalization

– P(A) ! P(B) … ( %x P(x)

• Existential instantiation

– &x P(x) (P(F)     ) skolem constant F

• Existential generalization

– P(A) ( &x P(x)

An example from Monty Python

• FIRST VILLAGER: We have found a witch. May we
burn her?

• ALL: A witch! Burn her!

• BEDEVERE: Why do you think she is a witch?

• SECOND VILLAGER: She turned me into a newt.

• B: A newt?

• V2 (after looking at himself for some time): I got better.

• ALL: Burn her anyway.

• B: Quiet! Quiet! There are ways of telling whether she is a
witch.



Monty Python cont.

• B: Tell me… what do you do with witches?

• ALL: Burn them!

• B: And what do you burn, apart from witches?

• V4: …wood?

• B: So why do witches burn?

• V2 (pianissimo): because they’re made of wood?

• B: Good.

• ALL: I see. Yes, of course.

Monty Python cont.

• B: So how can we tell if she is made of wood?

• V1: Make a bridge out of her.

• B: Ah… but can you not also make bridges out of stone?

• ALL: Yes, of course… um… er…

• B: Does wood sink in water?

• ALL: No, no, it floats. Throw her in the pond.

• B: Wait. Wait… tell me, what also floats on water?

• ALL: Bread? No, no no. Apples… gravy… very small
rocks…

• B: No, no, no,

Monty Python cont.

• KING ARTHUR: A duck!

• (They all turn and look at Arthur. Bedevere looks up, very

impressed.)

• B: Exactly. So… logically…

• V1 (beginning to pick up the thread): If she… weighs the

same as a duck… she’s made of wood.

• B: And therefore?

• ALL: A witch!

Monty Python Fallacy #1

• %x witch(x) # burns(x)

• %x wood(x) # burns(x)

• -------------------------------

• ( %z witch(x) # wood(x)

• p # q

• r # q

• ---------

• p # r                             Fallacy: Affirming the conclusion



Monty Python Near-Fallacy #2

• wood(x) # bridge(x)

• ------------------------------

• ( bridge(x) # wood(x)

• B: Ah… but can you not also make bridges out of stone?

Monty Python Fallacy #3

• %x wood(x) # floats(x)

• %x duck-weight (x) # floats(x)

• -------------------------------

• ( %x duck-weight(x) # wood(x)

• p # q

• r # q

• -----------

• ( r # p

Monty Python Fallacy #4

• %z light(z) # wood(z)

• light(W)

• ------------------------------

• ( wood(W)                                 ok…………..

• witch(W) # wood(W)               applying universal instan.
                                                    to fallacious conclusion #1

• wood(W)

• ---------------------------------

• ( witch(z)

Axioms for Set Theory in FOL
1. The only sets are the empty set and those made by adjoining something to a set:

%s set(s) <=> (s=EmptySet) v (&x,r Set(r) ^ s=Adjoin(s,r))

2. The empty set has no elements adjoined to it:

~ &x,s Adjoin(x,s)=EmptySet

3. Adjoining an element already in the set has no effect:

%x,s Member(x,s) <=> s=Adjoin(x,s)

4. The only members of a set are the elements that were adjoined into it:

%x,s Member(x,s) <=>  &y,r (s=Adjoin(y,r) ^ (x=y " Member(x,r)))

5. A set is a subset of another iff all of the 1st set’s members are members of the 2nd:

%s,r Subset(s,r) <=> (%x Member(x,s) => Member(x,r))

6. Two sets are equal iff each is a subset of the other:

%s,r (s=r) <=> (subset(s,r) ^ subset(r,s))

7. Intersection

%x,s1,s2 member(X,intersection(S1,S2)) <=> member(X,s1) ^ member(X,s2)

8. Union

&x,s1,s2 member(X,union(s1,s2)) <=> member(X,s1) " member(X,s2)



Axioms, definitions and theorems

•Axioms are facts and rules that attempt to capture all of the
(important) facts and concepts about a domain; axioms can
be used to prove theorems

–Mathematicians don’t want any unnecessary (dependent) axioms
–ones that can be derived from other axioms

–Dependent axioms can make reasoning faster, however

–Choosing a good set of axioms for a domain is a kind of design
problem

•A definition of a predicate is of the form “p(X) _ …” and

can be decomposed into two parts
–Necessary description: “p(x) # …”

–Sufficient description “p(x) ) …”

–Some concepts don’t have complete definitions (e.g., person(x))

Extensions to FOL

• Higher-order logic

–  Quantify over relations

• Representing functions with the lambda operator (*)

• Expressing uniqueness &!, +

• Sorted logic

Higher-order logic

• In FOL, variables can only range over objects

• HOL allows us to quantify over relations

• More expressive, but undecidable

• Example:

“two functions are equal iff they produce the same value for all

arguments”

– %f %g (f = g) '(%x f(x) = g(x))

• Example:

%r transitive( r ) ' (%x%y%z r(x,y) ^ r(y,z) # r(x,z))

Expressing uniqueness

• Sometimes we want to say that there is a single, unique

object that satisfies a certain condition

• “There exists a unique x such that king(x) is true”

– &x king(x) ^ %y (king(y) ' x=y)

– &x king(x) ^ not(&y (king(y) ^ x,y)

– &!x king(x)

• “Every country has exactly one ruler”

– %c country(c) ' &!r ruler(c,r)

• Iota operator: “+ x P(x)” means “the unique x such that p(x)

is true”

– “The unique ruler of Freedonia is dead”

– dead(+ x ruler(freedonia,x))



Notational differences

• Different symbols for and, or, not, implies, ...

– %  &  '  -  !  "  ¬  •  .

– p v (q ^ r)

– p + (q * r)

– etc

• Prolog

cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations

(forall ?x (implies (and (furry ?x)

                                      (meows ?x)

                                      (has ?x claws))

                               (cat ?x)))


