Problem C

Gray Code

Input: standard input
Output: standard output
Time Limit: 2 seconds
Memory Limit: 32 MB
All of you know about Gray Code. It is a number code where consecutive numbers are represented by binary patterns that differ in one bit position only. In the following 4 examples of 3-bit gray code are shown :

000	000	000	000
001	001	010	010
011	011	011	011
010	010	001	001
110	110	101	101
111	100	100	111
101	101	110	110
100	111	111	10

In this problem we will deal with a gray code generation logic. This logic will generate the n -bit gray code using the coding of ($\mathrm{n}-1$) bits. Lets formally define the rules :

Each gray code has a starting bit pattern. Such as "0 00 " or "1 01 " etc.
An n-bit gray code will have $2^{\wedge} \mathrm{n}$ rows and two consecutive rows will differ by only one bit.
-
Each bit pattren will be present exactly once.
Gray code for 1-bit is trivial. Start with a bit and invert it in the next row.

-

To construct n-bit gray code keep any of the n bits fixed (either 0 or 1) for the first $2^{\wedge}(\mathrm{n}-1)$ rows and use ($\mathrm{n}-1$)-bit gray code (generated using this logic) for remaining ($\mathrm{n}-1$) bits. Then invert the fixed bit for the next $2^{\wedge}(\mathrm{n}-1)$ rows and also use ($\mathrm{n}-1$)-bit gray code for remaining ($\mathrm{n}-1$) bits whose bit pattern of the first row is the same as the bit pattern of the last row of previous $2^{\wedge}(\mathrm{n}-1)$ rows. For example 2-bit gray code starting with " 00 " may be :

00		00	
01		10	
11	Or	11	
10			01

Simmilarly 2-bit gray code starting with "01" may be :

01		01	
00		11	
10	Or	10	
11			00

If you observe carefully, you will see that the 3-bit gray codes given above are also constructed using
this logic. Many such gray codes are possible for a particular starting bit pattern. We can order them from 1 to $G(n)$ where $G(n)$ denotes the number of such gray codes for n-bit. In our ordering scheme :

1st n-bit gray code has its leftmost bit fixed and it uses 1st (n-1)-bit gray code for upper half and also 1st ($\mathrm{n}-1$)-bit gray code for lower half.
$\mathrm{G}(\mathrm{n}-1)$ 'th n -bit gray code has its leftmost bit fixed and it uses 1 st ($\mathrm{n}-1$)-bit gray code for upper half and $\mathrm{G}(\mathrm{n}-1)$ 'th ($\mathrm{n}-1$)-bit gray code for lower half.
-
$[\mathrm{G}(\mathrm{n}-1)+1]$ 'th n-bit gray code has its leftmost bit fixed and it uses $2 \mathrm{nd}(\mathrm{n}-1)$-bit gray code for upper half and 1st ($\mathrm{n}-1$)-bit gray code for lower half.
-
$\mathrm{G}(\mathrm{n})$ 'th n-bit gray code has its rightmost bit fixed and it uses $\mathrm{G}(\mathrm{n}-1)$ 'th ($\mathrm{n}-1$)-bit gray code for both halves.
You have to find a n-bit gray code for given starting bit pattern and index.

Input

The first line of the input file contains a single integer $\mathbf{N}(\mathbf{0}<\mathbf{N}<=\mathbf{1 0 0 0})$ which denotes the number of inputs. Each of the next \mathbf{N} lines contains a string of bits for starting bit pattern and an integer for index. Number of bits will be between 1 to 6 . And the index will be valid.

Output

Print the gray code for the given starting bit pattern and index. Put a blank line between two consecutive sets of inputs.

Sample Input

3

0001
1115
102

Sample Output

10
00
01
11

Author: Md. Kamruzzaman

The Real Programmers' Contest-2

