
Skippy: Enabling Long-Lived Snapshots of the

Long-Lived Past

Ross Shaull, Liuba Shrira, Hao Xu

Department of Computer Science, Brandeis University

Waltham, Massachusetts, USA
{rshaull,liuba,hxu}@cs.brandeis.edu

ABSTRACT

Decreasing disk costs have made it practical to retain long-

lived snapshots, enabling new applications that analyze past

states and infer about future states. Current approaches offer

no satisfactory way to organize long-lived snapshots because

they disrupt the database in either short or long run. Split

snapshots are a recent approach that overcomes some of

the limitations. An unsolved problem has been how to sup-

port efficient application code access to arbitrarily long-lived

snapshots. We describe Skippy, a new approach that solves

this problem. Performance evaluation of Skippy, based on

theoretical analysis and experimental measurements, indicates

that the new approach is effective and efficient.

I. INTRODUCTION

The storage manager of a general-purpose database system

can retain consistent disk page level snapshots and run appli-

cation code “back-in-time” against arbitrarily long-lived past

states, which are virtualized in the page buffer to operate like

the current state (including indices and other metadata pages).

This opens the possibility that functions, such as analysis and

audit, formerly available in specialized temporal databases, can

become available to applications in general-purpose databases.

Until recently, a general purpose database system that updates

data in-place had no efficient way to support on-line, back-

in-time execution (BITE) over snapshots. Retaining frequent

long-lived snapshots was simply too disruptive to the database

performance [1], and BITE over long-lived copy-on-write

snapshots has been prohibitively slow.

Split snapshots [2], [3], [4] is a recent approach that

overcomes some of the limitations of earlier systems and sets

the context for our work. This approach provides snapshots

in a form that virtualizes the database storage, adding a layer

of indirection between the physical address of disk pages and

the database paging architecture similar to shadow tables [5],

allowing a database to run unmodified application programs

and access methods over consistent snapshots in real-time. The

snapshot system is integrated at the buffer manager level so

that consistent copy-on-write snapshot pages can be retained

without the need to quiesce the database, avoiding disruption.

The snapshot pages are written in a separate snapshot store,

allowing the database to support update-in-place.

II. LONG-LIVED SPLIT SNAPSHOTS

In a split snapshot system [2], [3], [4], an application takes

a transactionally-consistent snapshot by issuing a snapshot

declaration request and receiving a snapshot name from the

system. Consider a database storage system that includes a set

of disk pages P1, P2, . . . , Pk. A snapshot consists of a set

of snapshot pages and a snapshot page table (SPT) that maps

snapshot pages (pre-states) to their disk locations. Pre-states

are stored in a log-structured component called snapStore,

and created using copy-on-write. Pre-states can be found by

scanning forwards from the first page retained for the snapshot,

storing in the SPT the first entry for each page. Scanning

entire pages is expensive; SNAP [2] reduces the cost by a

large constant factor by replacing the scan of pages with a

scan of a log of pointers (called mappings) to pre-states.

The problem is that when some pages are modified much

more frequently than others (from workload skew), many hot

pages may be overwritten before the first modification to cold

page P, so a scan to find P has to pass over large number of

repeated mappings that correspond to the same small set of hot

pages. The SNAP system addresses this problem by keeping

the mappings of infrequently modified pages in memory.

This solution, however, does not scale as snapshot lifetimes

increase.

Mapper is the split snapshot system component that

tracks the location of pre-states. Mapper method write in-

serts snapshot page mappings into the sequential persistent

data-structure mapLog. Mapper method lookup searches the

mapLog for the mapping of the requested snapshot page.

Consider a pre-state of a page, corresponding to the first

modification to a page committed after the declaration of

snapshot v and before the declaration of snapshot v + 1. This

pre-state belongs to v. Call such a pre-state a page retained

for v. Without constraining the snapshot page copying order,

the Mapper write function enforces the following invariant:

ImapLog: all the mappings for pages retained for snapshot v

are written before all the mappings for pages retained for

snapshot v + 1.

Mapper lookup relies on the invariant ImapLog when search-

ing for the mappings. Let start(v) be the first mapping for

a page retained for a snapshot v. Mapper finds a mapping

for a page P in v by sequentially scanning the mapLog from

the position start(v) onward, returning the first mapping it



encounters for a page P. ImapLog guarantees that the first

encountered mapping (FEM) corresponds to the pre-state that

was captured when the page P was modified for the first time

after declaration of v, and is, therefore, the correct mapping.

A. Skippy Mapper

To support efficient BITE that runs application code on a

snapshot by transparently paging in snapshot pages, the entire

SPT is constructed when an application requests a snapshot.

To do this, the system needs to find in the mapLog all the

mappings for a given snapshot. The maximum length of the

scan to construct SPT (v) is determined by the length of

the overwrite cycle of a snapshot v, defined as the transac-

tion history interval starting with the declaration of v, and

ending with the transaction that modifies the last database

page that has not been modified since the declaration of v.

Skippy accelerates SPT construction for skewed workloads by

allowing the lookup scan to skip over the repeated mappings

that lengthen the overwrite cycle. FEMs are collected from

fixed-size intervals in mapLog (called nodes) and written into

higher-level logs that contain FEMs needed for lookup scans,

but fewer repeated mappings. Additional Skippy levels can

be introduced by subdividing the previous level into nodes

in the same manner. Nodes are terminated with an uplink

which points to the node at the next level at which the scan

should continue (except the top-most level, where nodes are

terminated with an in-link which points to the next node at the

same level). We label nodes as nl
i, where l is the level (with

mapLog known as level 0) and i is the node index (starting

with 0 at each level).

Figure 1 shows an example of a 2-level Skippy resulting

from declaring snapshots v1 through v8 in a skewed workload.

P4 and P5 are retained for v1, and again for v2. P1 is retained

for v3, then again for v4, and so on. Mappings to P1 are

3 times as common as mappings to other pages in mapLog.

Some mappings are FEMs for multiple snapshots (e.g., the

mapping to P1 retained for v3 is also the FEM to P1 for v1

and v2). Consider a Skippy lookup scan to construct SPT(v1)
in figure 1. The scan begins in node n0

0 containing start(v1),
then continues to the end of n0

0, collecting FEMs for P4 and

P5. The scan then follows the uplink to n1
0, collecting FEMs

for P1 and P2. Finally, the in-link is followed to n1
1 and the

FEM for P3 is collected. In this example, Skippy allows the

scan to avoid 3 repeated mappings for P1.

III. PERFORMANCE

We analyze the performance envelope of Skippy using a

simplified workload model that directly addresses the issue

of skew. To address the worst case cost, we assume that a

snapshot is taken after every transaction, which corresponds

to continuous data protection (CDP). We use a standard

hot/cold database model with updates randomly distributed

among pages within the hot and cold sections (e.g., an “80/20”

workload, in which 80% of the transactions modify one of

20% of of the database pages). This captures the effect of

skew, while providing a framework for a tractable analysis.

Start

32

1n1

1
nn 1

0

3

0n
2

0n0

0
n 0

1
n

P
4

P
3

P
1

P
2

P
1

P
3

P
2

P
1

P
5

P
4

P
3

P
1

P
2

P
1

P
1

P
3

P
1

P
2

P
1

P
1

P
5

v
7

P
4

v
8

in
−

li
n

k

in
−

li
n

k

in
−

li
n

k

u
p

li
n

k

u
p

li
n

k

u
p

li
n

k

P
5

v
1

v
2

vv
3

v
4

v
5

v
6

1n

Fig. 1: Example fragment of a 2-level Skippy

A. Analysis

The overwrite cycle is the number of transactions that

execute before all pages in the database have been modified

at least once, and is lengthened as the chance of modifying

the same page more than once increases (due to skew).

Finding the number of transactions in the overwrite cycle

is equivalent to the well-explored coupon-collector’s waiting

time problem [6]. The overwrite cycle in a database with n

pages and no skew can be approximated as n ∗ ln(n), where

the logarithmic factor is due to random selection of already-

modified pages. As skew increases, the number of cold pages

increases, worsening the impact of random page selection on

overwrite cycle size. Repeated mappings will be contributed

disproportionately from the hot section, while the overwrite

cycle length will be determined by the time to complete an

overwrite cycle in the cold section. Acceleration is the ratio

of mappings in an overwrite cycle in Skippy level h to h−1.

Because repeated mappings can only be eliminated within a

node, acceleration improves as node size increases. Because

most repeated mappings are contributed from the hot section,

most of the acceleration comes from reducing the impact of

skew.

Figure 2 depicts construction times for varying workloads

with different Skippy heights by iteratively calculating these

quantities based on our analysis of the overwrite cycle length

and acceleration factors, and assuming a sequential read speed

of 0.04ms per 8KB page and an average seek time of 8.9ms. A

strong performance benefit from acceleration is achieved with

just a few Skippy levels, with diminishing returns exhibited as

more levels are added. As expected, the less-skewed workloads

are less expensive when a Skippy scan is not employed,

and receive less benefit from Skippy, since they have fewer

repeated mappings due to skew.

B. Experimental Evaluation

In order to support analytical results with the Mapper lookup

protocol under a deterministic workload, and to gain experi-



99/1
90/10
80/20
65/35
50/50

Node size = 30MB; DB Size = 64GB

h

ti
m

e
(s

)

1614121086420

18

16

14

12

10

8

6

4

2

0

Fig. 2: Construction times for various workloads

TABLE I: Time to construct SPT for various skews

Skew Skippy Height Time (s)

50/50 0 13.8

80/20

0 19.0
1 15.8
2 14.7
3 13.9

99/1
0 33.3
1 6.69

ence implementing Skippy in a database storage manager, we

implemented SkippyBDB, a split-snapshot system built inside

Berkeley DB [7] (BDB). We measure the time to build an

an SPT, which requires a lookup scan over one overwrite

cycle, and compare results to analytical expectations. We timed

construction of an SPT for various workloads (including CPU

cost of inserting mappings into the page table, implemented

as a hash table). For expediency we chose to simulate the

actual workload by selecting random page numbers (with

skewed distribution) for each mapping and directly calling the

Mapper write method. All measurements are taken on a Dell

PowerEdge using one 2.80GHz processor, 4GB of RAM, and

one Seagate 15K rpm SAS hard drive, running Debian Etch

with the x86 64 build of Linux 2.6.22. BDB is hosted on an

ext3 file system. BDB defaulted to a page size of 4K, which

we did not change.

Table I shows the cost of constructing an SPT for one

overwrite cycle for various representative skews and Skippy

heights in a 100M database and a 50K node (a node of

this size holds 2560 mappings, which is 1/10th the number

of pages in the database). Mappings could be decreased in

size with encoding of pre-state address at no scan-time cost,

increasing node capacity. Each measurement is the average of

3 experimental runs, with negligible variance from the mean.

The “50/50” workload achieves minimal benefit from Skippy,

so we present only the cost of a mapLog scan. We expect from

the analysis that for a skewed workload, Skippy will be able to

eliminate the effect of skew, reducing scan time to close to the

“50/50” cost (figure 2). Indeed, the “80/20” workload required

3 Skippy levels to achieve a Skippy scan time similar to a

mapLog scan in “50/50”. For “99/1”, the node size is larger

than the number of hot pages, and so Skippy can accelerate

the scan to be faster than the “50/50” maplog scan since it is

able to eliminate some repeated cold mappings as well.

IV. RELATED WORK

Running BITE on a snapshot resembles an “as-of” query

in a multiversion database [8]. By accelerating BITE, Skippy

serves a similar purpose to multiversion access methods that

index logical records, albeit at a different level in the DBMS

software stack, and using a radically different method based

on scanning mappings to construct a page table, instead of

searching an ordered set at each access. Like the state-of-the-

art multiversion access methods for as-of queries [8], Skippy

guarantees that the time to access a snapshot is independent of

the snapshot history length and update workload, an important

requirement for long-lived snapshots.

V. CONCLUSION

Until now there has been no satisfactory way for a general-

purpose database to efficiently retain and index page-level split

snapshots for real-time code execution. We have presented

Skippy, which to the best of our knowledge is the first solution

to solve such a problem for an arbitrary number of long-lived

snapshots. Skippy-based page-level snapshots could become

an attractive standard feature in general purpose database

systems, since the approach is signifantly simpler and more

general than the alternative of capturing past states at the

logical record level.

The Skippy approach could also be generalized to other

snapshot page store organizations, since only the sequential

order of mappings is constrainted by the invariant ImapLog.

For example, Skippy could be used with a content-addressable

past state organization. Such an approach would store a page

content hash instead of a pre-state address in each mapping,

and would offer the benefit of de-duplicating past-state pages.

REFERENCES

[1] A. Sankaran, K. Guinn, and D. Nguyen, “Volume shadow copy service,”
Power Solutions, March 2004.

[2] L. Shrira and H. Xu, “Snap: Efficient snapshots for back-in-time execu-
tion,” in ICDE ’05: Proceedings of the 21st International Conference on

Data Engineering (ICDE’05). Washington, DC, USA: IEEE Computer
Society, 2005.

[3] ——, “Thresher: An efficient storage manager for copy-on-write snap-
shots,” in USENIX ’06: Proceedings. Berkeley, CA, USA: Advanced
Computer Systems Association, 2006.

[4] L. Shrira, C. van Ingen, and R. Shaull, “Time travel in the virtualized past:
Cheap fares and first class seats,” Haifa Systems and Storage Conference,
SYSTOR 2007.

[5] J. N. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., 1993.

[6] S. M. Ross, Probability Models for Computer Science, 1st ed. San
Diego: Harcourt Academic Press, 2002, ch. Martingales.

[7] M. Olson, K. Bostic, and M. Seltzer, “Berkeley db,” in Proceedings of the
1999 Summer Usenix Technical Conference, Monterey, California, June
1999.

[8] B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-
evolving data,” ACM Computing Surveys, vol. 31, no. 2, 1999.


