
Skippy: a New Snapshot Indexing Method for Time Travel
in the Storage Manager

Ross Shaull, Liuba Shrira, and Hao Xu
Department of Computer Science, Brandeis University

Waltham, Massachusetts, USA

rshaull@cs.brandeis.edu, liuba@cs.brandeis.edu, hxu@cs.brandeis.edu

ABSTRACT

The storage manager of a general-purpose database system
can retain consistent disk page level snapshots and run ap-
plication programs “back-in-time” against long-lived past
states, virtualized to look like the current state. This opens
the possibility that functions, such as on-line trend anal-
ysis and audit, formerly available in specialized temporal
databases, can become available to general applications in
general-purpose databases.

Up to now, in-place updating database systems had no sat-
isfactory way to run programs on-line over long-lived, disk
page level, copy-on-write snapshots, because there was no
efficient indexing method for such snapshots. We describe
Skippy, a new indexing approach that solves this problem.
Using Skippy, database application code can run against an
arbitrarily old snapshot, and iterate over snapshot ranges,
as efficiently it can access recent snapshots, for all update
workloads. Performance evaluation of Skippy, based on the-
oretical analysis and experimental measurements, indicates
that the new approach provides efficient access to snapshots
at low cost.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.2.2 [Database Management]:
Physical Design

General Terms

Design, Performance

1. INTRODUCTION
The storage manager of a general-purpose database sys-

tem can retain consistent disk page level snapshots and run
application programs “back-in-time” over long-lived past
states, virtualized to look like the current state. This opens

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978­1­60558­102­6/08/06 ...$5.00.

the possibility that functions, such as on-line trend anal-
ysis and audit, formerly available in specialized temporal
databases, can become available to general applications in
general-purpose databases.

Up to recently, a general purpose database system that
updates data in-place, had no efficient way to support on-
line back-in-time execution over snapshots. Retaining fre-
quent long-lived snapshots was simply too disruptive to the
database performance [17], and back-in-time execution
(BITE) over long-lived copy-on-write snapshots has been
prohibitively slow. Split snapshots [21, 22, 20] is a recent
approach that overcomes some of the limitations of earlier
systems and sets the context for our work. The approach
provides snapshots in a form that virtualizes the database
storage, allowing a database to run unmodified application
programs and access methods over consistent snapshots on-
line (i.e., in production, not in the warehouse). The snapshot
system is integrated at the buffer manager level so that con-
sistent copy-on-write snapshot pages can be retained without
the need to quiesce the database, avoiding disruption. The
snapshot pages are written in a separate snapshot store, sup-
porting update-in-place.

An open problem has been how to provide efficient on-line
program code access to long-lived copy-on-write snapshots
when snapshots are retained for a long time. The problem
is that the code needs an efficient way to find the snap-
shot pages that belong to a given snapshot. Some snapshot
systems use the recovery log and “roll back” to a consis-
tent snapshot. Such solution is acceptable in a short-lived
snapshot system but would be inefficient in a long-lived sys-
tem. In contrast, most existing access techniques to ver-
sioned data in databases [11] and file systems [23, 18] rely
on no-overwrite update. The past state remains in-place
and the new state is copied, so the access structure for the
past state just takes over the access structure for the current
state.

The split snapshot system [21] indexes the copy-on-write
snapshot pages at low-cost by writing the mappings of the
snapshot pages into a sequential log as it copies snapshot
pages to the snapshot store. It scans the mapping log when
a given snapshot page is needed. Scanning page mappings is
faster than scanning a recovery log. A mapping scan can be
still slow if some database pages are modified infrequently,
since the scan has to pass over many repeated mappings of
the frequently modified pages before finding mappings for
infrequent ones. Yet, both infrequently and frequently mod-
ified data is common. The code requesting to run on a snap-

shot has to wait for the scan to encounter mappings for both
frequently and infrequently modified pages. Caching infre-
quent mappings in-memory can accelerate the scan [21], but
that approach does not scale as snapshot lifetimes increase.

Our system solves this problem. We describe a new effi-
cient indexing method called Skippy that hierarchically
builds condensed persistent summaries of the mapping log,
with duplicate entries removed, and links the summaries into
the mapping log at regular intervals. Slow scans can now
proceed faster over these lower-resolution summaries. An
application may need to access multiple snapshots, for exam-
ple to analyze a trend. In addition to back-in-time execution
of programs “within” a snapshot (BITE), Skippy supports
efficient “across time” execution (ATE) of programs written
in the Map-Reduce style [4]. Given a range of snapshots, an
ATE program runs BITE over each snapshot, applying the
Map function, and composes the results, applying the Re-
duce function. Using Skippy, a database application can run
on-line over arbitrarily old snapshots, and iterate over snap-
shot windows, as efficiently as it can access recent snapshots,
for any database update workload.

Running BITE on a snapshot resembles an “as-of” query
in a transaction time database [16], running ATE over a
range of snapshots resembles a computation of a SQL aggre-
gate over a past data stream [7, 3]. By accelerating BITE
and ATE over snapshots, Skippy serves a similar purpose to
a multiversion access method that indexes logical records, al-
beit at a different level in the DBMS software stack, and us-
ing a radically different method based on scanning mappings
to construct a page table, instead of searching an ordered set
at each access. Nevertheless, like the state-of-the-art meth-
ods for as-of queries [16], Skippy guarantees that access to a
snapshot remains efficient independent of snapshot age and
update workload.

The formal model underlying Skippy relates snapshot con-
sistency to the order in which snapshot page mappings are
written, decoupled from the order in which snapshot pages
are written. Relating snapshot consistency to the order of
mappings provides an important practical benefit. Efficient
split snapshot implementations in third party database soft-
ware become possible, since the small mappings can be or-
dered in-memory by tracking the database buffer manager
write policy, instead of dictating it [21]. This extends the
benefits of BITE and ATE beyond experimental systems [21,
22, 20], and we describe a Skippy prototype in the commer-
cial strength BDB in our experimental evaluation.

We demonstrate Skippy effectiveness both analytically and
experimentally (using implementations in two different split
snapshot systems). Theoretical analysis using a standard
hot/cold workload model shows that Skippy can counteract
the impact of infrequently-modified pages on scan time while
imposing modest requirements on the database. Our split
snapshot system integrated into Berkeley DB, SkippyBDB,
demonstrates that this can be achieved using a similar work-
load model in a real system (section 5.3). Our SkippyBDB
experiments also agree with our analysis by showing that cre-
ating Skippy imposes low overhead on the database. Our im-
plementation of Skippy in the SNAP [21] split snapshot sys-
tem, using an application-level OO7-based benchmark [2],
further demonstrates that Skippy performs well, providing
up to a 19-fold performance improvement (section 5.2).

The problem of efficient access to long-lived past states is
an old problem. Skippy-based split snapshots offer a novel
solution that potentially could be adapted to become a stan-
dard DBMS feature. Our BDB prototype shows a step in
this direction. In a full-strength DBMS system, such an ap-
proach would require more effort but is attractive because,
as a system architecture, it is considerably less complex and
invasive, and more general, than the widely-known alter-
native of capturing past states and providing multiversion
access methods at the logical database level [24, 8].

This paper makes the following contributions: (i) presents
a new efficient indexing method for long-lived split copy-on-
write snapshots, solving an open problem, and providing a
first practical solution for on-line code access to long-lived
past states in a general database, for general computations,
running both within and across snapshots, (ii) describes a
consistent snapshot model underlying the method, (iii) ana-
lyzes theoretical performance and suggests how to achieve ef-
ficient indexing in practice, (iv) provides a prototype imple-
mentation and experimental measurements supporting the
claims in the analysis.

2. LONG­LIVED SPLIT SNAPSHOTS
In a split snapshot system [21, 22, 20], an application takes

a snapshot by issuing a snapshot declaration request. The
system serializes the snapshot in transaction order, returning
to the application a snapshot name. For simplicity, we as-
sume snapshots are named in an increasing integer sequence
order. Snapshots are consistent, i.e., a snapshot v reflects all
the modifications committed by the transactions that pre-
cede the declaration of v, and none of the modifications com-
mitted by the transactions that follow the declaration of v.

Consider a database storage system that includes a set
of disk pages P1, P2, . . . , Pk, and a page table that maps
the database pages into their disk locations. The snapshot
system virtualizes database storage, adding a layer of indi-
rection between the physical address of disk pages and the
database paging architecture, similar to shadow tables [5].
A snapshot consists of a set of snapshot pages and a snapshot
page table that maps snapshot pages to their disk locations.
Virtualizing database storage enables efficient back-in-time
execution (BITE), a system capability where programs run-
ning application code and all access methods can run against
consistent snapshots, transparently accessing snapshot pages
the same way as database pages.

The snapshots are stored in a log-structured storage sys-
tem component called snapStore, on a separate disk, for
best performance. A snapshot is copied into the snapStore,
page-by-page. A specialized copy-on-write mechanism cap-
tures in-memory enough pre-state of a page P just before an
update overwrites P for the first time after the declaration
of snapshot v. The captured update pre-states are used to
generate consistent snapshot pages when the buffer manager
writes the corresponding updates to the database disk. The
snapshot pages are written in parallel to the snapStore disk.
The split snapshot system leverages the existing database
recovery mechanism to safely write cached pre-states in the
background [20]. Performance evaluation [21, 22] shows that
this snapshot approach has low performance impact.

Figure 1 shows a database containing 3 pages (P1, P2, and
P3) the database page table (PT), and the snapshot page

P 3

P 1

P 2

P 3

P 1

P 2

P 3

V
+

2

P 1 P 1 P 2 P 1 P 3

P 1 P 2 P 3

P 1

P 2

P 3

P 1

P 2

P 3

P 1

P 2

mapLog

snapStore

Start

P
3

P
1

P
2

P
1

P
1

V V
+

1

...

SPT(v+2)

v+2 v+3

SPT(v)

v

PT

SPT(v+3)

v+1

SPT(v+1)

Figure 1: Database storage virtualized for BITE

tables (SPTs) for 4 snapshots (SPT (v)–SPT (v + 3)). The
following history of 4 transactions (T1, T2, T3, and T4) is
depicted. T1 declares snapshot v and modifies P1, resulting
in a pre-state for P1 being retained for v in snapStore. T2
declares snapshot v + 1 and modifies P1 and P2, resulting
in pre-states for P1 and P2 being retained for v + 1 in the
snapStore. T3 declares snapshot v +2 and modifies P1 and
P3. T4 declares snapshot v + 3 but does not modify any
pages.

The pages in snapStore are pre-states captured using copy-
on-write. Because pre-states are captured incrementally not
all snapshot page tables have all of their entries pointing into
snapStore. For example, no database pages have been mod-
ified since snapshot v+3 was declared, so all of the entries for
SPT (v+3) point into the database (the current state). Like-
wise, only P1 and P3 have been modified since the declara-
tion of snapshot v+2, so while the entry for P1 and P3 point
to pre-states in snapStore, the entry for P2 in SPT (v + 2)
points into the database. If a subsequent transaction mod-
ifies P2, then both SPT (v + 2) and SPT (v + 3) will have
their entries for P2 updated to point into the pre-state for P2
copied into snapStore. After this, snapshots v +2 and v +3
will share the same pre-state for P2, just as v and v+1 share
the pre-state for P2 retained for v+1, as depicted in figure 1.

SPTs change over time; and, there may be many of them
(in order to support high-frequency snapshots). It could

be expensive to maintain a sorted snapshot page table on
disk for every snapshot in the system. Instead, we construct
SPTs for a snapshot when BITE on that snapshot is re-
quested.

The snapStore resembles a page level pre-state log. Con-
sider such a log with page states ordered in increasing time
(transaction) order. A snapshot is comprised of pages ap-
pearing in this log after the point at which the snapshot
was declared. An inefficient way to build a snapshot would
be to apply the pre-state log backwards until reaching the
snapshot point. A better way is to scan the pre-state log
forward from the snapshot point, stopping at the first entry
for each needed page. If no entry is found, the page has
not changed since the snapshot declaration, and the current
page version can be used. The drawback of this approach
for running code is that finding the needed page content can
still require scanning arbitrary large amounts of the pre-state
log.

The SNAP split snapshot system [21] addresses this draw-
back by replacing the scan of the snapshot page log with a
scan of a log of pointers to the snapshot pages. Scanning the
log of pointers (page mappings) requires substantially fewer
disk reads. Furthermore, the cost of creating the mapping
log, called mapLog, is low. Figure 1 depicts the mapLog cre-
ated during the execution of transactions T1, T2, T3, and
T4, as well as Start, which points to the first mapping writ-
ten into mapLog for each of the snapshots v to v+2 (v+3 has
no mappings in mapLog yet, so no Start pointer for v +3 is
depicted). Since snapshots are indexed by sequence number,
Start can be accessed like an array in constant time.

The problem is that when some pages are modified much
more frequently than others, if an unmodified page P lives
a long time after a snapshot was declared before it is over-
written, a scan to find P has to pass over large number of
duplicate mappings that correspond to frequently modified
pages. Yet, update workloads containing both frequently
and infrequently modified pages are common. For example,
consider a program that manages a large collection of items,
and allocates on page P a variable to hold the size of the col-
lection. Some items and pages may be modified infrequently
but if the size of the collection changes frequently then the
workload will be skewed, and with frequent snapshots map-
pings for page P will appear many times in mapLog, length-
ening any scan over mapLog. Access to infrequently modi-
fied pages introduces significant delays in the code running
over snapshots on-line and moreover, such accesses may be
frequent. The SNAP system addresses this problem by keep-
ing the mappings of infrequently modified pages in-memory.
The solution however does not scale as snapshot lifetimes
increase.

3. MAPPING CONSISTENCY
Mapper is the split snapshot system component that tracks

the location of the snapshot pages. Mapper method write in-
serts snapshot page mappings into the sequential persistent
data-structure mapLog. Mapper method lookup searches the
mapLog for the mapping of the requested snapshot page.

Consider a pre-state of a page, corresponding to the first
modification to a page committed after the declaration of
snapshot v, and before the declaration of snapshot v+1. This
pre-state belongs to snapshot v. Call such a pre-state a page

retained for snapshot v. Without constraining the snapshot
page copying order, the Mapper write method enforces the
following invariant:

ImapLog Invariant all the mappings for pages retained for
snapshot v are written into mapLog before all the mappings
for pages retained for snapshot v + 1.

Let start(v) be the first mapping in the mapLog for a page
retained for a snapshot v, and let FEM be a shorthand for
first encountered mapping. The following theorem underlies
the correctness of the Mapper lookup method.

FEM Theorem the FEM for page P in a sequential scan
of mapLog starting from start(v) onward corresponds to a
version of page P that belongs to snapshot v.

The proof of the FEM theorem directly follows from the
invariant ImapLog that insures the FEM for P corresponds to
the page pre-state that was captured when the page P was
modified for the first time after the snapshot v declaration,
and is, therefore, the correct page P version corresponding
to snapshot v.

The Mapper lookup method therefore finds a mapping for
a page P in snapshot v by sequentially scanning the mapLog
from the position start(v) onward, returning the first map-
ping it encounters for a page P.

Consider the transaction history depicted in figure 1. In
order to construct the snapshot page table for snapshot v
(SPT (v)), Mapper lookup begins with the first mapping re-
tained for v (pointed to by Start(v)), and scans forward,
copying FEMs into SPT (v) as they are encountered. The
FEMs for v in this example are the mapping to the pre-state
of P1 retained for v, the mapping to prestate P2 retained for
v+1, and the mapping to prestate P3 retained for v+3. The
second two mappings to P1 in mapLog (to the pre-states of
P1 retained for v + 1 and v + 2) not FEMs for SPT (v), so
they are ignored during the scan.

The Mapper lookup is guaranteed to find all the mappings
for a given snapshot provided the entire snapshot state has
been copied into the snapshot store. The condition holds
if the entire database state has been overwritten since the
snapshot declaration. In a long-lived snapshot system, this
condition will hold for all the snapshots older than some
given threshold that advances with time. Our discussion be-
low considers only such older snapshots. We consider recent
snapshots in Section 4.4.

4. SKIPPY MAPPER
Because mappings are small compared to snapshot pages,

and since they can be written with background i/o, writ-
ing mapLog sequentially to disk has low impact on snapshot
performance. In contrast, the lookup function incurs a fore-
ground cost since the application requesting the snapshot
must wait for the lookup to complete. To support efficient
BITE that runs application code on a snapshot by transpar-
ently paging in snapshot pages, the entire snapshot page ta-
ble for a snapshot is constructed when application requests
a snapshot. To do this, the system needs to find in the
mapLog all the mappings for a given snapshot.

Some BITE applications may only need to access a small
subset of the pages in a snapshot, so constructing the com-
plete snapshot page table could be wasteful. Our approach
supports an “on-demand” version of the Mapper lookup that
avoids “in-advance” complete construction instead scanning

incrementally and Section 5.3 evaluates the benefits of an
on-demand Mapper. We also support a “cold” Mapper that
avoids constructing a page table, scanning anew on each
lookup. However, since the order of the page mappings in
the mapLog is determined by the page overwriting order, in
the worst case, the lookup of any single page may require as
much effort as the construction of the entire snapshot page
table. Moreover, the approach we will describe benefits the
on-demand and cold lookup as well. Therefore, without loss
of generality, unless specified otherwise, the discussion be-
low assumes that the Mapper lookup constructs the entire
snapshot page table.

The length of the scan collecting the FEMs for a snap-
shot v is determined by the length of the overwrite cycle
of a snapshot v, defined as the transaction history interval
starting with the declaration of snapshot v, and ending with
the transaction that modifies the last database page that has
not been modified since the declaration of snapshot v. Once
the overwrite cycle for snapshot v is complete, all database
pages corresponding to the snapshot v will be copied into
the snapshot store and therefore the mappings for all the
pages will be entered into mapLog.

When the update workload is uniform, most of the map-
pings read by the lookup scan for snapshot v are likely to be
the first encountered mappings (FEMs). As explained ear-
lier, in many storage systems the update workload is skewed
so that some pages are updated significantly more frequently
than others, resulting in an increase in the number of non-
FEM mappings encountered during a scan of mapLog.

When the update workload is skewed, the lookup scan
slows down. For example, even a mild skew, where a third
of the database pages are modified by two-thirds of the page
updates, doubles the length of the overwrite cycle as com-
pared to a uniform workload, thus doubling the length of the
construction scans (see Section 5.1). Since the application is
waiting for the scan to complete, it is important to reduce
the cost of the scan for skewed workloads.

4.1 Skippy structure
Skippy accelerates SPT construction for skewed workloads

by allowing the construction scan to skip over the unneeded
repeated mappings. Skippy collects the FEMs from mapLog
into higher-level logs, omitting the mappings corresponding
to frequently-modified pages. The logs are organized into
nodes that form a forest of trees. The tree pointers, directed
from the nodes in the lower-level logs to the nodes in the
upper-level logs, guide the construction scan from the lower-
level log containing many repeated mappings to the higher-
level “fastlane” logs that contain fewer repeated mappings
but still contain all the mappings needed for constructing
SPTs.

4.2 2­level Skippy
Skippy is constructed on top of a mapLog that is subdi-

vided into successive partitions, called nodes. The level-0
Skippy nodes n0

0, n0

1, . . . are populated from the successive
mapLog partitions. n1

0, the parent node of n0

0, is populated
by copying into it the FEMs from n0

0, followed by the FEMs
from n0

1, and so on, until the parent node is full. The copy-
ing then continues into the next level-1 parent node. Each
level-0 node with FEMs copied up has a pointer called uplink
that points to the next FEM written into its parent node (as

Start
P

1

P
2

in
−

li
n

k

P
1

in
−

li
n

k

P
1

u
p

li
n

k

P
3

P
1

u
p

li
n

k

u
p

li
n

k

P
5

v v
+

1

v
+

2

v
+

3

v
+

4

v
+

5

P
3

P
4

P
5

P
1

P
2

P
2

P
1

P
3

P
1

P
1

P
2

P
5

P
1

P
3

P
4

n
1

0n
0

0 n 0

2
n 0

3

0

1n n
1

1 n
2

1 n
3

1

P
4

v
−

2

v
−

1

in
−

li
n

k

v

Figure 2: Example fragment of a 2-level Skippy

you will see, the scan which follows uplinks will encounter
the same FEMs as a scan which ignores uplinks and scans
only in mapLog). The roots of the tree, unlike the level 0
nodes, do not have an uplink. Instead, they are chained us-
ing a pointer called in-link that leads to the first mapping
in the next root node (within the same level). This process
constructs a two-level Skippy forest.

Figure 2 shows an example of a 2-level Skippy construc-
tion resulting from executing consecutive transaction history
sequences H1, H2, H3 in a database with 5 pages. H1 de-
clares snapshots v − 2 and v − 1, each snapshot has pages
P4 and P5 retained for it. H2 is the transaction sequence
depicted in figure 1, which declares snapshots v (retained
P1), v + 1 (retained P1 and P2), and v + 2 (retained P1
and P3). H3 repeats H2, declaring respectively snapshots
v + 3, v + 4, and v + 5. The solid arrows in the figure are
pointers to mappings within nodes. The dotted arrows in-
dicate which mappings get copied into a higher level. The
node n1

0 contains the FEMs for P4 and P5 copied from n0

0

(setting the uplink from n0

0 to point right after the copied
FEMs), and the FEMs for P1 and P2 copied from n0

1 (set-
ting the uplink from node n0

1 to point to node n1

1). Notice,
in this skewed workload, the level-1 Skippy nodes contain
half as many mappings for the frequently modified page P1,
compared to the level-0 nodes.

The Skippy scan employs a simple map to locate the level
0 Skippy node n0

i containing start(v), the first mapping
recorded by snapshot v, and the location of this mapping
within the node. Skippy scan reads in the node n0

i and
collects the FEMs starting from the location identified by
start(v) to the end of the node. The scan then follows the
uplink pointer in n0

i , and proceeds at the parent node at
level 1 to the end of the node and follows the in-link point-
ers through the successive root nodes.

For example, consider a Skippy scan, constructing SPT (v−
2) in the example 2-level Skippy shown in figure 2 and start-
ing with an empty SPT (v − 2) (assuming completed over-
write cycle for v− 2) at the node n0

0 containing start(v− 2).
The scan continues to the end of this node collecting FEMs

for P4 and P5, follows the uplink pointer into the parent
node n1

0 collecting FEMs for P1 and P2, continues following
the in-link pointer to the node n1

1 collecting the FEM for
P3, and scans following in-links until SPT (v − 2) is filled.
Note, the construction of SPT (v − 2) avoids scanning three
repeated mappings for the frequently modified P1 when us-
ing a Skippy scan. This benefit applies to any scan through
node n1

1 constructing a page table for a snapshot preceding
SPT (v − 2). The following theorem states the correctness
of the 2-level Skippy.

Skippy Theorem the Skippy scan that starts at start(v)
constructs the correct snapshot page table for snapshot v.

The proof of the Skippy theorem is by construction: the
Skippy scan collects the same FEMs as would be collected
by a scan that proceeds at the level-0 nodes without ever
climbing to level-1. Since the level-0 scan collects the same
FEMs as the basic mapLog scan, by the FEM theorem, the
Skippy scan constructs correctly the snapshot v page table.

4.3 Multi­level Skippy
The 2-level Skippy scan accelerates snapshot page table

construction compared to the basic mapLog scan because it
skips repeated mappings that appear within a single level-
0 node when it scans at level-1. Nevertheless, a scan that
proceeds at level-1 will still encounter repeated mappings
that appear in multiple level-0 nodes. In the example in
Figure 2, the scan that constructs SPT (v− 2) and proceeds
at level-1 encounters in node n1

1 the repeated mappings for
P1, copied from n0

2 and n0

3.
To eliminate repetitions over multiple level-0 nodes, the 2-

level Skippy described above can be generalized, in a straight-
forward way, to a multi-level structure.

We construct a multi-level Skippy inductively. Given a
(h−1)-level Skippy, we construct a h-level Skippy by treating
the level h−1 nodes as level 0 nodes in the 2-level structure.
That is, we construct the level h nodes the same way we
have constructed level 1 nodes, by copying the FEMs from
the level h − 1 nodes. The copying eliminates repetitions
among the mappings inside a level h node while retaining
the FEMs. Like in the 2-level Skippy, all non-root nodes
contain an uplink pointer pointing to the parent node, and
the root nodes (level h) are chained via the in-link pointers.

The scan in the h-level Skippy starts at the level 0 node
just like the 2-level scan, and proceeds to the end of the node
before climbing to the next level. Similarly, after reaching a
top-level node, the scan proceeds to follow in-link pointers
through the successive root nodes.

The correctness argument for the Skippy scan in the h-
level structure is inductive, following the construction and
using the Skippy Theorem for 2-level structure as the base
case. Namely, by construction, the FEMs collected by a scan
after climbing to a level h following an uplink from a level
h−1 node, are identical to the FEMs that would be collected
if the scan continued at the level h − 1. Since the scan at
level h − 1 collects the correct FEMs, so does the scan at
level h.

Disk i/o costs. The Mapper writes the Skippy forest
to disk by writing a separate sequential log for each level.
The total Skippy Mapper write cost, therefore, includes the
sequential disk i/o cost for the basic mapLog creation, and
the additional cost to write mappings into all Skippy levels.
Mapper write costs should be kept low to avoid impacting

the storage system. This issue is particularly important to
support low-cost selective snapshot garbage collection [22]
that replaces page copying with cheaper mapping copying,
amplifying the cost of writing Skippy forest.

The Skippy scan performs sequential i/o while reading the
mappings in a node and then following an in-link, but per-
forms a disk seek when following an uplink. The cost of a
Skippy scan depends on the number of levels, the size of the
nodes, and the workload that produces the mappings. In
Section 5 we analyze these costs.

4.4 Recent Snapshots
A recent snapshot with an incomplete overwrite cycle has

some of its pages still residing in the database. If a page P
for snapshot v resides in the database, a lookup scan will
find no FEM for P in snapshot v simply because there is no
mapping for P present in mapLog after start(v).

Mapper avoids unnecessary searches using a simple data-
structure called lastRetainer, which specifies if the page
P is still in the database for snapshot v. lastRetainer
keeps for each database page P the name of the most re-
cent snapshot that has the page P retained for it, where
we assume that snapshot names can be deterministically
ordered (e.g., they are integers). If lastRetainer(P) < v,
no search is needed because P for snapshot v is still in
the database. If the pre-state for a page P is retained for
snapshot v, then lastRetainer must be updated such that
lastRetainer(P) := v, so that future lookups for P in v
consult mapLog.

4.5 Across­Time Execution
In addition to running BITE against a single snapshot, an

application may be interested in analyzing past states from a
sequence of snapshots in a time range. Across-Time Execu-
tion (ATE) provides a convenient abstraction for efficiently
executing code in a series of snapshots. ATE utilizes the map
abstraction to execute code in each snapshot (using BITE),
generating a set of results. ATE also allows programmers to
provide a reduce callback which iteratively calculates a sin-
gle result from the set of results returned by mapping BITE
over each snapshot. Map/reduce is a common abstraction
for list processing, and has also been applied successfully
to processing large data sets in [4]. The framework for the
reduce calculations is outside the scope of this work; we de-
scribe here how the map portion of ATE can be made more
efficient by exploiting a unique property of Skippy.

Running BITE on consecutive snapshots using Mapper
lookup can be wasteful, because the same mappings could be
read multiple times. For example, consider the transaction
histories depicted in figure 2. Running code over each of
the snapshots declared by history H2 using Mapper lookup
requires executing a separate scan for each of the 3 declared
snapshots (v through v+2). The scan for v starts at the first
mapping in node n0

1, and collects P1, P2, and P3, ignoring
two repeated mappings to P1. The scan for v+1 starts at the
second mapping in n0

1, but otherwise follows the same path.
The same is true for v+2. The work done by Mapper lookup
to scan for v + 1 and v + 2 is done by the scan for v. The
goal is to eliminate this redundant work while still collecting
the mappings needed for each snapshot in the range.

Joint Skippy Scan. A single Mapper lookup scan is
insufficient to collect mappings for an arbitrary snapshot

range, because mappings needed by a snapshot may not al-
ways be copied up to Skippy levels. For example, consider
the range from snapshot v + 2 to v + 4 depicted in figure 2.
A Skippy scan beginning in node n0

1 will follow the uplink
to node n1

1, and will not collect the correct mapping to P1
needed for v + 4 (notice that the mapping to P1 pointed to
by the start pointer for v + 4 is not copied up to node n1

0).
The joint Skippy scan solves this problem by first executing
a mapLog scan between the mapLog positions pointed to
by the start pointers for the first and last snapshots in the
range, then executing a regular Skippy scan starting with
the last snapshot in the range. For example, if the range is
from v to v + 5, then nodes n0

1 through n0

3 will be scanned
sequentially, ignoring uplinks; then, after the first mapping
in v + 5 is encountered in n0

3, the Skippy scan will follow
uplinks.

The joint Skippy scan can be seen as joining multiple
mapLog scans together so that they share the work to collect
shared mappings. Because a mapLog scan collects all the
FEMs needed by a snapshot (see section 3), the portion of
the joint Skippy scan that only scans mapLog will collect the
FEMs written to mapLog within the specified range. Any
FEM missing during this scan will be encountered during a
Skippy scan starting with the last snapshot in the range, by
the construction of Skippy. Therefore, a joint Skippy scan
will collect all FEMs for a range of snapshots in one scan,
effectively merging together multiple Mapper lookup scans.
Section 5.1.2 considers the cost of a joint Skippy scan.

5. PERFORMANCE
This section examines Skippy performance analytically and

experimentally. Skippy improves the performance of Map-
per lookup by copying some mappings to one or more Skippy
levels, which comes at the cost of increasing the amount of
disk i/o during creation. Our analysis answers two questions.
First, how do the updating characteristics of the workload
(the skew) effect Skippy benefits and costs? Second, how
to select the best configuration for Skippy in practice. We
confirm the analytical results of Skippy benefits in a BDB
prototype, and in the SNAP system.

5.1 Analysis
We analyze the performance envelope of Skippy using a

simplified workload model that directly addresses the issue
of skew. To address the worst case cost, we assume that a
snapshot is taken after every transaction, which corresponds
to continuous data protection (CDP). We use a simple, stan-
dard hot/cold updating workload model. We believe that
this captures the effect of skew, while providing a framework
for a tractable analysis.

Overwrite Cycle Length. The overwrite cycle is the
number of page updates that execute before all pages in
the database have been modified at least once; the num-
ber of updates in the overwrite cycle increases with the
chance of modifying the same page more than once (due to
skew). Finding the number of updates in the overwrite cycle
is equivalent to the well-explored coupon-collector’s wait-
ing time problem [15]. The overwrite cycle in a database
with n pages and no skew can be approximated as n ∗ ln(n),
where the logarithmic factor is due to random selection of
already-modified pages. For CDP, the number of mappings

in mapLog corresponds to the number of page updates in
the overwrite cycle, so we use “overwrite cycle length” to
refer to both page updates in and mappings written during
the overwrite cycle.

The hot and cold pages are disjoint sets, and so are col-
lected independently, but because the hot section is smaller
and modified more frequently, redundant mappings will be
contributed disproportionately from the hot section, while
the total overwrite cycle length will be dominated by the
time to complete an overwrite cycle in the cold section. The
length of the overwrite cycle will grow inversely with the
probability of a transaction executing in the cold section.
Because the hot section is both small and frequently up-
dated, hot pages will have many repeated mappings in an
overwrite cycle.

Acceleration. Acceleration characterizes the performance
benefit that can be derived from Skippy. Acceleration is the
ratio of mappings in Skippy level h to mappings in level h−1.
Mappings which are repeated within a node are not copied
up to the current node at the next level, so acceleration im-
proves as the number of redundant mappings within a node
increases. As skew increases, nodes become dominated by
mappings written from the hot section. Because of this ef-
fect, Skippy acceleration is improved when skew increases,
effectively combating the increase in the number of map-
pings in an overwrite cycle due to repeated modifications in
the hot section.

Because repeated mappings can only be eliminated within
a node, acceleration is proportional to the node size. For
skewed workloads, the “blow-up” in the number of mappings
is due to the repeated modifications in the hot section even
after all the hot pages have been modified at least once, be-
cause an overwrite cycle in the cold section has not finished.
So, most of the acceleration comes from eliminating repeated
mappings created from modifications in the hot section. As
figure 3 illustrates, less-skewed workloads do not have as
much potential for acceleration as more-skewed workloads.

5.1.1 Cost of Skippy Scan

The cost to use Mapper lookup to construct an SPT us-
ing only mapLog is the cost of sequentially reading all the
mappings in the overwrite cycle beginning with the mapping
pointed to by Start. The cost to construct an SPT with a 2-
level Skippy (a mapLog and one Skippy level) is the cost to
read a node at the mapLog level, the cost of a seek to jump
to the Skippy level, plus the cost to scan remaining map-
pings in the overwrite cycle at the next level. Because of
acceleration, the overwrite cycle comprises fewer mappings
in the Skippy level, and so is a shorter scan.

Figure 3 depicts SPT construction times for varying work-
load skews with different Skippy heights by iteratively calcu-
lating these quantities based on our analysis of the overwrite
cycle length and acceleration factors, and assuming a sequen-
tial read speed of 0.04ms per 8KB page and an average seek
time of 8.9ms. A strong performance benefit is achieved with
just a few Skippy levels, with diminishing returns exhibited
as more levels are added. This is because, for the work-
loads in our analysis, the first few levels eliminate most of
the redundant mappings created due to skew, and the re-
maining scan cost is dominated by the cost of reading n ∗

ln(n) mappings to collect all n FEMs in the overwrite cycle.

1 level

3 levels
4 levels
5 levels

2 levels

 8

 10

 14

 16

 18

50/50 65/35 80/20 90/10 99/1

ti
m

e
(s

)

skew

Node size = 30MB; DB Size = 64GB

 12

 0

 2

 4

 6

Figure 3: Construction times for various workloads

Our analysis shows that the cost to construct SPT with
Skippy can be made similar for each of the workloads we
consider, but the number of levels required to converge to
this cost in less-skewed workloads can be high while the ben-
efit is relatively low. For example, constructing an SPT for
the “50/50” workload and the “90/10” workload shown in
figure 3 can both be made to converge to about the same
cost (just under 2 seconds), but it would require an addi-
tional 5 levels beyond those shown in figure 3 for “50/50”
(for a total of 10 levels to achieve it), with a very small bene-
fit. “90/10” converges to this cost after only 5 levels, with a
greater overall benefit as compared to not employing Skippy.
Skippy is designed to eliminate the impact of skew on the
cost to construct an SPT, and so for the remainder of the
discussion we consider the optimal number of Skippy levels
to be that which can eliminate the impact of skew (so that
the cost is similar to the “50/50” workload lookup cost with
no Skippy levels).

Database size. Figure 4 shows the number of Skippy
levels needed to achieve similar performance benefit (com-
puted as cost savings over using just mapLog) for “90/10” as
the size of the database increases and the node size remains
fixed. By adding additional levels, performance benefits can
be recovered if the database grows.

For example, a 16GB database receives nearly maximum
benefit with just 2 Skippy levels; but, if the database size in-
creases to 128GB then the benefit drops from 90% to 70%.
The performance improvements given to the 16GB database
can also be given to the 128GB database by adding 2 ad-
ditional Skippy levels, increasing the total number of levels
to 4. However, while our analysis shows that adding levels
can recover performance, the cost of Skippy creation (fig-
ure 5) may make adding more levels impractical for some
real-world system configurations. We consider how to scale
the node size instead of Skippy height to recover performance
when database size increases in the experimental evaluation
(table 2).

5.1.2 Cost of Joint Skippy Scan

We know by invariant ImapLog that the mappings written
into mapLog between the start position of v and the start
position of v + 1 are FEMs for v, and so on for each pair
of subsequent snapshots in an arbitrary range of snapshots.
Thus we have corollary CmapLog: all mappings in mapLog
between the start position of v and the start position of v +k
are FEMs for for one or more of the snapshots in the range
v through v + k − 1.

16GB

256GB
128GB
64GB

 30

 50

 60

 70

 80

 90

 100

1 2 3 4 5

im
p

ro
v

em
en

t
(%

 d
ec

re
as

e)

Number of Skippy Levels

Node size = 30MB

 0

 10

 20

 40

Figure 4: Construction benefit for “90/10”

2 levels

4 levels
5 levels
6 levels

3 levels

 200

 300

 350

50/50 65/35 80/20 90/10 99/1

o
v
er

h
ea

d
 (

%
)

skew

Node size = 30MB; DB Size = 64GB

 250

 0

 50

 100

 150

Figure 5: Creation overhead

Because all mappings scanned during the mapLog phase
of the joint Skippy scan are FEMs, there is no wasted work
during this phase. Because all i/o when scanning mapLog is
sequential, this phase has minimal i/o cost. Thus, by corol-
lary CmapLog, the cost of the joint Skippy scan is the minimal
cost to read all FEMs recorded between the declaration of
the first and last snapshots in the range, plus the cost of a
single Skippy scan to find the FEMs for the last snapshot in
the range.

5.1.3 Creation Cost

The cost of writing mappings into mapLog with no Skippy
levels is low since mapLog is an append-only, sequential
store, and because Skippy can be written in the background.
Mappings are flushed as a batch from large write buffers
to amortize seek costs. Skippy levels are structured like
mapLog, so their cost is likewise similar, although by con-
struction the number of mappings written into each level
is different. The cost of writing Skippy is thus the sum of
the costs of writing mappings sequentially at each level. In
figure 5, we calculate the overhead of creating Skippy as
the percent above the baseline cost of writing mappings into
mapLog by iteratively determining the number of mappings
that would be written into each level (the figure does not
depict a 1-level Skippy, which is just mapLog). As work-
load skew increases, the number of repeated mappings within
a node increases, which decreases the number of mappings
copied up from mapLog into Skippy levels. Thus, the over-
head of creating Skippy decreases as skew increases.

5.1.4 Configuring Skippy

Each additional Skippy level adds creation overhead, while
skewed workloads tend to exhibit diminishing returns for
Skippy levels beyond 3 or 4. Keeping in mind that Skippy

must be non-disruptive as well as enable efficient Mapper
lookup, we consider how to configure and tune Skippy.

Databases are often comprised of both mutable and im-
mutable data. The mutable portion may be much smaller
than the overall database size (for example, a database may
contain immutable video files and a mutable table contain-
ing user comments). Skippy need only to be configured
to efficiently index mappings for the mutable pages of the
database.

Practical Skippy Height. We observed that much of
the benefit of Skippy in counteracting workload skew is
achieved in the first few Skippy levels. To better quantify
this idea, we picked a target cost of 5 seconds to construct an
SPT for a 64GB database, then employed exhaustive search
to determine the smallest Skippy height that would achieve
this performance level. We found that height of 3 was suf-
ficient to achieve this performance for “90/10” and “99/1”,
while the less skewed “65/35” and “80/20” required 4 lev-
els. This supports the intuition that Skippy provides strong
performance benefits to skewed workloads even with just a
few levels, imposing minimal performance overhead.

Dynamic Reconfiguration. In practice, a beneficial
Skippy height could be configured by keeping statistics that
track the acceleration between levels during creation (i.e.,
the number of FEMs copied between levels). Skippy height
can be adjusted dynamically, so that if the acceleration is
observed to be poor above level hpractical, mappings do not
need to be copied to higher levels, and the links written at
the end of new nodes in level hpractical are in-links instead
of uplinks. We have designed but have not yet implemented
this feature.

Cold Spots. The common skewed workload model as-
sumes a small hot section (a “hot spot”). One could con-
struct a workload that has a small cold section instead of a
small hot section. For example, updates could be uniformly
random in most of the database except a small subset of
very cold pages. In such a workload, the dynamic recon-
figuration mechanism might inhibit writing Skippy levels,
yet the overwrite cycle could still be quite long. In prac-
tice, the overwrite cycles created by such a workload can be
forcibly shortened by periodically copying very cold pages
to snapStore (once per desired overwrite cycle) and record-
ing a mapping to them in mapLog. A scan of lastRetainer
can identify those pages which are cold as indicated by last
being retained for a very old snapshot. The age at which
a pre-state is forcibly created is a tunable parameter that
trades some additional background i/o to limit overwrite
cycle length in workloads with small cold sections.

Memory requirements. For Skippy, the tail node of
mapLog and each Skippy level must be resident in memory.
This is necessary to make the check to see if a mapping
is repeated within the current node efficient. Our analysis
shows that the performance of Skippy can scale if the size
of a node scales in proportion to the number of hot pages.
Figure 4 shows that for less-skewed workloads with larger
hot sections, the effect of increasing database size (and so the
number of hot pages by our definition of skew) can have a
significant impact on performance if the node size is not also
scaled. This is similar to the scaling required to maintain
a hit ratio in a read cache. Mappings are quite small, so
we believe that our approach is practical even for databases

with large amounts of mutable data. Section 5.3.2 discusses
node sizes in our implementation.

The other memory cost in our system is the lastRetainer
structure. It has a a cost similar to the database page table.
Like a page table, and unlike nodes in the Skippy structure,
lastRetainer can be paged to disk if it is too large to fit
comfortably in main memory. We assumed in our analysis
that lastRetainer fits entirely in memory, but since the ac-
cess locality in lastRetainer will be the same as the locality
for database pages, the trade-off of keeping part of the page
table on disk is well-understood.

5.2 Evaluation in SNAP
We have implemented Skippy Mapper in the SNAP [21]

split snapshot system. We grafted Skippy onto the origi-
nal SNAP system [21] that writes snapshot page mappings
in the mapLog and accelerates sequential mapLog scan by
retaining in-memory checkpoints for selected snapshots.

We used our prototype to conduct an experiment to gauge
the impact of Skippy in a running system. The analysis in
Section 5 evaluated the overhead of Skippy in terms of the
total extra snapshot page table mapping disk i/o required for
Skippy creation in an overwrite cycle. In a running storage
system, Skippy is created incrementally, in the background,
as part of the copy-on-write snapshot creation process that
accompanies the database update process, and as such, could
slow down the update process, ultimately impacting the fore-
ground application transactions. A useful practical measure
of Skippy efficiency is the impact of its background creation
cost on the update process. Our experiment gauges the over-
head of Skippy on the update process in the prototype sys-
tem by measuring and comparing the cost of updating a sin-
gle database page in a system with and without snapshots,
and breaking down the overhead due to snapshots into two
components, the overhead due to the copying of snapshot
pages, and the overhead due to the writing of snapshot page
table mappings. We then consider how the overhead with
Skippy compares to the overhead of a system without it.

The experiment runs in a client/server system with the
Skippy-enhanced SNAP system running at the server. The
client generates an application transaction workload by run-
ning a variant of the OO7 benchmark [2] read/write traver-
sals T2a declaring a snapshot after each transaction (highest
frequency). The application-level benchmark does not allow
us to control the page-level update skew directly, typical
for an application written in a high-level language. Instead,
the benchmark updates randomly selected objects [21]. The
resulting workload has a complex page-level behavior but
exhibits the following observed page update characteristics.
It generates high overwriting, and the randomly-selected ob-
ject updates leave some pages unmodified for a long time,
producing a highly skewed workload (long overwriting cy-
cle), and also stressing the total archiving system overhead.

We do not detail further the experimental setup for brevity.
Instead we note that an identically configured experiment in
SNAP using in-memory acceleration has shown that even for
high-frequency snapshots, the entire split snapshot overhead
is low [21] and the cost of writing the snapshot page table
mappings is minimal. Our experiment confirms the findings
for the Skippy-based system (that accelerates lookup at the
cost of extra writing of snapshot page table mappings). A
Skippy graft configured for h = 2 with Skippy node size set

to 512KB contributes 1.3% of the total archiving overhead,
out of which 0.3% is due to the additional Skippy levels,
with the remainder due to the base housekeeping costs in
the entire Mapper subsystem. Based on our measurement
and analysis, we therefore conservatively estimate that in
practice the cost of writing snapshot page table mappings
in the few additional levels required to achieve the, close to
optimal, predicted Skippy benefit will remain small.

We used the snapStore created by our workload (16K
snapshots, 60GB snapStore) to run Skippy scans on snap-
shots with completed overwrite cycles, representing long-
lived snapshots that can not take advantage of in-memory
meta-data acceleration. The measured Skippy scan costs
for reading and scanning a Skippy node were 55ms. Given
the workload, compared to a SNAP system without lookup
acceleration, the h = 2 level Skippy reduced the longest ob-
served overwrite cycle from the OO7 workload by 19-fold.
The results indicate the predicted performance benefits of
even small Skippy structure in skewed workloads. Our ex-
perimental evaluation of a new system, SkippyBDB, exam-
ines the average benefit of Skippy using synthetic workloads
modeled after our analysis 5.3.

5.3 Evaluation in SkippyBDB
In order to support analytical results with the on-demand

Mapper lookup protocol under a deterministic workload, and
to gain experience implementing Skippy in a commercial
database storage manager, we implemented SkippyBDB, a
split-snapshot system built inside Berkeley DB [10] (BDB).
SkippyBDB augments the BDB page cache, storing pre-
states of pages into snapStore and implementing the Map-
per creation algorithm. Applications requesting BITE use an
unmodified BDB interface for accessing records; the
SkippyBDB-enhanced page cache transparently loads snap-
shot pages from snapStore. We measure the time to build an
SPT, which requires a lookup scan over one overwrite cycle,
and compare results to analytical expectations.

5.3.1 Experimental Setup

We employ SkippyBDB to measure the performance of
Skippy. To examine the performance impact of creating
the Skippy index, we ran the following workload: a reader
thread executes 20 sequential scans of the entire database;
concurrently, a writer thread updates a random item in the
database. The writer makes updates until the reader has
finished. To conservatively measure the cost of Skippy, we
do not skew the workload, thereby maximizing the over-
head due to Skippy levels (figure 5). We also employ 5 lev-
els, which would normally not be necessary for an unskewed
workload; but, adding many levels conservatively increases
the work required to create Skippy. Because Skippy is writ-
ten during database checkpoints, we ensure that each run
is long enough to capture multiple checkpoints. To isolate
the cost of Skippy, we modify our implementation to not
write snapshot pages, thus eliminating snapstore I/O from
our measurements.

To benchmark the benefit of Skippy when constructing
SPTs, we first create an overwrite cycle as follows: a writer
makes successive random updates, declaring a snapshot af-
ter each update, until each page has been modified at least
once. We generate the synthetic workload used in the anal-
ysis by skewing more transactions to the hot section as the

Table 1: Time to construct SPT for various skews
Skew Skippy Height Time (s)

50/50 1 13.8
80/20 1 19.0

2 15.8
3 14.7
4 13.9

99/1 1 33.3
2 6.69

hot section shrinks in size. To test the benefit of Skippy, we
measure the time it takes to construct the SPT by scanning
from the first to last mapping in the overwrite cycle (time
includes CPU cost of inserting mappings into page table,
which is implemented as a hash table). Since our bench-
mark of Skippy benefit is only concerned with mapLog and
the Skippy index, in the interest of time we simulate the
actual workload by selecting random page numbers instead
of by updating an actual database. We compared a sample
of our simulated mapLog and Skippies with those from our
full BDB prototype and found them to be similar.

Hardware. All measurements are taken on a Dell Pow-
erEdge with dual 2.80GHz processors (only one of which
is used for the experiment), 4GB of physical RAM, and two
Seagate SCSI drives (model ST3146755SS) on the same SCSI
bus (only one of which is used during the experiment). The
test machine is running Debian Etch with the x86 64 build
of Linux 2.6.22. Berkeley DB is hosted on an ext3 file sys-
tem. Berkeley DB defaulted to a page size of 4K, which we
did not change.

5.3.2 Results

Creation Cost. We averaged the time for the reader to
complete 20 sequential reads of a 1.3GB database with a
100M cache over 5 runs for each of two cases: the first in
which the writer takes a snapshot after each transaction, the
second in which the writer takes no snapshots. The second
case incurs no overhead from Skippy since no mappings will
be created. We ignored the time for the first sequential read
from each run to minimize impact of a cold cache (our test
database is organized as a BTree so inner nodes are cached
after the first iteration). Both runs included 9 checkpoints.
We compared these two cases and found no significant im-
pact on the time to complete the scan from the creation of
Skippy. Since Skippy is written to a separate disk from the
database, writing mapLog and Skippy is not disruptive to
reader I/O done in the current state.

Skippy Benefit. Table 1 shows the cost of constructing
an SPT for one overwrite cycle for various representative
skews and Skippy heights in a 100M database and a 50K
node (a node of this size holds 2560 mappings, which are
each 20 bytes, which is 1/10th the number of pages in the
database). Mappings could be decreased in size with encod-
ing of snapshot page address at no scan-time cost, increas-
ing node capacity. Each measurement is the average of 3
experimental runs, with negligible variance from the mean.
For a node size that is small compared to the number of
pages in the database, we observe that the “50/50” work-
load achieves minimal benefit from Skippy. This is because
there is no skew, and the likelihood of repeating mappings
within a node is relatively small. The cost of a mapLog scan

Table 2: Scaling configuration with database size
Database Size Node Size Skippy Benefit

100M 50K 27%
400M 50K 8%

200K 31%

for the “50/50” workload is essentially the cost due to the
n ∗ ln(n) blow-up.

We expect from the analysis that for a skewed workload,
Skippy will be able to reduce the scan time to be as small
as the scan for “50/50” (figure 3). Indeed, the “80/20”
workload required 3 Skippy levels above mapLog to achieve
a Skippy scan time similar to a mapLog scan in “50/50”.
Table 1 also shows that for a highly skewed workload like
“99/1” for which the node size is actually larger than the
number of hot pages, Skippy can easily accelerate the scan
to be faster than the “50/50” mapLog scan. We observed
similar behavior for the other workloads studied in the anal-
ysis.

Table 2 shows that, as predicted by the analysis, increas-
ing the database size without also scaling the node size can
decrease Skippy performance. We measured two database
sizes (100M and 400M). If the node size is not scaled with
the database, then Skippy acceleration is decreased; how-
ever, by scaling the node we achieve similar benefit. Because
mappings are small, node sizes can remain practical even as
databases grow large. For example, this scaling factor would
require a 5M node for a 10G database. Note that for our
workload, the hot section always scales with database size,
for real workloads the hot section may not change size as
the entire database grows, lessening the need to scale the
node size. Additionally the random updating workload used
in our analysis and experiment does not exhibit temporal
locality. Since a node is comprised of mappings from con-
temporaneous transactions, temporal locality would increase
the number of repeated mappings within a given node. In
this sense, the workload we test is the worst-case for Skippy.
We expect that Skippy will perform as well or better with
workloads that exhibit temporal locality than with our syn-
thetic workload.

We have also experimentally confirmed that the length of
an overwrite cycle is not a function of snapshot age. Because
the length of an overwrite cycle is determined by the ran-
dom order in which mappings are generated, two randomly-
selected overwrite cycles generated by the same workload
may vary in length. We created 1,000,000 snapshots using
the technique described above, and then continued adding
mappings to mapLog until 1000 evenly-spaced snapshots se-
lected from this set had completed overwrite cycles. This
created 1000 snapshots with varying ages distributed inside
the mapLog. We averaged the number of mappings in each
of the 1000 snapshots and found that the standard deviation
was at least an order of magnitude smaller than the mean for
both unskewed (“50/50”) and skewed (“90/10”) workloads.

6. RELATED WORK
Work on multiversion data has been carried out in both

databases and file systems. For both databases and file sys-
tems, most work on versioned data has taken the copy-on-
write, no-overwrite update approach. To our best knowl-

edge, Skippy is the first indexing approach that solves the
multiversion access problem in a copy-on-write system with
update in-place. A poster describing the Skippy technique
appeared in [19].

Skippy departs from existing database proposals for mul-
tiversion data in several important ways: the level of snap-
shots, the assumed database update architecture, and the ac-
celeration method. All existing database multiversion access
proposals, that we know of, operate at the logical database
level, indexing logical records, and targeting specific types
of queries. For example, Snapshot Index [25] targets snap-
shot queries (“find all records in version v”), Time-Split
B-tree (TSB) [9] and the Multiversion B-tree (MVBT) [1]
target key-range queries (“find records in version v within
range r”). In contrast, Skippy operates at a lower level (the
storage manager), indexing disk page-level snapshots. As
such, Skippy is agnostic to what type of code accesses the
snapshot. This way, all read-only queries supported by the
database (and all the application programs) will run in the
snapshot, incurring the same number of page accesses, at a
page access cost similar to a secondary index.

Regarding data update, existing multiversion database pro-
posals transform record updates into inserts [8, 25, 11, 24].
The previous record version remains in place, and the past
version index structure overtakes the current access struc-
ture, updating the index to provide access to the current
version. Since the index structure is shared by the past and
the current state, access to the past state inherits the effi-
cient ordered set access properties from the current state.
However, existing temporal database indexing approaches
(e.g., TSB) must periodically reorganize data to maintain
current-state clustering, incurring additional index updates.
In split snapshots, on the other hand, an update to a record
copies a page (the pre-state) into snapStore and appends a
mapping to mapLog, maintaining clustering of records and
minimizing interference with the current state.

Because of the architectural differences, a direct perfor-
mance comparison between Skippy and the existing multi-
version indexing proposals is difficult. To put our work in
perspective, we consider how history length impacts both
Skippy and Time Split B-tree (TSB) [9], a state-of-the-art
multiversion index designed for ImmortalDB [8]. TSB is a
record access method that combines the key and time dimen-
sions into a single B-tree, enabling efficient “as-of” queries
similar to BITE in Skippy.

The search cost for each record in TSB increases logarith-
mically with the size of history. In contrast, our approach
requires a scan of unsorted mappings, but that scan length
is dependent only on database size and workload, and is in-
dependent of history size. An individual record lookup in
TSB will be faster than a Skippy scan (unless the size of
the TSB is quite huge). This is why a scan produces an
SPT, a sorted lookup table containing a mapping for each
page in the database (at time of snapshot). The cost of
the scan can be amortized over all lookups in the SPT after
it is built, making the Skippy approach very attractive for
workloads which will execute many back-in-time operations
on the same snapshot. Joint scans for ATE queries provide
additional amortization compared to equivalent search tree
lookups.

Some commercial databases store consistent page-level
snapshots separately to avoid inteference with current state

and provide quick recovery from errors. Oracle’s Flash-
back [14] retains snapshots at the page level in a size-limited
store, augmented with archived transaction logs [14] to en-
able snapshot roll-back to the needed state. Microsoft’s VSS
service [17] service allows applications to take consistent
page-level snapshots efficiently by coordinating the flushing
of application buffers. These approaches target short-lived
snapshots, but we think that Skippy could naturally comple-
ment them making it possible to access long-lived snapshots.

The Network Appliance Filer, a widely used, high-
performance storage system, provides snapshots through the
WAFL [6] file system. WAFL uses no-overwrite updates for
current-state storage (instead of updating modified blocks
in-place as in the split snapshot approach), and so declus-
ters current state data. Unlike Skippy-indexed snapshots,
WAFL-based snapshots are not long-lived.

The ext3cow versioning file system [12] provides snapshots
of the entire file system by modifying ext3 to support no-
overwrite copy-on-write updates for data pages. ext3cow
provides fast current state meta-data access by separating
past and present meta-data and updating current meta-data
in-place, but it employs version chaining so, unlike Skippy,
access times are proportional to history length.

CVFS [23] is a high-performance, continuous-versioning
system for a no-overwrite log-structured file system, sup-
porting intrusion analysis. It logs versioned file meta-data
similarly to the mapLog in Skippy, but accelerates temporal
queries using TSB [9].

Skippy bears superficial resemblance to Skip Lists [13].
Both Skippy and Skip Lists are concerned with construct-
ing “fast-lanes” for searching. However, Skip Lists are an
in-memory data structure that maintains a sorted set with
probabilistic forward links, while Skippy is composed of a
hierarchy of unordered sets (of mappings) optimized for se-
quential disk i/o. Additionally, while Skip Lists accelerate
the lookup for a single item, the Skippy index accelerates the
search for a subset of items (the FEMs needed to construct
an SPT).

7. CONCLUSION
Decreasing disk costs make it possible for a database to

store on-line snapshots of past states for long periods of time
but up to now there was no satisfactory way for a general
purpose database to run code on-line over long-lived snap-
shots. We have presented Skippy, the first efficient solu-
tion to the problem of indexing long-lived split copy-on-write
snapshots for on-line access by BITE and ATE programs.

We have designed Skippy for a split snapshot system with
a sequential snapshot store but the approach is more general
and we believe can be adapted to different snapshot store or-
ganizations and different current state storage systems. For
example, Skippy could be used with a content addressable
past state organization. Such approach would simply store
a snapshot page content hash instead of snapshot store ad-
dress in the snapshot page tables and mapLog mappings,
and require that the snapshot system enforce the invariant
ImapLog.

Skippy-based long-lived split snapshots potentially could
be adapted to become a standard database system feature
bringing ad-hoc on-line past state analysis to general appli-
cations. Such approach is attractive because it is consider-

ably simpler and more general than the alternative of cap-
turing past states and providing temporal access methods at
the logical database level. Our BDB prototype demonstrates
a step in this direction.

8. ACKNOWLEDGEMENTS
We wish to thank our shepherd, David Dewitt, and our

anonymous reviewers for their invaluable feedback. Sam
Madden’s database research group at MIT and Michael Stone-
braker provided helpful comments. Finally, we thank Ioana
Manolescu and the anonymous repeatability verifiers for go-
ing the extra mile interpreting our results. This research was
partially supported by NSF grant CNS-0427408.

9. REPEATABILITY ASSESSMENT RESULT
Figure 3 and tables 1 and 2 have been verified by the

SIGMOD repeatability committee.

10. REFERENCES

[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
B-tree. VLDB Journal: Very Large Data Bases,
5(4):264–275, 1996.

[2] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The
oo7 benchmark. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of
Data, Washington D.C., May 1993.

[3] S. Chandrasekaran and M. Franklin. Remembrance of
stream past: Overload-sensitive management of
archived stream. In VLDB 2004, Toronto, Canada,
2004.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings of the
6th Symposium on Operating Systems Design and
Implementation (OSDI ’04), pages 137–150, San
Francisco, USA, December 2004.

[5] J. N. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers Inc., 1993.

[6] D. Hitz, J. Lau, and M. Malcom. File System Design
for an NFS File Server Appliance. In Proceedings of
the USENIX Winter Technical Conference, San
Francisco, CA, January 1994.

[7] K. J. Jacob and D. Shasha. Fintime: a financial time
series benchmark. SIGMOD Rec., 28(4):42–48, 1999.

[8] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Immortal db: transaction time
support for sql server. In SIGMOD ’05: Proceedings of
the 2005 ACM SIGMOD international conference on
Management of data, pages 939–941, 2005.

[9] D. Lomet and B. Salzberg. The performance of a
multiversion access method. In SIGMOD ’90:
Proceedings of the 1990 ACM SIGMOD international
conference on Management of data, New York, NY,
USA, 1990. ACM Press.

[10] M. Olson, K. Bostic, and M. Seltzer. Berkeley db. In
Proceedings of the 1999 Summer Usenix Technical
Conference, Monterey, California, June 1999.

[11] G. Ozsoyoglu and R. T. Snodgrass. Temporal and
real-time databases: A survey. Knowledge and Data
Engineering, 7(4), 1995.

[12] Z. N. J. Peterson and R. C. Burns. Ext3cow: The
design, implementation, and analysis of metadata for a
time-shifting file system, 2003.

[13] W. Pugh. Skip lists: a probabilistic alternative to
balanced trees. Commun. ACM, 33(6), 1990.

[14] A. Romero and L. Ashdown. Oracle Database Backup
and Recovery Basics, chapter Oracle Flashback
Technology: Alternatives to Point-in-Time Recovery.
Oracle Corporation, Redwood Shores, CA, 10g release
2 (10.2) edition, 2005.

[15] S. M. Ross. Probability Models for Computer Science,
chapter Martingales. Harcourt Academic Press, San
Diego, first edition, 2002.

[16] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Computing
Surveys, 31(2), 1999.

[17] A. Sankaran, K. Guinn, and D. Nguyen. Volume
shadow copy service. Power Solutions, March 2004.

[18] D. Santry, M. Feeley, N. Hutchinson, A. Veitch,
R. Carton, and J. Otir. Deciding when to forget in the
elephant file system. In Symposium on Operating
Systems Principles, 1999.

[19] R. Shaull, L. Shrira, and H. Xu. Skippy: Enabling
long-lived snapshots of the long-lived past. In ICDE
’08: Proceedings of the 24th International Conference
on Data Engineering, Cancun, Mexico, 2008. IEEE
Computer Society.

[20] L. Shrira, C. van Ingen, and R. Shaull. Time travel in
the virtualized past: Cheap fares and first class seats.
Haifa Systems and Storage Conference, SYSTOR 2007.

[21] L. Shrira and H. Xu. Snap: Efficient snapshots for
back-in-time execution. In ICDE ’05: Proceedings of
the 21st International Conference on Data
Engineering, Washington, DC, USA, 2005. IEEE
Computer Society.

[22] L. Shrira and H. Xu. Thresher: An efficient storage
manager for copy-on-write snapshots. In USENIX ’06:
Proceedings, Berkeley, CA, USA, 2006. Advanced
Computer Systems Association.

[23] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata efficiency in versioning file
systems. In FAST ’03: Proceedings of the 2nd
USENIX Conference on File and Storage Technologies,
Berkeley, CA, USA, 2003. USENIX Association.

[24] M. Stonebraker. The Design of the POSTGRES
Storage System. In Proceedings of the 13th
International Conference on Very-Large Data Bases,
Brighton, England, UK, September 1987.

[25] V. J. Tsotras and N. Kangelaris. The snapshot index:
an i/o-optimal access method for timeslice queries.
Information Systems, 20(3), 1995.

