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Human Logic

Fragments of Information

The red block is on the green block.

The green block is somewhere above the blue block.

The green block is not on the blue block.

The yellow block is on the green block or the blue block.

There is some block on the black block.

A block can be on only one other block or the table (not both).

A block can have at most one block on top.

There are exactly 5 blocks.

Conclusions

The red block is on the green block.

The green block is on the yellow block.

The yellow block is on the blue block.

The blue block is on the black block.

The black block is directly on the table.



Proof

The yellow block is on the green block or the blue block.

The red block is on the green block.

A block can have at most one block on top.

Therefore, the yellow block is not on the green block.

Therefore, the yellow block must be on the blue block.

Reasoning by Pattern

All Accords are Hondas.

All Hondas are Japanese.

Therefore, all Accords are Japanese.

All borogoves are slithy toves.

All slithy toves are mimsy.

Therefore, all borogoves are mimsy.

All x are y.

All y are z.

Therefore, all x are z.

Questions

Which patterns are correct?

How many patterns are enough?

Unsound Patterns

Pattern

All x are y.

Some y are z.

Therefore, some x are z.

Good Instance

All Toyotas are Japanese cars.

Some Japanese cars are made in America.

Therefore, some Toyotas are made in America.

Not-So-Good Instance

All Toyotas are cars.

Some cars are Porsches.

Therefore, some Toyotas are Porsches.



Induction - Unsound

I have seen 1000 black ravens.

I have never seen a raven that is not black.

Therefore, every raven is black.

Now try red Hondas.

Abduction - Unsound

If there is no fuel, the car will not start.

If there is no spark, the car will not start.

There is spark.

The car will not start.

Therefore, there is no fuel.

What if the car is in a vacuum chamber?

Deduction - Sound

Logical Entailment/Deduction:

Does not say that conclusion is true in general

Conclusion true whenever premises are true

Leibnitz: The intellect is freed of all conception of the

objects involved, and yet the computation yields the correct

result.

Russell: Math may be defined as the subject in which we

never know what we are talking about nor whether what we

are saying is true in the world.

Formal Logic



Formal Mathematics

Algebra

1. Formal language for encoding information

2. Legal transformations

Logic

1. Formal language for encoding information

2. Legal transformations

Algebra Problem

Sophia is three times as old as Sasha.  Sophia's age and

Sasha's age add up to twelve.  How old are Sophia and

Sasha?

x ! 3y = 0

x + y = 12

!4y = !12

y = 3

x = 9

Logic Problem

If Mary loves Pat, then Mary loves Quincy.  If it is Monday,

then Mary loves Pat or Quincy.  If it is Monday, does Mary

love Quincy?

If it is Monday, does Mary love Pat?

Mary loves only one person at a time.  If it is Monday, does

Mary love Pat?

Formalization

Simple Sentences:

    Mary loves Pat.

    Mary loves Quincy.

    It is Monday.

Premises:

    If Mary loves pat, Mary loves Quincy.

    If it Monday, Mary loves Pat or Quincy.

    Mary loves one person at a time.

Questions:

    Does Mary love Pat?

    Does Mary love Qunicy?

p! q

m! p" q

p# q!

! p

! q

p

q

m



Rule of Inference

Propositional Resolution

NB: If pi on the left hand side of one sentence is the same as qj

in the right hand side of the other sentence, it is okay to drop

the two symbols, with the proviso that only one such pair may

be dropped.

NB: If a constant is repeated on the same side of a single

sentence, all but one of the occurrences can be deleted.

p
1
! ...! pk " q

1
# ...# ql

r
1
! ...! rm " s

1
# ...# sn

p
1
! ...! pk ! r1 ! ...! rm " q

1
# ...# ql # s1 # ...# sn

Examples

p ! q

! p

! q

p ! q

q !

p !

p ! q

q ! r

p ! r

Logic Problem Revisited

p ! q

m ! p"q

m ! q "q

m ! q

If Mary loves Pat, then Mary loves Quincy.  If it is Monday,

then Mary loves Pat or Quincy.  If it is Monday, does Mary

love Quincy?

Logic Problem Concluded

m ! q

p" q !

m " p !

Mary loves only one person at a time.  If it is Monday, does

Mary love Pat?



Compound Sentences

Negations:

¬raining

The argument of a negation is called the target.

Conjunctions:

(raining!snowing)

The arguments of a conjunction are called conjuncts.

Disjunctions:

(raining"snowing)

The arguments of a disjunction are called disjuncts.

Compound Sentences (concluded)

Implications:

(raining # cloudy)

The left argument of an implication is the antecedent.

The right argument of an implication is the consequent.

Reductions:

(cloudy $ raining)

The left argument of a reduction is the consequent.

The right argument of a reduction is the antecedent.

Equivalences:

(cloudy % raining)

Parenthesis Removal

Dropping Parentheses is good:

(p ! q) & p ! q

But it can lead to ambiguities:

((p " q) ! r) & p ! q " r

(p " (q ! r)) & p ! q " r

Precedence

Parentheses can be dropped when the structure of an

expression can be determined on the basis of precedence.

¬

!

"

# $ %

NB: An operand associates with operator of higher precedence.

If surrounded by operators of equal precedence, the operand

associates with the operator to the right.

p ! q " r       p # q # r  ¬p ! q

p " q ! r       p # q $ r



Propositional Logic Interpretation

A propositional logic interpretation is an association between

the propositional constants in a propositional language and the

truth values T or F.

The notion of interpretation can be extended to all sentences by

application of operator semantics.

p
i

! " ! T p
i
= T

q
i

! " ! F q
i
= F

r
i

! " ! T r
i
= T

Operator Semantics

Negation:

For example, if the interpretation of p is F, then the

interpretation of ¬p is T.

For example, if the interpretation of (p!q) is T, then the

interpretation of ¬(p!q) is F.

! ¬!

T F

F T

Operator Semantics (continued)

Conjunction: Disjunction:

NB: The semantics of disjunction here is often called inclusive

or, which says that a disjunction is true if and only if at least

one of its disjuncts is true.  This is in contrast with exclusive

or, according to which a disjunction is true if and only if an

odd number of its disjuncts is true.  What is the truth table for

exclusive or?

! " ! #"

T T T

T F F

F T F

F F F

! " ! #"

T T T

T F T

F T T

F F F

Operator Semantics (continued)

Implication: Reduction:

NB: The semantics of implication here is called material

implication.  It has the peculiar characteristic that any

implication is true if the antecedent is false, whether or not

there is a connection to the consequent.  For example, the

following is a true sentence.

If George Washington is alive, I am a billionaire.

! " ! #"

T T T

T F F

F T T

F F T

! " ! #"

T T T

T F T

F T F

F F T



Operator Semantics (concluded)

Equivalence:

! " ! #"

T T T

T F F

F T F

F F T

Evaluation

Interpretation i:

Compound Sentence

(p " q) ! (¬q " r)

p
i

= T

q
i

= F

r
i

= T

Multiple Interpretations

Logic does not prescribe which interpretation is “correct”.  In

the absence of additional information, one interpretation is as

good as another.

Interpretation i Interpretation j

Examples:

     Different days of the week

     Different locations

     Beliefs of different people

p
i

= T

q
i

= F

r
i

= T

p
j

= F

q
j

= F

r
j

= T

Truth Tables

p q r

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

A truth table is a table of all possible interpretations for the

propositional constants in a language.

One column per constant.

One row per interpretation.

For a language with n constants,

there are 2n interpretations.



Evaluation and Disambiguation

Evaluation:

Disambiguation:

p
i

= T

q
i

= F

(p! q)
i

= T

(¬q)
i

= T

(p! q)
i

= T

(¬q)
i

= T

p
i

= T

q
i

= F

Disambiguation

p q r

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

By crossing out rows, it is possible to find interpretations

implicit in a set of sentences.

Disambiguation

p q r

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

!

!

By crossing out rows, it is possible to find interpretations

implicit in a set of sentences.

q#r

Disambiguation

p q r

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

!

!

!

!

By crossing out rows, it is possible to find interpretations

implicit in a set of sentences.

q#r

p #q!r



Disambiguation

p q r

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

!

!

!

!

!

!

!

By crossing out rows, it is possible to find interpretations

implicit in a set of sentences.

q#r

p #q!r

¬r

Properties of Sentences

A sentence is valid if and only if

every interpretation satisfies it.

A sentence is contingent if and only if

some interpretation satisfies it and

some interpretation falsifies it.

A sentence is unsatisfiable if and only if

no interpretation satisfies it.

Valid

Contingent

Unsatisfiable

Example of Validity

p q r ( p! q) (q! r) ( p! q)" (q! r )

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

More Validities

Double Negation:

p % ¬¬p

deMorgan's Laws:

¬(p!q) % (¬p"¬q)

¬(p"q) % (¬p!¬q)

Implication Introduction:

p # (q # p)

Implication Distribution

(p # (q # r)) # ((p # q) # (p # r))



Deduction

In deduction, the conclusion is true whenever the premises are

true.

Premise: p

Conclusion: (p " q)

Premise: p

Non-Conclusion: (p ! q)

Premises: p, q

Conclusion: (p ! q)

Logical Entailment

A set of premises ' logically entails a conclusion ( (written as

' |= () if and only if every interpretation that satisfies the

premises also satisfies the conclusion.

{p} |= (p " q)

{p} |# (p ! q)

{p,q} |= (p ! q)

Truth Table Method

We can check for logical entailment by comparing tables of all

possible interpretations.

In the first table, eliminate all rows that do not satisfy

premises.

In the second table, eliminate all rows that do not satisfy the

conclusion.

If the remaining rows in the first table are a subset of the

remaining rows in the second table, then the premises logically

entail the conclusion.

Example

Does p logically entail (p " q)?

p q

1 1

1 0

0 1

0 0

p q

1 1

1 0

0 1

0 0



Example

Does p logically entail (p ! q)?

p q

1 1

1 0

0 1

0 0

p q

1 1

1 0

0 1

0 0

Does {p,q!} logically entail (p ! q)?

Example

If Mary loves Pat, then Mary loves Quincy.

If it is Monday, then Mary loves Pat or Quincy.

If it is Monday, does Mary love Pat?

000

100

)))

110

)))

101

)))

111

qpm

000

100

010

110

)))

101

)))

111

qpm

Problem

There can be many, many interpretations for a Propositional

Language.

Remember that, for a language with n constants, there are! 2n

possible interpretations.

Sometimes there are many constants among premises that are

irrelevant to the conclusion.  Much wasted work.

Answer: Proofs

Patterns

A pattern is a parameterized expression, i.e. an expression

satisfying the grammatical rules of our language except for

the occurrence of meta-variables (Greek letters) in place of

various subparts of the expression.

Sample Pattern:

( # (* # ()

Instance:

p # (q # p)

Instance:

(p # r) # ((p#q) # (p # r))



Rules of Inference

A rule of inference is a rule of reasoning consisting of one

set of sentence patterns, called premises, and a second set

of sentence patterns, called conclusions.

!"#

!

#

Rule Instances

An instance of a rule of inference is a rule in which all meta-

variables have been consistently replaced by expressions in

such a way that all premises and conclusions are syntactically

legal sentences.

wet! slippery

wet

slippery

(p! q)! r

p! q

r

raining! wet

raining

wet

p! (q! r)

p

q! r

Sound Rules of Inference

A rule of inference is sound if and only if the premises in any

instance of the rule logically entail the conclusions.

Modus Ponens (MP) Modus Tolens (MT)

Equivalence Elimination (EE) Double Negation (DN)

!"#

!

#

!"#

¬#

¬!

¬¬!

!

! "#

!$#

# $!

Proof (Version 1)

A proof of a conclusion from a set of premises is a sequence

of sentences terminating in the conclusion in which each

item is either:

1. a premise

2. the result of applying a rule of inference to earlier items in

sequence.



Example

When it is raining, the ground is wet.  When the ground is wet,

it is slippery.  It is raining.  Prove that it is slippery.

1. raining! wet Premise

2. wet! slippery Premise

3. raining Premise

4. wet MP :1,3

5. slippery MP : 2,4

Error

Note: Rules of inference apply only to top-level sentences in a

proof.  Sometimes works but sometimes fails.

No! No!

1. raining! cloudy Premise

2. raining! wet Premise

3. cloudy! wet MP :  1,2

Example

Heads you win.  Tails I lose.  Suppose the coin comes up

tails.  Show that you win.
Premise

5 . t Premise

6 . ¬ m MP : 2, 5

7 . y ! ¬ m EE : 4

8 . ¬ m ! y EE : 4

9. y MP : 8, 6

Axiom Schemata

Fact: If a sentence is valid, then it is true under all

interpretations.  Consequently, there should be a proof without

making any assumptions at all.

Fact: (p # (q # p)) is a valid sentence.

Problem: Prove (p # (q # p)).

Solution: We need some rules of inference without premises to

get started.

An axiom schema is sentence pattern construed as a rule of

inference without premises.



Rules and Schemata

Axiom Schemata as Rules of Inference

                    ( # (* # ()

Rules of Inference as Axiom Schemata

      (( # *) # (¬* # ¬()

Note: Of course, we must keep a least one rule of inference to

use the schemata.  By convention, we retain Modus Ponens.

!" (# "! )

!"#

¬#

¬!

Valid Axiom Schemata

A valid axiom schema is a sentence pattern denoting an infinite

set of sentences, all of which are valid.

( # (* # ()

Standard Axiom Schemata

II: ( # (* # ()

ID: (( # (* # +)) # ((( # *) # (( # +))

CR: (¬* # () # ((¬* # ¬() # *)

(* # () # ((* # ¬() # ¬*)

EQ: (( % *) # (( # *)

(( % *) # (* # ()

(( # *) # ((* # () # (( % *))

OQ:!! (( $ *) % (* # ()

(( " *) % (¬( # *)

(( ! *) % ¬(¬( " ¬*)

Sample Proof

Whenever p is true, q is true.  Whenever q is true, r is true.

Prove that, whenever p is true, r is true.

1. p! q Premise

2. q! r Premise

3. (q! r)! (p! (q! r)) II

4. p! (q! r) MP : 3,2

5. (p! (q! r))! ((p! q)! (p! r)) ID

6. (p! q)! (p! r) MP : 5,4

7. p! r MP : 6,1



Proof (Official Version)

A proof of a conclusion from a set of premises is a sequence

of sentences terminating in the conclusion in which each

item is either:

1. a premise

2. An instance of an axiom schema

3. the result of applying a rule of inference to earlier items in

sequence.

Provability

A conclusion is said to be provable from a set of premises

(written ' |- () if and only if there is a finite proof of the

conclusion from the premises using only Modus Ponens and the

Standard Axiom Schemata.

Soundness and Completeness

Soundness: Our proof system is sound, i.e. if the conclusion is

provable from the premises, then the premises propositionally

entail the conclusion.

(' |- () # (' |= ()

Completeness: Our proof system is complete, i.e. if the premises

propositionally entail the conclusion, then the conclusion is

provable from the premises.

(' |= () # (' |- ()

Truth Tables and Proofs

The truth table method and the proof method succeed in exactly

the same cases.

On large problems, the proof method often takes fewer steps

than the truth table method.  However, in the worst case, the

proof method may take just as many or more steps to find an

answer as the truth table method.

Usually, proofs are much smaller than the corresponding truth

tables. So writing an argument to convince others does not take

as much space.



Metatheorems

Deduction Theorem: ' |- (( # *) if and only if ',{(} |- *.

Equivalence Theorem: ' |- (( % *) and ' |- +, then it is the

case that ' !|- +(-*.

Proof Without Deduction Theorem

Problem: {p # q, q # r} |- (p # r)?

1. p! q Premise

2. q! r Premise

3. (q! r)! (p! (q! r)) II

4. p! (q! r) MP : 3,2

5. (p! (q! r))! ((p! q)! (p! r)) ID

6. (p! q)! (p! r) MP : 5,4

7. p! r MP : 6,1

Proof Using Deduction Theorem

Problem: {p # q, q # r} |- (p # r)?

1. p! q Premise

2. q! r Premise

3. p Premise

4. q MP :1,3

5. r MP :2,4


