STARS: a System To Aid Reuse in Systematic Reviewing

Alex Pagan

1. Introduction

Systems that interleave computation with human interaction are pervasive. These
systems, called interactive systems, need human input to function. An interactive system is
useless without a “human-in-the-loop.” Therefore, we can think of human interaction as a type of
resource that incurs some amount of cost. Indeed, many human-performed tasks have high
latency, require monetary compensation, or introduce error (e.g. data inconsistency) that must
be later corrected. Thus, we would be remiss to ignore the cost of human labor when
considering these systems’ effectiveness.

This thesis explores the expense of human-in-the-loop data management tasks in the
context of constructing systematic reviews of clinical trials. A systematic review is an
assessment of medical evidence relating to a specific research question. The purpose of a
systematic review is to reach conclusions about the effectiveness of a treatment. This is done
by conducting an exhaustive literature search about that treatment, then analysing the quality
and concordance of all empirical evidence returned by that search. While systematic reviews
help justify the decisions that medical professionals make on a daily basis, they are very
expensive to create. This expense is due to the amount of time and effort required from skilled
medical professionals to conduct good systematic reviews.

In response to this problem, we propose a tool called STARS, or a System To Aid Reuse
in Systematic Reviewing. The design of STARS was guided by opportunities for data reuse
found in the systematic review process. STARS aims to reduce the aggregate expense of

conducting systematic reviews by eliminating duplication of effort wherever possible.

1.1 Data reuse in interactive systems

By data reuse, | refer to the practice of trading a data creation task for an equivalent data
retrieval task within an interactive system. To make this clear, suppose that a task T is
performed by a user, resulting in data. This data is stored by the system. Later, some other user
requires the data generated by performing T. Instead of doing T again, the user retrieves data
generated earlier. This is data reuse.

In general, data reuse is effective when the resources required for data retrieval are on
average less than those required for data creation. A canonical computational example of data
reuse is memoization of function calls. Memoization saves the results of a function call, then
associates those results in memory with the function’s arguments. This way, results of
subproblems can be looked up from memory instead of wasting CPU cycles on redundant
computation.

By duplication of effort, | refer to cases in which a task is independently performed by
different parties to the same effect. The reuse potential, or reusability, of a data object is a
function of its creation cost and the probability that its creation causes duplication of effort.
Objects with high creation cost and high probability of duplication of effort tend to be highly

reusable.

1.2 Overview

STARS is a data management system. STARS manages bibliographic data about clinical
trials, as well as user interactions, user annotations, and domain-specific artifacts. STARS also
implements SR-SQL, a set of extensions to the common SQL query language. SR-SQL is

designed to facilitate queries about systematic review data, thereby making reuse of those data

plausible.

For this thesis, | first present an extensive overview of the aims and methods used in
Evidence Based Medicine and Systematic Reviewing. This is required in order to understand the
opportunities for reuse exhibited by the system and to make sense of its primary use cases. |
then discuss opportunities for reuse in the review process, the design of the STARS data model,
and the design and functionality of SR-SQL. Following this, | present an overview of STARS's
architecture and implementation. Finally, | provide a review of related work and a discussion of

possible future work.

2. Evidence-based medicine and systematic reviews

2.1 Aims of Evidence-based medicine

A fundamental principle of health care is that the treatments that clinicians perform are
safe and effective. This principle is typified by evidence-based medicine (EBM), which
encourages healthcare professionals and institutions to make use of the growing body of
empirical evidence (e.g. randomized-controlled clinical trials) to support decisions about
individual patients.

While EBM is acknowledged as a powerful means for improving healthcare, it requires
that clinicians to stay current with all medical research in their domain. This is clearly infeasible -
while it has been estimated that a medical professional needs to read about twenty articles per

day to follow their field [1], many only have a few hours per week to devote to literature review

[71.

2.2 Systematic reviews

One way to make sense of medical evidence is for groups of physicians to write and
publish systematic reviews. A systematic review is exhaustive assessment of medical evidence
relating to a specific research question. The review question generally addresses the
effectiveness of a drug or treatment. The personnel who conduct systematic reviews realize that
medical evidence is not uniformly good. For example, some clinical trials might lack proper
randomization, be subject to bias, or fail to reflect other modern technology or methodology. As a
corollary, results of trials can conflict one another. Systematic reviews attempt to resolve

conflicting conclusions by analyzing all available evidence in a standardized manner so as to

find sources of discrepancies, like bias.

Systematic reviews use methodology established by organizations organizations within
the medical community, like the Cochrane Collaboration [6], and are primarily created and
consumed by healthcare professionals. Systematic reviews are often created as a part of a
group, rather than by a single author. While systematic reviews make medical literature more
accessible, they are very expensive to create. Systematic reviews generally take 6-12 months
to write [10], and as mentioned above, their authors are generally physicians, whose time is

expensive.

2.3 The Systematic Review Process

The systematic review process is composed of several high-level steps. These are not
discrete, but they do fall into rough sequential order. First, reviewers formulate a precise
research question. Next, they search for citations of relevant clinical trials using bibliographic
databases and other means. Following this, they screen collected trials for relevance. Once they
have obtained a set of relevant trials, they extract trial data and determine potential sources of
bias. The reviewers then analyze data presented by the relevant clinical trials. Finally, reviewers
interpret their findings and document their results. After the systematic review is published,

authors maintain their review. | will now explain each step.

2.3.1. Formulate a precise, answerable research question

The research question determines the scope of the systematic review. A “well-formed”
systematic review question has four parts: population, intervention, comparison, and outcome.
These parts are called PICO.

e The population describes the patient demographic. In practice, this often means a group

of persons (sometimes qualified by some attribute, like age) that have a health problem.

For example, a valid description of a population is “older women with common cold
symptoms.”

e Anintervention is an action performed by a healthcare professional to improve health
problems found in the population. Following the example given above, a valid intervention
is “200mg of echinacea taken once daily.”

e A comparison describes an action whose effect is compared with that of the intervention.
While population, intervention, and outcome are required for a well-formed systematic
review question, comparison is not always necessary. For example, it is possible for
only one treatment to exist for a medical problem. An example comparison is “placebo
taken once daily.”

e An outcome is a measurable effect resulting from the application of an intervention to the

population. An example outcome is “relief from congestion.”

A well-formed PICO question based on the foregoing example is: “In older females with
common cold symptoms (population), does 200mg of echinacea taken once daily (intervention)
provide better congestion relief (outcome) than placebo? (comparison)”

The PICO question, and other details about the design of the systematic review, are
recorded and published in a document called the systematic review protocol. The protocol is an
a record of the systematic review question and the anticipated methods for addressing that
guestion. Protocols are written a priori (i.e., before examining evidence) to ensure that the design

of the systematic review is unbiased.

2.3.2. Search for applicable citations

After forming a systematic review question, reviewers must find all relevant evidence. A

study contains relevant evidence if there is a close match between the study’s research

guestion and the review’s PICO question. Finding relevant studies is often done by issuing
keyword searches over bibliographic databases, like PubMed [12]. While large databases are
common sources of trials, it is considered good practice for reviewers to also search a number
of sources, including print journals, foreign language sources, and indexes of unpublished
(“gray”) literature [10]. This wider search is conducted to minimize bias that could be introduced
by restricting sources of trials.

One way of thinking about the initial literature search is as a binary classification test.
Citations are classified as “relevant” or “not relevant” on the basis of inclusion or exclusion in
search results. This stage of the process must be conducted carefully, as systematic reviews
are supposed to be exhaustive. This is, if a reviewer excludes a relevant study (i.e. the test
creates a false negative), the review’s credibility is compromised. An irrelevant trial that is
marked “relevant” (i.e. a false positive), costs only a few minutes of reviewer time during citation
screening. Therefore the cost of classifying trials is imbalanced: cost of false negatives is much
greater than that of false positives [3].

Given this cost imbalance, it follows that searches ought to err on the side of
over-inclusion in order to maximize sensitivity, which is the proportion of correctly-classified,
relevant results. However, if searches are optimized for sensitivity rather than accuracy, (i.e. the
proportion of results that are correctly classified) then only a small proportion of search results
are likely to be relevant. For example, the Tufts EBM group reports approximately 10% search
accuracy [3].

When developing a search strategy, reviewers aim to find an appropriate balance
between accuracy and sensitivity that minimizes the cost of the search. In practice, this means
that searches are developed iteratively. Since no efficient method is known for determining
sensitivity and accuracy of a search, refinement strategies are highly heuristic. For example, to

estimate whether a search is appropriately sensitive, reviewers might pick a small number of

prominent studies that they know a priori ought to be returned by the search. If those studies are
not returned, then it suggests that that search should be be made broader. For estimations of
accuracy, reviewers might select a maximal size M for the search results, where M is the
largest number of citations that the group can screen in a timely manner. If nis the number of
actually relevant trials (n is unknown, but it is generally estimated to be small, e.g. tens of
studies) then n/ M is the lowest tolerable accuracy; any search that returns more than M trials
will take too long to screen and should be made more specific by, e.g., adding keywords. It
should be noted that the best known resource for constructing effective search strategies is the

expertise of domain specialists.

2.3.3. Screen citations for relevance

After collecting possibly relevant citations, reviewers screen citations by hand. This is
done by reading abstracts of every trial returned in the previous search step. Since the number
of results to be screened is typically large (e.g., thousands of studies) this step is very
time-intensive; even though the cost of examining each study is small, the aggregate cost of
screening citations is prohibitive. Additionally, the Cochrane Collaboration recommends that
studies are screened independently by two or more researchers. While this reduces the risk of
bias, it multiplies the cost. [10]

As mentioned before, inclusion criteria for citations are determined largely by the PICO
guestion. For example, a study could be excluded because it addresses a different population or
intervention than desired. In addition to the PICO question, study design is a factor in trial
screening. For example, it may not make sense to compare an observational study (e.qg.
longitudinal study) to a controlled study (e.g. randomized-controlled trial) because of differences

in intervention allocation. Thus, it may be desirable to limit results to one type of study.

10

2.3.4. Extract trial data

Trial data is information about a study. This information includes (but is not limited to)
details about methods, participants, setting, context, interventions, outcomes, results,
publications, and investigators. The Cochrane Handbook recommends that the following data be

considered for extraction:

Source

® Siudy 1D (created by review author);

® Report [D (created by review author);

® Review author ID (created by review author);
® Citation and contact details;

Eligibility
® Confirm eligibility [or review:;
® Reason for exclusion:

Methods

e Siudy design;

® Tolal study duration;
Sequence generation™®;

.
* Allocation sequence concealment®;
® Blinding*;

® Other concerns aboul bias®;
Participants

* Total number;

® Selling:

* Diagnostic criteria;

* Age

® Sex;

o Country;
[Co-morbidity];

® |Socio-demographics|;
® |Ethnicity]:

e |Date of study];

Interventions

Total number of intervention groups;

For each intervention and comparison group

af interest:

® Specific intervention;

® [niervention details (sulficient for
replication, if feasible);

® |Integrity of intervention|;

Quitcomes
Outcomes and time points (1) collected;
(11} reported™®;

For each outcome of interest:

® Duicome definition (with
diagnostic criteria if relevant);

® Unit of measurement (il
relevant);

® For scales: upper and lower
limits, and whether high or
low score is good;

Results

® Number of participants
allocated to each intervention
group;

For each outcome of interest:

® Sample size;

® Missing participants™;

® Summary data for cach
intervention group (e.g. 2x2
table for dichotomous data;
means and SDs for continuous
data):

® |Esumate of elffect with
confidence interval; P value]:

® |Subgroup analyses|;

Miscellaneous

® Funding source;

® Key conclusions of the study
authors;

® Miscellaneous comments from
the study authors;

® References to other relevant
studies;

® Correspondence required;

® Miscellaneous comments by
the review authors.

11

Figure 1: Information that the Cochrane Collaboration recommends for inclusion in
systematic review. Bracketed attributes are relevant to only some reviews. Starred elements
are described in coming sections, which addresses sources of bias. [10]

This information is extracted from full-text trials by reviewers, often using a data
collection form. A data collection form is a standardized form that used within a systematic
review group to collect data for a specific question. These forms are designed to target
information needed to answer the systematic review question, and ignore data irrelevant to the
guestion. Data collected through these forms is generally stored using software like Microsoft
Excel and Microsoft Access.

As in the citation screening step, the Cochrane Handbook suggests that more than one
person should extract data for each trial to minimize bias present in selecting relevant data.

Conflicts between extracted data can be later resolved between group members.

2.3.5. Assess studies for bias and quality

After all relevant studies have been selected and their data extracted, it is important for
systematic reviewers to determine whether the experiments described by those studies are
reliable. This is done through analysis of bias, i.e. error in experimental procedure such that the
experiment, if repeated, yields incorrect results in the average case. Determining whether a
study is biased requires reading each study in detail, extracting information about study design,
and noting whether proper experimental design principles were followed. Examples of these
principles include:

e Sequence generation

Randomization is an important factor in good experimental design. This is true especially

in the case of randomized-controlled trials, which depend on randomization of tasks like

intervention allocation. If (purportedly) random sequence generation is actually

12

nonrandom, an experiment is said to exhibit selection bias.

e Blinding
Blinding is the practice of concealing information about an experiment’s design from
study participants or personnel. Blinding is done in order to prevent conscious or
unconscious bias caused by knowing sensitive information (e.g. intervention allocation)
that may affect outcomes or outcome measurements.

e Complete reporting of outcome data
A study should report on all outcomes, regardless of their statistical significance. The
tendencies to report and publish only statistically significant findings are called reporting

and publishing bias, respectively.

Various ways of numerically rating bias exist. One such method is the Jadad rating,
which ranks trials on a scale of 1 to 5 using criteria like those presented above.

In cases where experimental data is not published with a study, it may be necessary to
request this data from the study authors. Completeness of result data is important for accurate

assessment of bias.

2.3.6. Analysis and meta-analysis

In order to make conclusions about the relative effects of interventions, reviewers
conduct analyses of trial data. In SR terminology, effect is the difference in outcome between
groups that receive different interventions. In order to make conclusions about intervention
effect, reviewers analyze direction of effect (i.e. whether the outcome was improved or not),
magnitude of effect (by how much did the outcome improve or degrade), and the consistency of
effect across studies. Reviewers also use data about study methodology to determine the

strength of the evidence supporting the observed effect.

13

Analyses can be qualitative or quantitative. Qualitative analysis may include a structured,
narrative summary of a study’s characteristics and conclusions. Quantitative analysis often
takes the form of statistical meta-analysis, which pools results of trials using statistical methods.

The choice of analytical method depends on the guality and design of included studies.
Because meta-analyses combine measures from many trials, it is important to ensure that the
combination of those measures is actually meaningful. For example, if outcomes are measured
in different ways, then simply pooling outcome measurements by computing a weighted average
may not be meaningful. Similarly, quantitative analyses are likely to be biased if the constituent
trials are also biased. When conducting statistical meta-analysis, reviewers must be sure that

experimental heterogeneity and bias are adequately accounted for in their chosen model.

2.3.7. Interpret findings and present results

The final step of the review process is to summarize the review's methodology and
findings and synthesize a conclusion to the review question. An important aspect of the
interpretation step is a discussion of the methodological limitations of the trials and reviews
discussed. Addressing the limitations of the evidence presented allows the reader to objectively

determine how confident she should be in the findings and conclusions of the review.

2.3.8. Maintain studies

After a review is published, authors are responsible for continually revising the review to

reflect new evidence, e.g. newly published trials.

2.3.9 Time requirements for creating systematic reviews

14

Month Activity

1-2 Preparation of protocol.

3-8 Searches for published and unpublished
studies.

2-3 Pilot test of study eligibility criteria.

3-8 Inclusion assessments.

3 Pilot test of ‘Risk of bias’ assessment.

3-10 Validity assessments.

3 Pilot test of data collection.

3-10 Data collection.

3-10 Data entry.

5-11 Follow up of missing information .

8-10 Analysis.

1-11 Preparation of review report.

12- Keeping the review up-to-date.

Figure 2: A general timeline for conducting systematic reviews, provided by the

Cochrane collaboration. [10]

2.4 Opportunities for reuse

Systematic reviews are expensive to make and maintain. Most of this expense comes

from human effort spent in selecting and analysing clinical trials, and much of this effort

produces data as a result. Throughout the authorship process, data is created, collected, and

extracted. This data, which | refer to as systematic review data (SR data), is stored locally by a

review team. There are few widely-used method for distributing systematic review data between

review groups.

15

The design and implementation of STARS is based on the hypothesis that if reviewers
were given a system to store and retrieve SR data, then that system could facilitate reuse after
accumulating data. A complementary hypothesis is that data reuse in systematic reviewing
could reduce of the cost of creating systematic reviews. In order to build a system to test these
hypotheses, | ask three questions: First, which SR data are generated? Next, which SR-data
are most reusable? Finally, how should SR data be managed? In the rest of this section, |

address the first two questions. The last question is the primary topic of the next section (3).

2.4.1 Which SR-data are generated?

| structure my description of SR data using three categories: novel data, collected data,
and extracted data. Novel data have user-created content and structure. Collected data are
imported from one structured source into another with little change in logical organization.
Extracted data are imported from one source to another, but have undergone changes in either
logical organization or content, e.g. through truncation.

Examples of novel SR data include PICO questions, search strategies, lists of relevant
trials, tables, annotations (perhaps including assessment of bias), statistical meta-analysis, and
unstructured prose writing. Indeed, much (if not most) SR data is novel. Examples of collected
SR data include possibly relevant trial citations and experimental data obtained from

investigators. Extracted data includes trial data.

Step of Systematic Review: Data Generated:
Forming PICO Question PICO question, systematic review protocol
Literature search Search strategies, lists of possibly relevant

study citations

Citation screen Lists of actually relevant trials (per reviewer),

16

annotations explaining rationale for leaving
out excluded trials

Data extraction and entry

Data extraction forms, extracted study data,
missing study data retrieved by investigators,
annotations about study quality

Assessing bias

Annotations about study bias (e.g. Jadad
rating), tables indicating risk of bias, narrative
assessment evaluating sources of bias

Analysis Data prepared for statistical software, results
of statistical meta-analysis, narrative analysis
Interpretations Summary of findings table, risk of bias tables,

other SR prose

Figure 3: Examples of data generated at each step of a systematic review

2.4.2 Which SR data are good candidates for reuse?

Following the definition of reusable data given earlier, reusable SR-data should be

expensive to create and not unique to one systematic review. Many of the SR data mentioned

above satisfy both criteria, but some do not.

Given that creating novel data requires user decision-making, virtually all novel data are

expensive to create, thus satisfying the first criterion. Some novel data, however, are for all

intents and purposes unique to a systematic review. For example, some data are generated by

processes that must be performed for every systematic review. An example of such a process

is creating PICO questions. There are also novel data that are synthesized from work done

earlier in the review, like unstructured prose and statistical meta-analysis. In this case, there is

no obvious way to reuse these data in whole or part; reusing any part of the synthesized data

implies that all of the base data (i.e. data from which the synthesis is derived) are the same. The

probability, however, of all base data being the same between two different systematic reviews

17

is low. For this reason, it does not make sense to try to reuse these data.

Collected data are generally good candidates for reuse. For example, lists of potentially
relevant trials are collected from many different sources - electronic databases, grey literature
registries, print journals, etc. Collating results from these searches takes a non-trivial amount of
time, especially when data-entry is required for citations that cannot be automatically exported
from search engines. Similarly, experimental data retrieved from reviewers has high
reuse-potential; latency for this data is generally high, and the experimental results are
potentially valid for any reviewer who chooses to include the trial in question.

Finally, extracted data also make good candidates for reuse. As described above, trial
data is extracted by reading the full text of a trial and entering relevant information into a form.
This is an expensive task, requiring human judgement and data-entry. While not all trial data
extracted from a trial are relevant to every systematic review that includes that trial, there is
certainly overlap. This opportunity has been explored by systems like SRDR [18] and

ClinicalTrials.gov [5].

2.4.1 Specific opportunities for reuse

I will now present two realistic scenarios that demonstrate the utility of data reuse in
systematic reviewing. The first is the case of revising out-of-date systematic reviews. The

second is the case of auditing systematic reviews for methodological soundness.

Revising an old systematic review

Suppose that a physician treats many patients with type 2 diabetes. A new drug to treat
type 2 diabetes, Exenatide, has been recently approved by the FDA. The physician wants to find
and evaluate evidence supporting its effectiveness for patients she treats, who currently use

daily insulin to regulate levels of blood glucose. The physicians and her colleagues decide to

18

conduct a systematic review to answer this question. The PICO question (which | call Q) is:
“In adults 18 and older with type 2 diabetes (population), how well does exenatide taken
at interval x with dosage y (intervention) regulate glucose (outcome) as compared to insulin
(comparison)?”
After forming her question, the review group searches for systematic reviews that
answer questions similar to @ ; she does not want to create a new systematic review if another
review adequately answers her question.

She finds a review that addresses a very similar question, @’. This review happens to

be more than one year old and has not been maintained properly. This means that no new
evidence have been included in the systematic review since its publication. | call this systematic
review S .

What choices do the review group have? It can use the old systematic review to justify
choices of treatments and thus save the time and effort of building a new review. This approach
should be avoided if possible, since S, is not exhaustive. Alternatively, the review group can
build a new systematic review from scratch. While this approach better guarantees that the
needs of patients are addressed, it is expensive. S ;; and Spew, if performed properly, should
follow the same methodology, i.e. that which has been established by the Cochrane
Collaboration. Therefore the following hold:

1. The search strategies for S,; and Sy Should be very similar, if not identical.

2. If trial selection is performed correctly in S ;; , then all of its trials should also be
included in Spey -

3. The data extracted and collected (e.g. trial data) for those trials should also be very
similar.

Since search strategies and selected trials are (or at least ought to be) similar for S,

19

and Spew, these data can be used to help generate search strategies for Sy, . This observation
follows from the fact that S_;; 's searches are composed of combinations of keywords likely to
yield relevant trials. Therefore, S, 's search terms can be used as a starting point for
constructing Spew’S Search strategy. Since Sy, Might be constructed under different
assumptions than S,;; (e.9., Srew’S review group has fewer reviewers to screen trials), the
strategies borrowed from S,,; may have to be modified to assure effectiveness. This is not
necessarily problematic, since SR-data obtained from S,,; can be used to tune S,;,’s search
strategy. For example, the list of relevant trials from S,;; can be used to heuristically adjust the
sensitivity of search strategies as described in Section 2.3.2. This observation follows from the
fact that if S, 's trials are actually relevant to S,..,, then each of S, ’s trials should be returned
by some search strategy in Spew -

Since there is significant overlap between trials in S,;; and S,..,, SR-data directly
relating to trials can be reused between reviews, assuming that the extraction process is sound.
This means that reviewers can forego some of the effort needed to extract trial data. Similarly, if
a systematic review requires that some experimental data be retrieved from clinical trial
investigators and that data is managed by the system, then reviewers are no longer required to
wait for investigators to reply to requests for data. The trial screening process presents another
possible opportunity for extracted data reuse. Once a set of candidate trials has been
established, it may be useful to issue structured queries over extracted data that are not
expressible using a regular keyword search. An example of such a query might be: “Give me all

trials with populations greater than one hundred that declare no conflict of interest.”

Auditing systematic reviews
The opportunities described in the previous example depend on the assumption that S_;;

was performed correctly. This is not always the case. Just like clinical trials, systematic reviews

20

vary in methodological rigor. While systematic reviews report on methodology, detailed analysis
is required in order to ensure that the review is unbiased. One technique for determining validity
of systematic reviews is meta-analysis of the reviews themselves. These meta-analyses also
present opportunities for data reuse, particularly the ability to critically examine and annotate
intermediate data generated by the review process.

The fact that systematic reviews vary in quality is also important to systematic review
data reuse. That is, while reusing SR data can save reviewer time, sometimes work must be
done to determine whether potentially reusable data is any good. Note that this work can
generate reusable data - user feedback, like annotations and ratings, can be used to make quick
judgements about SR data. For example, if the extracted trial data is skewed by the design of its
extraction form, a reviewer can leave an annotation indicating the bias. Annotations can also be

used to correct inconsistent values in extracted trial data, or to even add missing data.

21

3. A System to Aid Reuse in SR Formulation

STARS provides features for managing reusable systematic review data. In this section,
| introduce these features and the data model upon which they are built. | begin by indicating the
types and logical organization of the data that STARS stores. | then discuss the design of
SR-SQL, a query language for accessing STARS’s data model. Following this, | discuss how
the STARS data model can be implemented using a relational database and how SR-SQL can

be automatically translated to standard SQL. Finally, | discuss STARS'’s high-level architecture.

3.1. Design goals

Before | discuss STARS at length, | will provide an overview of some of the principles
which helped shape its design and implementation.

STARS is useful insofar as it aids management and reuse of systematic review data. As
shown in the previous section, there are a large number of data that a system can potentially
store to aid reuse. The cost of implementing each type of data is significant. Hence the following
design principle: choose to manage data that jointly minimize implementation time and maximize
reuse potential.

STARS aims to provide an interface to reusable data that is simultaneously simple and
expressive. This is because we anticipate the primary workload of STARS to be ad hoc
exploratory queries issued by medical professionals. Since such users may not have extensive
database knowledge, it follows that just as the types of data that STARS manages must be
chosen judiciously, their representation must also be carefully selected. Specifically: the logical
organization of SR-data should reflect the user’'s mental model of the data and not be overly

complex.

22

Since many systematic review data are implicitly related to clinical trials, (e.g. extracted
study data, assessment of bias, etc.) STARS must include some minimal model for representing
bibliographic trial data. Design of bibliographic databases for clinical trials has been studied
extensively. Thus, our aim was not to create a system that implements every feature needed for
a user-facing citation database. Rather, we designed STARS to represent a set of trial attributes
that uniquely identify trials, can be imported from established bibliographic databases, and can
be extended and described by user-generated SR-Data.

We use the relational model as our main point of reference in developing the data model
for STARS. One goal of STARS was to determine the extent to which the relational model

succeeds or fails in representing systematic review data.

3.2. Logical data organization

3.2.1 Trials

As mentioned above, managing data about clinical trials is a fundamental task. Many
bibliographic databases have been created to index clinical trials. Among the most prominent
are Pubmed and ClinicalTrials.gov, both of which are administered by the National Library of
Medicine division of the NIH. Pubmed contains approximately 21 million citations of medical
literature and collates data from many different sources, including the MEDLINE database and
print journals [12]. ClinicalTrials.gov is a trial registry comprising approximately 124,500 citations
of clinical trials [5]. ClinicalTrials.gov is unique in the fact that it stores trial results as well as
extracted trial data and bibliographic information. Investigators of certain types of trials
evaluating treatments under FDA regulation are legally required to register their trials with
ClinicalTrials.gov [17]. Both ClinicalTrails.gov and Pubmed provide interfaces for exporting the

data that they store: Pubmed through a web API, and ClinicalTrials.gov through a tool that allows

23

users to export trial data as XML.

ClinicalTrials.gov was chosen as the source of trials early in the design process
because it provides rich, exportable, semi-structured data about each trial in the registry. In
future iterations of STARS, it will be necessary to import trial data from any potential source of
clinical trial data. This follows from the fact that systems to support systematic reviews should
collate data from many different sources, as is the case in systematic reviews themselves.

ClinicalTrials.gov has a document-based data model that is implemented using XML.
This provides a flexible schema that maps well to the nested structure of trials. The attributes
that | included for trial data are a subset of those stored by ClinicalTrials.gov. The schema that |
use is flat rather than hierarchical, and values of attributes are automatically extracted from XML
data made available on ClinicalTrials.gov. The ability to import trial data helps mitigate the
difficulty of bootstrapping a system that stores primarily human-generated data. This goal is
accomplished by providing utility even before users have contributed anything. For the purposes
of our prototype, trial data are immutable but extensible. The data are shown in the following
schema:

(Trial ID, Title, Summary, Description, Status, Phase, Study
Type, Study Design, Condition, Intervention, Study Population,
Sampling method, Study start date, Study completion date)®

3.2.2 Systematic review data

Logically, a systematic review is a data object associated with an author and a review
guestion. Each systematic review is also associated with a set of clinical trials. A clinical trial is

included in a systematic review’s trial set if the review’s author determines that the trial it is

! These are only a small subset of the data recorded by ClinicalTrials.gov. The data stored in
ClinicalTrials.gov represent only some of the possible data stored by a trial. In general, it is
difficult (or impossible) to determine a schema for trial data a priori, meaning that the
representation must be approximate

24

relevant to the review question.

Artifacts are structured objects that are generated during SR formulation. Systematic
review artifacts can include extracted trial data, results of questionnaires assessing trial quality
and bias (e.g. Jadad scale), and results of statistical meta-analysis. Artifacts are
domain-specific, and therefore can represent and needed domain information. At this stage, the
types of artifacts available to users are fixed by the system’s implementation. In STARS, | focus
on a novel type of artifact called an outcome matrix, which categorizes trials hierarchically
according to predicates on extracted features.

Annotations are user-defined metadata about data objects. The user that creates a
particular annotation is the owner of that annotation. Entities that can be annotated are called
annotatables. Annotations are themselves annotatable. The simplest (i.e. least structured) type
of annotation is a text comment. Annotations can also be used to add missing trial data. More
complicated annotations include numeric ratings, which are potentially multi-part. In STARS, |
represent these sorts of annotations using a simple key-value relation. Syntax is provided in
SR-SQL to facilitate simple access to these annotations.

Interactions record actions made by users in the system. Interactions indicate the time at
which the action was performed, the identity of the user performing the action, the type of action
performed, and the systematic review affected by the action. For example, a user’'s searches
can be modeled as a series of interactions. Creating an artifact can also be considered a type of

interaction.

3.2.3 Artifacts: Outcome matrices

In STARS, | focus on storing and querying artifacts called outcome matrices, which are a
class of data structures initially described by the Evidence Based Medicine group at Tufts.

An outcome matrix is a hierarchical data structure that is used to classify trials. Outcome

25

matrices are hierarchical in that they are organized into ordered levels, where at each level the
outcome matrix sorts trials by user-defined criteria. For example, one level might sort trials by
comparisons of different drugs, whereas another might sort trials by the outcome that they
measure. At each level, trials are placed into “buckets” based on whether they meet those
criteria. For example, a trial will be placed in the bucket for ‘Drug A’ and ‘Drug B’ if a trial
compares outcomes for those two interventions. The trials in each bucket are then subdivided
by all categorizations possible in the level below, and so on. The ordering of levels, selection of

categories, and placement of trials in buckets are user-defined.

Class A Class B Class C ClassD

ClassA 4 9 3

CassB - B\ 1 T E !
ClassC - -

DrugA DgB DrgC . .

gh 15 0

DugB - 3 10

Drvg : b

Outcome 1

Quicome2 8

Outome3 5

Figure 5: This is a visual representation of an outcome matrix, provided by the Tufts EBM group.
Each box with labeled axes represents a level. The labels on axes are categories. The elements
indexed by two categories represent trial sets. Trial sets are indicated by a number that
represents their cardinalities. Note that some levels have two axes, but some only have one.

26

In order to speak more precisely about outcome matrices, | provide a formal definition. A
k-level outcome matrix is a 4-tuple < T, C, E, F >, where T is a set of trials, C is a set of
categories, FE is a set of elements, and F'is a function from E to subsets of T'. C is sorted into
a sequence of disjoint subsets Lq,...,L;,. These are called the levels of the outcome matrix. An

outcome matrix element is a sequence S,..., S, suchthateach S; € L; x L;, where

0 < i < k .Each OM element is ordered as follows: The first member of the sequence is in
L, x Ly, andforevery S; and §;, if Si directly succeeds S;,then S; € L, x L, and

S; € L, x L, ,where p =o+1.Ifanelement A is an initial subsequence of B, then B is

descended from A. If the difference of their lengths is 1, then A is the parent of B. F obeys the

property that if B is descended from A, then F(B) C F(A). If atrial is a member of some

F(A) where A € E, then that trial is described by each pair of categories in A.

Queries over outcome matrices that facilitate reuse

Outcome matrices present an organized view of various trial features in a systematic
review. An outcome matrix’s structure and contents are largely user-defined and can therefore
be designed to describe whatever trial criteria the review authors consider relevant. Using the
outcome matrix described by Figure 4 as an example, | present sample questions that

demonstrate the expressive power of outcome matrices in STARS:

1. How many trials compare drugs in class A and in class C?
This question might arise if a doctor wishes to determine the effectiveness of a drug in

class A as compared to one in class C. To do so, the doctor can simply ask this question about

27

all outcome matrices, then choose to read the review whose outcome matrix indicates largest
number of trials that compare A and C. This way, the doctor selects the review containing

evidence most relevant to her needs.

2. For outcome matrix M, which classes are compared with class A, and how many trials fall
under each comparison?

A doctor can ask this question to determine the distribution of interventions within the
systematic review containing outcome matrix M. This allows the doctor to see whether, e.g.
comparisons of classes of drugs are represented equally by the systematic review. This is a
relevant concern since included trials may skew towards a particular comparison of classes. By
omitting the requirement that only M is considered, this question can also be used to determine
which other classes of drugs are compared with class A. This could be useful for determining

other possible interventions or comparisons.

3. Of trials that compare Class A and Class B, what outcomes do they report on?

This sort of question can be used by reviewers to conduct an analysis of outcome
reporting bias in trials included by a systematic review. For example, if one group of trials reports
on a certain outcome and another group fails to report on that outcome, it suggests that the
second group might fail to report on that outcome because its results were not found to be

statistically significant.

Language Support for Outcome Matrices

STARS provides a set of language features in SR-SQL that allow users to store and

guery outcome matrices. While an outcome matrix is strictly not a relation, SR-SQL’s features

28

allow outcome matrices to be included in SQL-style queries.

Collection of Outcome Matrix Elements

The first language feature that SR-SQL introduces to support this type of functionality is
a named, unordered set of outcome matrix elements, called OMs. This collection can be
included in the FROM clause of a SQL-style SELECT query, meaning that attributes of the OMs
collection can be associated with tables stored in a relational database. One way of performing
this association is through joins. The members of the collection OMs are, logically speaking, OM
elements. These elements are related as described above; each element is characterized by
one or two category labels on a given level. Each element may have a parent in a preceding
level and children in a succeeding level. In order to establish relationships between OM
elements, each element is identified by a unique ID. The language interface provided by SR-SQL
provides a concise syntax for expressing relationships between outcome matrix elements that
conceals the details of how OMs are implemented.

Consider the following query. Expressed in English, this query asks the following: “Find
the number of outcome matrix elements comparing Drug A and Drug B.” Recall that an outcome
matrix element compares two categories (e.g., Drug A and Drug B) if the trials residing in the
OM element’s trial set compare those categories. When expressed in SR-SQL, this query is the

following:

SELECT COUNT(0.ID) FROM OMs AS O[‘Drug A’, ‘Drug B’];

This shows how the outcome matrix abstraction is exposed to users. The outcome matrix
collection, OMs, is included in the FROM clause as if it were a table. Each element returned

from OMs is bound to an alias, O, which can be referenced in any other part of the query.

29

SR-SQL add syntax for qualifying which OM elements (from OMs) can be bound to O. For
example, when O is parameterized as above, only elements comparing Drug A and Drug B will

be selected from the collection.

Determining trial set membership

Outcome matrices are useful because they provide a structured way of organizing trials
by category. This organization is performed by sorting trials into trial sets of outcome matrix
elements, which are themselves described by a combination of categories. In order to allow for
gueries over outcome matrix trial sets, SR-SQL associates each outcome matrix element (e.qg.
the members of the OMs collection) with a trial set. This trial set is accessed through an OM
element’'s trial_set attribute. The following query, Q2, illustrates how the trial_set
attribute is used. In English, Q2 reads: “Find all outcome matrix elements that contain the trial

‘NCT12345' in its trial set.” In SR-SQL, the same query is expressed as follows:

SELECT 0.ID FROM OMs AS O WHERE ‘NCT12345’ IN O.trial_set;

Logically, the trial set is an attribute of each OM element; it is referenced in much the
same way as the ID of each outcome matrix element. Note the semantics of the “IN” operator,

which forms a predicate like the following:

. <value> IN <OM>.trial_set ..

A predicate of this form evaluates to True if <value> is a valid trial ID stored in the trial set of

the specified outcome matrix element.

Specifying category names with variables

As shown above, SR-SQL provides basic language features for selection on the

categories of OM elements, and queries about OM elements’ trial sets. The next set of features -

30

namely, aliasing of categories - facilitates a set more expressive queries.

In order to motivate the idea that category aliasing is desirable, consider the following:
Suppose that a user knows the name of one category (C), and wants to find all other categories
with which C is compared. For example, a review author might want to see the number of trials
in the trial set for each outcome matrix element that compares C with some other category. In
English, such a query might be stated as follows: find all interventions X that are compared with
‘insulin’, and the number of trials that compare ‘insulin’ and X.

The following SR-SQL query demonstrates the ability to bind category names to

variables:

SELECT +intervention_B, count(T)

FROM OMs AS O[‘insulin’, intervention_B], trials as T
WHERE T.trial ID in O.trial_set

GROUP BY +intervention_B;

Here, the category alias, called intervention_B, is declared at the same time as the

outcome matrix alias O. The category name ‘insulin’ is specified as usual. Note how the “+”
operator is used; when “+” is applied to the category alias, the alias is dereferenced to the name
of a category of a specific outcome matrix element. This means that it is possible to include a
(possibly unknown) category name in the SELECT, WHERE, GROUP_BY, or HAVING clauses

of a SR-SQL query.

PARENT OF operator

Outcome matrices provide the ability to hierarchically organize trials, using different
“levels” of categories. Logically, the closer a level is to root, the broader the categorizations that
occur at that level. A query author can obtain more specific results by querying deeper into the

structure of an outcome matrix. The following query exemplifies this sort of behavior: “For trials

31

that compare Class A and Class B, on which outcomes do they report?” Recall that in the
example outcome matrix given in Figure 4, Class is a top level category, whereas Outcome is a
bottom level category. In order to express this query, it must be possible to specify parent-child
relationships between outcome matrix elements. SR-SQL provides the PARENT OF operator to

specify parent-child relationships between outcome matrix elements. Hence:

SELECT +outcome
FROM OMs AS O1[‘Class A’, ‘Class B'],
OMs AS 02,
OMs AS 03[outcome]
WHERE 01 PARENT OF 02 AND 02 PARENT OF 03,

In this case, the PARENT OF operator allows query-writers to specify a “path” from OM

elements that categorize trials by Class to those that sort trials by Outcome.

Inserting outcome matrix data

The ability to write queries about outcome matrices depends on the fact that outcome
matrix data actually exists in the database. This means that there must be some syntax for
inserting outcome matrices. Determining an appropriate syntax turns out to be a fairly difficult
task, given that outcome matrices are dense with information. That is, each outcome matrix
encodes information about categories, levels, outcome matrix elements, and trial sets, and most
of this information is user-defined.

In response to the complexity of outcome matrix insertion, SR-SQL proposes relatively
simple syntax. Suppose that a user wishes to describe a small outcome matrix. On its first level,
Drug A is compared against Drugs B and C. On its next level, the trials are sorted by the
outcomes on which they report, Outcomes one, two, and three. This SR-SQL statement inserts

such an outcome matrix into the OMs collection:

32

INSERT INTO OMs SELECT {
[“Drug A’, ‘Drug B’] = ('NCTO12") ++

{
[“Outcome one’] = (‘NCTO12")
I
[‘Drug A’, ‘Drug C’] = (‘NCT123’, ‘NCT456') ++
{
[‘Outcome two’] = (‘NCT456"),
[‘Outcome three’] = (‘NCT123’, ‘NCT456')
}

};

Each expression of the form:
[“. .. 1= '1T12", .. ,'Tn").
defines an OM element with trials T4, ..., T, inits trial set. This is called an OM initialization. The

“++” operator after an OM initialization signifies addition of a lower level. Braces (e.g., .. { ..

} ..) encapsulate OM initializations in lower levels.

3.2.4 Annotations

Annotations are user-defined metadata associated with a given data object. In STARS,
annotations serve two main purposes. First, annotations can be used to extend trial data. The
ability to extend trial data is needed since the schema for trial data is not known a priori. That is,
it is always possible for trial data to be incomplete.Second, annotations provide a useful way to
indicate the quality and consistency of data stored in the repository.

While a wide range of data can be managed in ways that address these goals, STARS
aims to provide three of the most important: free-form text comments, additions of missing data,
and numeric ratings. To do so, STARS models annotations as a collection of key-value pairs.

The annotation key indicates how the annotation should be interpreted (e.g. as a comment,

33

extension, or rating). The annotation value holds the content of the annotation. Each pair is
related to an annotatable data object and the user who created the annotation. Examples of
annotatable data objects include outcome matrices, systematic reviews, and annotations

themselves.

Sample queries on annotations that facilitate reuse:

1. Find the minimal Jadad rating for trials in systematic review S’s trial set.

Suppose that S uses Jadad ratings to assess trial quality. This query can then be used
to quickly find the quality cutoff designated by a systematic review. Since the data model for
trials does not include Jadad rating by default, this query must be answered by joining the trials

in S’s trial set with annotations that have ‘jadad rating’ (or similar) as key.

2. Find all comments for trials with Jadad rating equal to ‘5'.

This query can be used to find discrepancies in user feedback about trials. For example,
if the trials have a Jadad rating ‘5’ (the maximal rating), then they should not have negative
feedback in the comments section. Signs of conflict indicate that the annotations themselves

should be reviewed.

Language support for annotations

SR-SQL provides an interface for extending the schema of a table with annotations. For
example, suppose that a systematic review author wishes to record the Jadad score that she
calculated for a trial, and that there is no attribute representing Jadad score in the schema for
that trial. SR-SQL allows users to insert an annotation recording this extension, then query on

the annotation as if it were an attribute of the annotatable table. Consider this query: find all

34

comments for trials with Jadad rating equal to ‘5. Using SR-SQL, this query can be expressed

as follows:

SELECT title from trials AS T where jadad_rating = ‘5’;

Note that this can return a non-empty result set if jadad_rating is an attribute of the trials
relation, or if there exists some annotation that has the key “jadad_rating”. In the former case,
the literal value ‘5’ is compared to the row’s jadad_rating attribute. In the latter case, ‘5’ is

compared to the value of an annotation associated with a row in the trials table.

3.2.5 Interactions

Interactions record user actions in interactive systems. STARS manages two types of
interactions: records of searches over the repository and records of artifact creation.
Interactions are recorded to make analysis of the review process easier. By the storing the
temporal ordering of steps in the review process, inferences can be made about the nature and
guality of the final product.

In STARS, an interaction comprises several important pieces of information. First, an
interaction must be associated with a systematic review. Second, an interaction must record
some indicator of when the interaction occurred in the systematic review process. This could be
represented by a serial counter or a time stamp. It is also necessary to record the identity of the
user who created the interaction. Using these basic components, it is possible to record both

interactions recording searches and those recording the creation of outcome matrices.

Sample query that facilitates reuse:

35

What is the sequence of searches leading to a given outcome matrix?

The data returned by this question have several possible uses. For example, suppose
that a user is auditing a systematic review for methodological rigor. Given the sequence of
searches issued before the creation of an outcome matrix, it is possible to “play back” the series
of searches by re-issuing them over their databases of origin. If the search results have grown
significantly since the original query was issued, then it suggests that the systematic review
needs to be updated in order to determine whether the new evidence is relevant to the question
posed. This process is one of the steps indicated by the Cochrane Handbook for conducting
updates of systematic reviews.

Another possible use of data returned by this query is to use search strategies
successfully employed in the past to automatically generate suggestions of queries to reviewers
searching on similar topics. While this is an interesting topic, we primarily focus on the first use

case.

3.3 Representing SR-Data with Relations

3.3.1 The relational model

The relational data model is a common way of representing structured data. In this
model, collections of related attributes (called tables) are used to represent data. The way in
which these collections and attributes are logically organized is called the schema.

The relational model provides many benefits: it is conceptually simple, it allows system
designers to specify consistent views of data, and it allows users to declaratively select data for
retrieval and modification. This model, however, requires a level of structuredness that can be
limiting when the schema of the stored data is not known a priori. Similarly, representing certain

types of data - like hierarchical data - can be very complex. In STARS, we initially represented

36

trial and SR data using the relational model. We found that this model, while conceptually simple,
led to highly complex queries. It was in response to this complexity what we implemented the
guery language SR-SQL, which allows for queries that are simultaneously simple and
expressive. While SR-SQL provides language features to ease the complexity caused by using
a relational model for SR data, it may be useful to evaluate whether other models (e.g. the

document model) may be better suited to storing SR data.

3.3.2 Representing Outcome Matrices using Relations

In STARS, outcome matrices are represented using a set of tables. While defining the
schema of these tables is simple, accessing outcome matrices using traditional SQL grows
complex as queries become sophisticated. The relations that collectively specify an outcome

matrix in the data repository are the following:

The outcome_matrices relation:

(annotatable ID, parent_ID, root_parent_ID, categoryX,
categoryyY, trial_bitmap, systematic_review_ID, ...)

The outcome_matrix_ID is an integer that uniquely identifies outcome matrix
elements. All elements of an outcome matrix have an row in this table. An extra row is also
generated as a 0th level OM element that serves a root element for the outcome matrix. This is
is the element to which all other elements are associated. It provides a unique identifier for the
outcome matrix as a whole, rather than for just one outcome matrix element. The parent_ID
and root_parent_1ID attributes are foreign key references to the outcome_matrix_ID
attribute of other outcome matrix tuples; root_parent_ID refers to the ID of the extra, 0th
level OM element, and parent_ID refers to the element the level directly above. CategoryX

and CategoryY are foreign key references to tuples in the Categories relation. These

37

represent categories that characterize members of an OM element’s trial set. For elements that

use only one category, e.g. elements that describe outcomes, CategoryY is setto NULL. The

attribute trial_bitmap is a bit string specifying which trials from the systematic review’s trial
set are included in the element’s own trial set. The attribute systematic_review_IDis a
foreign key associating each outcome matrix element to the systematic review to which it

belongs.?

The categories relation:

(category ID, outcome_matrix_ID, category_name,

category_description)
Each row in the Categories table is identified by an integer primary key called

category_1ID. Each category is also related to a root outcome matrix row by the foreign key
outcome_matrix_ID. The category_name and category_description are what their

names imply: text fields for a category’s name and description.

The trial_ set relation:

(element ID, systematic_review_ID, trial_ID)
Trial sets are represented by a many-to-one relationship between the trial set table,

which identifies set members by the foreign key trial ID, and the systematic review relation,
referenced by the foreign key systematic_review_ID. The primary key element_1ID totally

orders the trial set, allowing it to be masked by the bit string stored in each outcome matrix

element.

2 The schema for the outcome matrix table also includes attributes that allow it to be treated as
an annotatable and as an interaction. These sets of attributes will be explained in the forthcoming
discussions of annotations and interactions.

38

Translating SR-SQL to SQL: Outcome matrices

1. Collections of outcome matrix elements
I will now show how queries that reference the OMs collection are mapped to SQL
queries referring to relations shown above. Recall this query from the previous discussion of

SR-SQL:

SELECT COUNT(0.ID) FROM OMs AS O[‘Drug A’, ‘Drug B’];

When SR-SQL is translated to SQL, O is actually aliased to the outcome_matrices table.
This table is then automatically joined to as many as two rows in the categories table. The
translation process also adds a condition to the WHERE clause specifying that these categories
have names equal to ‘Drug A’ and ‘Drug B’. The resulting query returns the ID’s of all outcome
matrix elements categorized by the labels ‘Drug A’ and ‘Drug B’, and is shown equivalently in

standard SQL.:

SELECT COUNT(O.annotatable_ID) FROM outcome_matrices O
JOIN categories cl ON (O.CategoryX = cl.category_ID AND
0.root_parent_ID = cl.outcome_matrix_ ID)
JOIN categories c2 ON (0O.CategoryY = c2.category_ID AND
0.root_parent_ID = c2.outcome_matrix_ID)

WHERE cl1.category_name = ‘Drug A’ AND c2.category_name = ‘Drug B’;

2. Trial set membership

An example of a query incorporating predicates on trial set membership is the following:
SELECT 0.ID FROM OMs O WHERE ‘NCT12345’ IN O.trial_set;

Recall that an outcome matrix’s trial set is represented by a bitstring that can be used to

mask the set of trials included in a systematic review. This query simply looks for every

outcome matrix element such that the set generated by masking the systematic review'’s trial set

39

with its bitstring still contains a the trial identified by ‘NCT12345" .

This query can be shown equivalently in standard SQL:

SELECT O.annotatable_ID

FROM OMs AS 0, trial _set AS T

WHERE
T.systematic_review ID = O.systematic_review_ID AND
T.trial_ID = ‘NCT12345’ AND
in_trial_set(T.element_ID, O.trial_bitmap);?

3. Specifying category names with variables

The example given for such a query is the following:

SELECT +intervention_B, count(T)

FROM OMs AS O[‘insulin’, intervention_B], trials as T
WHERE T.trial ID in O.trial_set

GROUP BY +intervention_B;

Recall that values instantiated in the statement that defines the alias to the outcome matrix
collection are mapped to the category_name attribute of the Categories relation. Thus, when
this query is translated into an equivalent SQL query, all instances of the dereferenced variable
+intervention_B are translated to equivalent references to Categories.category name.

Hence the SQL translation:

SELECT DISTINCT c2.category_name, count(T)

FROM outcome_matrices 0, trials as T, trial_set as ts
JOIN categories c1 ON (O.CategoryX = cl.category_ID AND
O0.root_parent_ID = cl.outcome_matrix_ID)
JOIN categories c2 ON (O.CategoryY = c2.category_ID AND

*in_trial_set(<element_ID> , <trial bitmap>) is a stored procedure that

determines whether the nth position of the trial bitmap is set to 1, where n is equal to the position
of the trial assigned by the serial key element_1ID.

40

O0.root_parent_ID = c2.outcome_matrix_1ID)

WHERE
cl.category_name = ‘insulin’ AND
ts.systematic_review ID = 0.systematic_review_ID AND
ts.trial _ID = T.trial ID AND
in_trial set(T.element_ID, O.trial bitmap);

This translation also illustrates some of the complexity that can be caused by composing
language features. While the SR-SQL expressed above is still comprehensible, the equivalent

SQL query is perhaps too large to be constructed in an ad-hoc, exploratory setting.

4. The PARENT OF operator

The PARENT OF operator determines whether two outcome matrix elements are directly
related. The translation of the PARENT OF operator is very simple: it simply takes any
where-clause expression of the form .. 01 PARENT OF 02 .., where Ol and O2 are
outcome matrix aliases, and converts the expression to 01.annotatable_ID =

02.parent_id. This allows for encapsulation of the underlying relational outcome matrix

implementation.

5. Inserting outcome matrix data

While STARS does indeed process outcome matrix insertion, this is not an instance of
translation. This is due to the fact that while an outcome matrix insertion logically comprises only
one statement, it is composed of many interrelated operations in the underlying implementation.
For example, one insertion must be performed for every outcome matrix element defined by the
user. The system must also generate bit strings for each outcome matrix element’s trial set.
While these operations could be performed by PL/SQL, in STARS they are instead performed

during the process of parsing the INSERT statement.

41

3.3.3 Representing Annotations using relations

As described before, annotations are represented using a very simple key-value model.
Annotations are associated with data objects. Those objects that can be annotated are called
annotatables. Before | discuss how annotations are implemented, | will first discuss what it
means to be annotatable.

In STARS, an object is annotatable if it implements the annotatable interface. In this
context, | refer to an interface as a set of attributes that must be implemented (i.e. included) in a
relation in order to enable a set of actions. In the case of the annotatable interface, the relevant
action is that of associating annotations with the annotatable object. The interface is defined as
follows:

(annotatable ID, user_ID)

That is, any annotatable relation should contain a primary key, called the annotatable_1ID,

and a foreign key referencing the user_1ID of the annotatable’s owner. As mentioned before,
annotations are themselves annotatable and thus implement this interface. Other annotatable
relations include the systematic_review relation, the outcome_matrix relation, and
certain relations representing interactions.

Annotations are represented by the annotations table:

(annotatable ID, root_annotatable_ID, parent_ID, owner, key,
value)

Note that the annotatable ID and owner attribute are supplied by the annotatable
interface. The parent_1ID is a foreign key referencing the annotatable described by a given

annotation.

42

Translating SR-SQL to SQL: Annotations

While annotations have simpler structures than outcome matrices, writing queries about
them can grow complex. This is due to the fact that a join is required for each annotation
referenced in the query. For example, if a user wishes to find all comments for trials with a Jadad

rating of ‘4’, the user would have to issue the follow SQL query:

SELECT al.comment
FROM trials as T, annotations as al, annotations as a2
WHERE al.key = ‘comments’

AND a2.key = ‘jadad rating’

AND a2.value = ‘4’

AND T.annotatable_ ID = al.parent_ID

AND T.annotatable_ID a2.parent_1ID;

This query requires joining three tables to answer a relatively simple question, meaning

that it is also not well-suited to ad hoc data exploration.

SR-SQL addresses this problem by providing syntax for seamlessly integrating

references to annotations into SQL-style queries. For example, the prior query could be easily
expressed in SR-SQL:

SELECT T.comment FROM trials AS T WHERE T.jadad_rating = ‘4';

The translation is performed as follows: for each attribute referenced in the query that
does not correspond to an actual attribute of the annotatable relation (e.g., comment,
jadad_rating), replace the reference to that attribute with the “value” attribute of a joined

instance of the annotations table, while specifying that the “key” is equal to the name of the

non-existent attribute.

43

3.3.5 Representing Interactions using relations

Interactions, like annotatables, are represented by an interface. All relations that

implement that interface must include the following set of attributes:

(creation_time, step_number, systematic_review_ID)

The creation_time attribute is a timestamp that is set when an interaction row is
created. The step_number attribute is a serial integer that records the interaction’s position within
the systematic review. The systematic_review_ID attribute is a foreign key reference that
ties the interaction to a given systematic review record.

In STARS, we manage records indicating user-issued searches and the creation of
outcome matrices. As such, the searches table and outcome_matrices table both

implement the interaction interface. The schema of the searches table is defined below:

(annotatable ID, query_string, result_cardinality,
creation_time, step_number, systematic_review_ID, owner)

Attributes included in the annotatable and annotations interfaces have the same
meaning as demonstrated above. The query_string attribute stores the query issued over
the trial repository and the result_cardinality attribute records the number of results

returned by the search.

3.4 System architecture

STARS is constructed of four basic components: the user interface, the database, the
interaction manager, and the translation layer. The dependencies between these components

are illustrated in Figure 5.

44

RDBMS
srsQL Parser
@ Translator _}
\\\ S0L
Trial data, artifacts,
Fy annotations,
interactions
srsQL

P Interaction Manager —}\—_-__/

Results

Front End o

T

User

Figure 5: The dependencies between the architectural components of STARS.

The user interface captures user interactions, i.e. SR-SQL queries, and relays them to
the translation layer. In the translation layer, those queries are parsed and then translated into
standard SQL. These interactions are logged by the interaction manager. Finally, the SQL query
is issued over the database and results are returned to the user.

STARS'’s user interface consists of a simple REPL-style shell, built on top of the psq|l
command-line tool for accessing PostgreSQL in Unix-like environments. While more a more
advanced and intuitive user interface is imperative for a user-facing system, a shell-style
interface is appropriate for testing and interacting with SR-SQL’s language features, especially
since the focus of this thesis is data management, rather than interface design.

The translation layer consists of a parser and a query rewriter. The user's SR-SQL input

is parsed and converted into an abstract syntax tree, or AST. The AST is then passed as input

45

to the rewriter, which makes a number of transformations. In the final phase of the rewriting
process, the parser generates a SQL query from the result.

The database is a standard instance of PostgreSQL, and the interaction manager
consists of a method that records interactions in the database at each step of the

Read-Evaluate-Print Loop.

3.5 System implementation

STARS is primarily implemented using Java. | used ANTLR [16], a parser generation
tool, to specify and generate the parser and rewriters. Parsing SR-SQL is done in four stages. In
the first stage, SR-SQL is tokenized, parsed, and incrementally converted into an AST
representation. Here, the names of symbols that refer to tables are recorded. These symbols
include tables name, aliases, and artificial table names (e.g. OMs). In the second stage,
references to variables and artificial table names are resolved to actual attributes. This is done
by issuing queries over the PostgreSQL database to first determine the attributes that are
actually defined in the database, then retrieve appropriate information about the SR data tables in
order to generate joins. In this stage, tables to be added to the FROM clause and propositions to
be added to the WHERE clause are buffered. In the third stage, the buffered additions to the
FROM and WHERE clauses are injected into the AST. In the final stage, the AST is converted
back to standard SQL using the StringTemplate engine. This was done by mapping each part of
the AST to a template that extracts token values and generates the appropriate part of the SQL

guery. These parts are composed recursively by ANTLR as the AST is parsed to form the final

query.

46

4. Related work

Various computational methods have been developed for optimizing or reusing certain
parts of the systematic review process. | will provide a brief survey of these methods, which |
sort into two categories: search and information retrieval, and data management. Whereas
STARS aims to facilitate both data storage and data retrieval, these methods are appropriate for
one task, but not the other.

RevMan [14] and RevBase [13] are examples of data storage projects that fail to
adequately address data retrieval. RevMan is a software suite designed to aid the preparation of
systematic reviews. While it does provide limited data management functionality, it is designed to
prepare a document for publication rather than store SR data for reuse. RevBase is closer to the
mark, as it provides data management functionality for each step of the systematic review
process. It does not, however, provide any mechanism for querying over systematic review
data, and thus does not provide for data reuse.

The Tufts EBM group has been involved in the creation of a Systematic Review Data
Repository (SRDR) [18]. The primary purpose of SRDR is to provide a central locale for storing
extracted trial information and data extraction forms, as well as annotations assessing the
guality of the data stored. While this does present clear opportunities for reuse, as stored data is
accessible from other systematic review groups, the system is limited to storing only a few
types of reusable data and does not provide an expressive interface for querying SR data.
Similar concerns apply to ClinicalTrials.gov, which stores a extracted trial data uploaded by
investigators; ClinicalTrials.gov provides a simple search form rather than an expressive query
language.

CiteSeer [4] and CoBib [2] provide community-managed bibliographic data. These efforts,

47

however, focus on academic research literature rather than medical literature. As a result, they
have no mechanism for creating artifacts or other types of domain-specific reusable data, and
are not suited for the domain-specific tasks presented by systematic review data management.

Other projects adequately aid searching systematic review data but neglect other data
management tasks. There has been much work done into developing search methods for
clinical trials [15][16], but little work into managing and searching for reusable systematic review
data.

Abstrackr [3] , which was developed at Tufts in collaboration with its EBM group, uses
active machine learning to optimize the citation screening process. Reviewers are presented
with a series of abstracts, which they label according to relevance. Abstrackr uses this
feedback to train machine learning algorithms that separate irrelevant citations from trials that
might be relevant. Abstrackr does provide for a sort of data reuse, as it allows review authors to
reuse past experience to determine relevant trials. It does not, however, present an interface for
searching over or manipulating that data. Abstrackr might be useful as a means for data entry for
STARS. That is, in addition to providing its primary function as a citation screening tools,
Abstrackr could piggyback functionality that enters annotations into STARS'’s database.

The CQMS project at University of Washington has similar aims to STARS regarding
management of interaction history. A major aim of the project is to use user experience and
expertise to help non-expert users build sophisticated queries. The SnipSuggest system [11], for
example, uses previously issued queries to predict the data retrieval needs of users during data
exploration. This is done by presenting the user with possible autocompletions of SQL queries.
Application of similar methods to STARS could provide interesting ways of analyzing of
interaction histories and also mitigate some of the difficulty introduced by utilization of a SQL-like

guery language.

48

5. Conclusions and Future work

In this thesis, | present STARS, a system to aid reuse of systematic review data. The
main intellectual contributions of STARS are a detailed analysis of reuse possibilities in the
systematic reviewing process and the introduction of the SR-SQL query language, which
provides interesting ways of querying over systematic review data.

One avenue for future exploration is the question of which data model best represents
systematic review data. As we have seen, the relational model does not map well to the
systematic review domain; a more natural choice might have been hierarchically-structured
document data. Therefore re-implementing SR-SQL using a different model might provide
valuable insights.

Given the vast variety of reusable data presented by the systematic review process,
STARS currently facilitates only a small fraction of possible data reuse scenarios. Ways to
expand the power and scope of the system might include the specification of a data definition
language for artifacts that automatically generates a representation of the artifact and query
language extensions for manipulating that data. This would allow the user to create data
structures that map well to his or her needs.

Providing an intuitive user interface is essential to the success of a system like STARS,
which aims to be used in some capacity by non-experts. Thus, research into ways of best
combining the precision and clarity of a query languages with the intuitiveness of visualization
techniques may help improve the chances of the medical community adopting a system like
STARS.

Finally, it is worthwhile to consider ways in which interaction data can be used to improve

the process of generating searches over trial databases. For example, it may be possible to

49

develop techniques for sampling query results so that it is possible to search for queries by
elements that appear in their results. Such a technique might be used to develop higher-quality

searches given limited information about trials that out to appear in search results.

50

References

1.

10.

11.

12.

13.

B. Shea, J. Grimshaw, G. Wells, M. Boer, N. Andersson, C. Hamel, A. Porter, P.
Tugwell, D. Moher, and L. Bouter. Development of AMSTAR: a measurement tool to
assess the methodological quality of systematic reviews. BMC Medical Research
Methodology (2007) 7:10.

B. Trushkowsky, K. Campbell, J. Forbes. An architecture for a collaborative bibliographic
database. In Proc. of the TAPIA ‘07 Conference on Diversity in Computing (2007)

B. Wallace, K. Small, C. Brodley, and T. Trikalinos, Active Learning for Biomedical
Citation Screening. In Proc. of the ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD), 2010.

CiteSeer: http://citeseerx.ist.psu.edu/index

ClinicalTrials: http://www.clinicaltrials.gov/

Cochrane Collaboration: http://www.cochrane.org/

D. Sackett, W. Rosenberg, J. Gray, R. Haynes, W. Richardson. Evidence based
medicine: what it is and what it isn’t. BMJ (1996), 312:71.

E.K. Lee, H. Lee, and A. Quarshie. SEACOIN — An Investigative Tool for Biomedical
Informatics Researchers. AMIA Annu Symp Proc. (2011): 750-759.

Elamin M.B., Flynn D.N., Bassler D., Briel M., Alonso-Coello P., Karanicolas P.J., Guyatt
G.H., (...), Montori V.M., Choice of data extraction tools for systematic reviews depends
on resources and review complexity, Journal of Clinical Epidemiology, (2009), 62 (5), pp.
506-510.

J.P.T. Higgins, S. Green, Eds. Cochrane Handbook for Systematic Reviews of
Interventions Version 5.0.2 [updated September 2009]. The Cochrane Collaboration,
2009. Available from www.cochrane-handbook.org.

N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. SnipSuggest: Context-Aware
Autocompletion for SQL. PVLDB Vol 4 Number 1 - VLDB 2011

PubMed: http://www.ncbi.nlm.nih.gov/pubmed/

RevBase: http://www.revbase.org/html/about

51

14. RevMan: http://ims.cochrane.org/revman

15. R. I. Dogan, G. C. Murray, A. Neveol, and Z. Lu. Understanding PubMed user search
behavior through log analysis. Database. (2009)

16. T.J. Parr, and R.W. Quong. ANTLR: A predicated-LL(k) parser generator. Software
Practice and Experience, (1994).

17. U.S. Public Law 110-85 : http://prsinfo.clinicaltrials.gov/fdaaa.html

18. S. Ip, N. Hadar, S. Keefe, C. Parkin, R. lovin, E.M. Balk, and J. Lau. A Web-based
archive of systematic review data. Systematic Reviews 2012, 1:15

