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ABSTRACT 
 

The Panex puzzle is a one-person board game created by Toshio Akanuma and manufactured by the TRICKS 

Co., Ltd of Tokyo, Japan. On first sight, the puzzle reminds one of the Tower of Hanoi. A little thought reveals that 

they are intriguingly different. It consists of three vertical tracks on a flat board, with a horizontal track connecting 

them at the top. Tile pieces are placed in the tracks and can be moved along the tracks. Certain restrictions on the 

tile-piece movements are enforced by the physical construction of the puzzle. (See Figure 1). There are two 

objectives that can be played on the Panex board. One is to transfer a stack of tile-pieces from a side track to the 

center track, the other is to exchange two stacks of the tile-pieces on the two side tracks. We present algorithms for 

achieving both objectives. The solution to the first objective is shown to use the minimum possible number of 

moves. The solution to the second objective is verified to be optimum for towers of height up to six by a computer 

exhaustive search using a modification of Dijkstra's Algorithm. 

 

 

 

 

 

 

 

                                                           
1 This paper was originally written in 1983, but never formally published. Edited by Nick Baxter, v1.d, April 28, 2002. 
2 Work performed while at AT&T Bell Labs. 
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1. Introduction 

The Panex puzzle is a one-person board game created by Toshio Akanuma (patent pending) and manufactured 
by TRICKS Co., Ltd. of Tokyo, Japan. The puzzle consists of a flat board with three vertical tracks (or grooves) laid 
in the board with a horizontal track (or groove) at the top connecting the three (Figure 1). The board is made of two 
flat pieces fastened together by screws, with intricate shapes hidden between them. Rectangular tile pieces can be 
moved along and inside the tracks, but cannot be lifted out of the board, nor rotated. Thus, for example, one tile 
cannot fly over another tile. The Silver version (see Figure 1), there are ten tiles with orange markings, and ten with 
blue markings. The markings of the same color are such that they form a narrow, ten-story high triangle-shaped 
tower, with each tile taking up one floor (or layer). For the Gold version (see Figure 3), each tower is made up of 
tiles that appear identical, but otherwise is constructed identically to the Silver version.  

   
Fig 1. Panex Silver Fig 2. Sample position Fig. 3. Panex Gold 

 
The rule of the game is such that the tile with the ith highest floor can only stay in layers 0 through i in any track. 

(The top layer of a track, where it is connected to another track, is numbered 0. The cul-de-sac of a track is 
numbered 10.) This rule is enforced by the mechanics of the Panex board. There is a tongue (or tang) underneath 
each tile which decrease in size from first to the tenth tiles. The throat of the track narrows from layer 1 to layer 10. 
In summary, the rules of the game are 

1. The tiles can only move along the tracks. They cannot fly over one another. 

2. The tile with the ith highest floor of the triangular tower can only stay in track layers 0 through i. 

Initially, the blue tiles are stacked on the left track, and the orange (white) tiles on the right track. They are two 
goals (objectives) to be played on the Panex puzzle. One, to transport (or transfer) one tower from a side track to the 
center track. Two, to exchange two side towers. 

                                                           
1 Work performed while at AT&T Bell Labs. 



- 2 - 

  

Although the TRICKS Company implemented the Panex puzzle with towers of height ten only, we can treat the 
general puzzle with towers of height n. Let T(n) denote the minimum number of moves to transport a tower of height 
n from a side track to the center track, and let X(n) denote the minimum number of moves to exchange two towers 
on the side tracks. In this paper, we will give a formula for T(n) and give upper and lower bounds on X(n). Note that 
the displacement of a tile is counted as one move. It does not matter how far along the tracks the tile travels, or how 
many turns it makes. 

For n!3, the minimum number of moves to transport a tower is  
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As for the minimum number of moves to exchange towers on the side tracks, X(n), we have obtained the exact 
value of X(n) for 1"n"6 by exhaustive computer search. For n!5, we have the following upper and lower bounds, 
L(n) "X(n) "U(n). The upper bound is given by 
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The lower bound is given by 

)2)1()((4)( −−+= nTnTnL . 

Below is a tabulation of our results for n<=10. 

 n T(n) X(n) U(n) L(n) 
1 1 3   
2 3 13   
3 9 42   
4 24 128   
5 58 343 343 320 
6 143 881 881 796 
7 345 2,1891 2,189 1,944 
8 836 5,3592 5,359 4,716 
9 2,018 ? 13,023 11,408 

10 4,875 ? 31,537 27,564 
 

In Section 2, we present the optimum algorithm for transferring a tower. In Section 3, we present an algorithm 
for exchanging towers in U(n) moves. In Section 4, we describe our computer algorithm for finding optimum 
solutions. 

2. The Optimum Sequence of Moves for Transferring Towers. 

In this section, we will give an algorithm for transferring a tower from a side track to the center track and prove 
that the moves used are the fewest possible. 

The initial position, (configuration, state) where the tiles are neatly stacked on the side tracks, is denoted by 

                                                           
1 Verified by David Bagley on Feb 7, 2002 
2 Verified by David Bagley on Mar 26, 2002 
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Later, we may reach the position shown in Figure 2, and it is denoted by 

 
We use the word position as in chess position throughout the paper. 

In the first part of this section, we shall focus on the game of transferring the purple tower from left to center. 
We will accomplish the transfer problem by a series of atomic operations. Each atomic operation is a fixed sequence 
of moves that achieves a sub-goal toward the eventual goal of tower transportation. Initially, we will prohibit the 
movement of orange tiles. Later, we will show that the removal of this restrictions does not help. 

Let Tn denote the operation of transporting a tower of height n from a side track to the center track. Let Sn 
denote the operation which takes the position where a (n-1)-tower is in the center and the nth tile is alone on the side, 
to the position where the (n-1)-tower is on the side and the nth tile in alone in the center. For example, the operation 
S6 is demonstrated below. 

 

to 

 
The task Tn can be accomplished in T(n) but not fewer moves. The task Sn can be accomplished in S(n) but not 

fewer moves. We use the letter "S" to name the second operation because it sinks the #n tile to the bottom of the 
center track. 

We assume it takes the same minimum number of moves to accomplish the following two operations as Sn. This 
assumption will be justified later. In the mean time, these two operations will also be referred to as Sn. Ambiguity 
should not arise from reading the context. In the first operation, we assume there is an single extra tile below height 
n in the center track. In the second operation, tile #(n+i), where i!1, instead of tile #n, is sunk to the bottom of a 
tower of height n-1 in the center track. These situations are caused by particular combinations on the lower portion 
of the board. (Illustrated for S6.) 

 

to 

 
 



- 4 - 

  

 

to 

 

Let nT denote the operation of transporting a tower of height n from the side track to the center, but with the 1st 

tile ending up in the corner position. (Illustrated for 6T ). 

 

to 

 

Assume nT can be accomplished in ( )nT  but not fewer moves. Let nS denote the operation of Sn, but with the 1st tile 

starting in the corner. (Illustrated for 6S ). 

 

 

to 

 

Also assume nS can be accomplished in )(nS  but not fewer moves. Similar assumptions are made for nS as for Sn.  

Let 1−
nT , 1−

nS , 1−
nT , and 1−

nS denote the inverse operations of nT , nS , nT , and nS , respectively. Apparently, 1−
nT  

(resp. 1−
nS , 1−

nT , and 1−
nS ) uses the same number of moves as nT  (resp. nS , nT , and nS ). 

Without much effort, the readers can verify that 

9)3()3(,2)2()2(,3)2()2(,1)1()1( ======== TTSTSTTT  and ( ) 83)3( == SS . 

For n!4, assume we know the shortest sequence of moves to accomplish )(),(),(),( iSiSiTiT for all i!n, then 
the task Tn can be accomplished by applying Tn-1, Sn-1, a special sequence of four moves, and Tn-2, in that order. The 
positions after each stage are shown below, for n=6. 

 

to 

 

to 

 

to 

 

to 
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Another way to accomplish Tn is by applying 1−nT , 1−nS , a special sequence of four moves, and Tn-2, in that order. 
The intermediate positions reached at each stage is shown below, for n=6. 

 

to 

 

to 

 

to 

 

to 

 
Therefore, the minimum number of moves to achieve Tn is bounded by 

{ } )2(4)1()1();1()1(min)( −++−+−−+−≤ nTnSnTnSnTnT  . 

Similarly, the task nT can be accomplished by combining smaller tasks, and we have 

{ } )2(4)1()1();1()1(min)( −++−+−−+−≤ nTnSnTnSnTnT  . 

The task Sn can be accomplished by applying Sn-1, a special sequence of four moves, 1
1

−
−nS , and 1

2
−
−nT , in that 

order. The positions reached after each stage are shown below, for n=6. 

 

to 

 

to 

 

to 

 

to 

 

Another way to accomplish Sn is to combine Sn-1, a special sequence of four moves, 1
1

−
−nS , and 1

2
−
−nT , in that 

order. Therefore the minimum number of moves to accomplish Sn is bounded by 

{ })2()1();2()1(min4)1()( −+−−+−++−≤ nTnSnTnSnSnS  . 

Similarly, the task nS can be accomplished by combining smaller operations, and we have 

{ })2()1();2()1(min4)1()( −+−−+−++−≤ nTnSnTnSnSnS  . 

Next, we will show that the equalities hold in all four cases. 

In any shortest sequence of moves accomplishing Tn, n!4, consider the position just before the #n tile is moved 
for the first time. In order for the #n tile to make a meaningful move, we must have either of the following two 
positions, illustrated here for n=6: 

 

to 

 
This is because the #n tile must move all the way to the top and around the corner to be meaningful, and these 

are the only two possible placements of the other tiles to make the move feasible. These two positions are called an 
unavoidable set of positions. The operation from the initial position to the unavoidable position on the left is exactly 
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Tn-1, and the operation from the initial position to the unavoidable position on the right is exactly 1−nT . Therefore, 

the first part of any shortest sequence of moves to accomplish Tn must be a shortest sequence for either Tn-1 or 1−nT . 

Next, consider the position just after the #(n-1) tile is moved for the last time in a shortest sequence. There are 
two possible positions, as shown below for n=6. 

 

to 

 
But there is no meaningful sequence of moves that can lead into the position on the right, considering the #(n-1) 

file has just been moved. Therefore, the position on the left is an unavoidable position for any shortest sequence. 
The task from this position to the end is exactly Tn-2. Therefore, the last part of any shortest sequence of moves for 
accomplishing Tn must be a shortest sequence for accomplishing Tn-2. 

Tracing backwards from this unavoidable position, we see that four moves earlier, we must have been in the 
position 

 
in any shortest sequence. This position is also unavoidable. The sequence of moves before reaching this position 
must be a shortest sequence for Sn-1 or 1−nS . Summarizing the arguments, we have 

)2(4)}1()1();1()1(min{)( −++−+−−+−= nTnSnTnSnTnT , 

for n!4. Similarly, we can argue on unavoidable positions and prove that, for n!4, 

)2(4)}1()1();1()1(min{)( −++−+−−+−= nTnSnTnSnTnT  

In any shortest sequence of moves that accomplishes Sn, n!4 consider the last time the #(n-1) tile is moved. We 
must be in either of the following unavoidable set of positions, illustrated for n=6. 

 

to 

 
Focusing on the time when tile #n and tile #(n-1) change relative positions, we find the following two 

unavoidable positions, illustrated for n=6. We must reach the unavoidable position on the left, and four moves later, 
reach the unavoidable position on the right. 
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to 

 
Therefore, we have 

)}2()1();2()1(min{4)1()( −+−−+−++−= nTnSnTnSnSnS , 

for n!4. Similarly, we have 

)}2()1();2()1(min{4)1()( −+−−+−++−= nTnSnTnSnSnS , 

for n!4. 

Based on the values for small n, and the four equations, we can derive that, for n!4, 
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Solving by the techniques of difference equations, we obtain 

2
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for n!4, where 
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the equation for T(n) can be obtained easily, and has been given in the Introduction. The values of )(nT , )(nT , 

)(nS and )(nS are shown here. 

 n )(nT  )(nT  )(nS  )(nS  
1 1 1   
2 3 2 3 2 
3 9 9 8 8 
4 24 23 22 22 
5 58 58 57 57 
6 143 142 141 141 
7 345 345 344 344 
8 836 835 834 834 
9 2,018 2,018 2,017 2,017 

10 4,875 4,874 4,873 4,873 
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Earlier, we have assumed that two variations of the operation Sn takes the same number of moves as Sn. Judging 
from the algorithm we presented for accomplishing Sn, and the arguments based on unavoidable positions, we see 
that these assumptions are indeed true. Earlier, we have also prohibited the movement of the orange tiles. Again, 
judging from the algorithm and the unavoidable positions, we see that the removal of this restriction does not help 
shortening the sequence of moves needed to accomplish Tn. 

3. A Good Algorithm for Exchanging Two Towers 

In this section we present an algorithm for exchanging two towers on the side tracks. 

We need some more detailed notations to present our algorithm. For STTY ,,=  or S , let LYn denote the 
operation of performing the task on the left and center tracks, and let RYn denote the operation of performing the task 
on the right and center tracks. The combination of colors of the tiles on the tracks is irrelevant. For example, the 
following operation is denoted RT4: 

 

to 

 
As before, Y-1 denote the inverse operation, and the sink task Sn requires the same number of moves even if the 

sinking tile is #(n+i), i>0, and/or the ith layer of the center track is already occupied. For example, the following 
operation is also denoted LS5: 

 

to 

 
The readers can easily convince themselves that X(1)=3 and X(2)=13. The following sequence of operations 

accomplishes X3 in 42 moves: 

ZYTST RLL ++++ 232  , 

where Y is the following operation which requires 15 moves: 

 
to 

 
and Z is the following operation which also requires 15 moves: 

 
to 

 
In Y, intermediate positions after 3, 6, 9, 12 moves are: 

 
to 

 
to 

 
to 

 
In Z, intermediate positions after 3, 6, 9, 12 moves are 

 
to 

 
to 

 
to 

 
The readers can easily figure out the complete details of Y and Z. 
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The following sequence of operations accomplishes X4 in 128 moves: 

42
1

2233 4 STTYTST RRLRLL +++++++ −  

1
3

1
33

1
4 4 −−− ++++++ TSSWS RRRL  , 

where Y  is the following operation which requires 15 moves: 

 

to 

 
and W is the following operation which requires 13 moves: 

 

to 

 

The operation "4" swaps two pieces in the center track in four moves. The first 12 moves of Y and Y are 
identical. The reader can easily figure out the last three moves of Y . In W, the positions reached after 3, 6, 9, 11 
moves are 

 

to 

 

to 

 

to 

 
The position after 64 moves in X4 is 

 
which is exactly half way between the initial position and the end position. 

For n!5, the task Xn is accomplished by the following two series of operations: 

(1) 

nR

RL

RL

LRRL

nLnRnRnL

nLnRnRnL

nLnRnR

nLnL

S
TT

YTT
SSTT

SSTT
SSTT

SST
ST

+
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+++
++++

+
++++
++++

+++
++

−

−

−−−

−
−−−

−
−

−
−−−

−
−

−
−−−
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2
1

2

2
1

2

1
44

1
3

1
3

1
334

1
4

1
223

1
3

1
112

11 4

!!  

(2) 1
1

1 −
−

− ++ nRnL TVS  

The first sequence takes the initial position into the (roughly) half-way position illustrated for n=10, 
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in which all tile pairs except the #2 tiles have been exchanged and the #10 tiles sit in the center track. The second 
sequence takes the half-way position to the end position. The operation V uses 1)()1( ++− nSnT  moves to achieve 
the tasks 1

1
−
−nLT , 1−

nR S , and the exchange of the #2 tiles; it is 1
1

−
−nLT followed by 1−

nR S , with slight modifications to the 

last part of 1
1

−
−nLT  and to the first part of 1−

nR S . According to the algorithm presented in the previous section, the last 

nine moves of 1
1

−
−nLT  constitute 1

3
−TL  and the first nine moves of 1−

nR S  constitute 3TR  (for n!5). Together, these 18 
moves accomplish the following task: 

 
to 

 
In V, these 18 moves are replaced by 19 moves which take 

 

to 

 
The first 13 moves of this sequence are identical to the operation W described earlier, the readers can easily figure 
out the remaining 6 moves. 

Therefore, we can accomplish Xn , n!5, in U(n) moves, where 

∑
−

=
+−+−+−+=

3

2

62)(4)2(3)1(6)(3)(
n

i

niTnTnTnTnU . 

Algebraic manipulations produce the formula for U(n) presented in the Introduction. Arguing on unavoidable 
positions, we can show that the following sequence is one of the shortest for exchanging only the #n tiles, for n!5, 

1
11

1
1

11 −
−−

−
−

−− +++++++ nRnRnLnLnRnRnLnL TSTSSTST  

Since 1)()( += nSnT , we obtain the lower bound 

)2)1()((4
)1)1()((4)(

−−+=
−−+=

nTnT
nTnTnL

 

The lower bound can be tightened if we consider the fewest moves needed to exchange more than one bottom 
piece. As a matter of fact, we suspect that X(n) = U(n) for all n!7. 

4. The Program 

We have written a program that finds the shortest sequence of moves that takes the puzzle from any position to 
any other position. Obviously the amount of time and space required by the program depends on the initial and final 
positions. Our program running on a VAX 11/750 with two megabytes (with up to six megabytes of virtual memory) 
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is able to solve the tasks X5 in about an hour. A modified version of the program that takes advantage of the 
symmetries inherent when trying to exchange the left and right towers was able to show that X(6)=881. 

Imagine a graph in which each node corresponds to a position (or configuration, state) of the puzzle, and there 
is an edge connecting two nodes if there is a move that takes one position into the other. If only the top k tiles of 
each color are to be exchanged, then the graph needs only to contain a node for each configuration of 2k tiles. 
(Moving pieces of size larger than k cannot help us solve the puzzle, therefore the graph need not contain nodes 
involving different positions of them.) This graph is undirected since the moves are reversible. 

A straightforward method of finding a way to get form an initial position to a final position is to generate the 
corresponding graph, and find the shortest path between the initial and final positions in this graph using Dijkstra's 
algorithm [1]. The technique we used is just a refinement of this method. 

The first refinement is based on the observation that all edges have unit length. Dijkstra's algorithm then works 
as follows. At any given time we have reached and marked all nodes that are at a distance d or less from the initial 
position. We also maintain a list (called the c-list) of all those nodes that are at distance exactly d from the starting 
position. One phase of the algorithm has the effect of extending this distance to d+1. It works by probing all the 
nodes adjacent to nodes in the c-list. Those that are already marked are ignored, and those that are not marked are 
now marked, and placed in the new version of the c-list (called the n-list). These newly marked nodes are exactly 
those that are not at distance d or less from the start and for which there is a path of length d+1 from the start. 
Therefore, the shortest path to these nodes is of length exactly d+1. This reaches all the nodes at distance d+1 from 
the start, because a path to a node at distance d+1 must go through a node at distance d. The process starts with only 
the initial node marked and in the c-list. The process terminates when the final node is marked. 

In order to reconstruct the shortest path one additional data structure must be maintained. When we mark a node 
at distance d+1, we update a pointer in that node to the node at distance d that caused it to be marked. At the end we 
can reconstruct the shortest path by following these pointers from the final node to the initial node. 

A program embodying these ideas was used to show X(3)=42. Unfortunately when this program was applied to 
the problem of exchanging height 4 towers, the available memory was exceeded.  

One way to reduce the storage requirement is to do the computation in such a way that the full graph is never 
actually generated. The observation that makes this possible is the following: since the graph is undirected it is the 
case that when we reach a node that has been reached before (a marked node in the above algorithm), that node is 
either on the c-list, or it was on the c-list at the previous phase. Thus, if we keep the old c-list around (we call it the 
o-list), then we can determine if the newly reached node was "marked" simply by determining if it is in the c-list or 
o-list. The o-list is effectively a boundary that forces the search to go in the right direction. 

It is necessary to make the test to determine if a node is in the c-list or o-list more efficient than simply scanning 
these lists. Hashing is a natural way to do this. We keep a hash table that contains all the nodes of the o-list, c-list, 
and n-list. We also keep these nodes linked together to form the three lists. At the end of each phase the o-list is 
deleted from the hash table, the c-list becomes the o-list, and the n-list becomes the c-list. (We use separate chaining 
so that deletion from the table is efficient.) After hashing a node, we need to be able to tell which list that node is in. 
We do this by keeping a generation found in each node. If the nodes in the c-list are generation g, then those in the 
o-list are g-1 and those in the n-list are g+1. (We actually only need to keep this modulo 3.) 

A problem with the method of not keeping the whole graph is that it becomes difficult to reconstruct the 
solution. If time were not a consideration then we could run the algorithm until we found a path from start to finish 
and remember the node from which we reached the final one. This node is sure to be on a shortest path from start to 
finish. We then run the whole program again using the second to last node as our finishing node. The whole solution 
can be found by repeating this process n times, where there are n nodes on the shortest path. 

A much more efficient way to deal with this difficulty is to search from start and finish simultaneously. The 
node where the two searches meet is sure to be on a shortest path. This procedure is then recursively applied to find 
the shortest path from the starting position to the middle position, and then again to find the shortest path from the 
middle to the final position. With this trick, the time to construct a complete solution is at most log(n) times the time 
required to find the middle position, where n is the number of moves on the shortest path. 

Making the program search in both directions involves very small changes. We initialize the c-list to contain 
both the starting and finishing nodes, and we maintain a bit in each node indicating whether that node was found as 
a result of the search from the start or from the finish. This node is the midpoint. 
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This technique was used to find the minimum number of moves to swap towers of height 4 and 5. When applied 
to the problem of swapping towers of height 6 the program ran out of space. 

One final trick was used to reduce the storage requirement, and enable the program to show that 881 is the 
minimum number of moves to swap the left and right towers of height 6. If x is a position, let x' be the position 
obtained when the left and right columns of x are swapped, and x* is that obtained if the colors of all the pieces are 
swapped. Note that x*' and x'* are the same. Consider the set of nodes of the c-list that have been reached from the 
starting position (at a particular moment during the running of the program). This set of positions is closed under the 
*' operator, that is, if x is in this set, then so is x*'. This is true for the following reason. Consider a sequence of 
moves that takes us form the starting position to a position x. If we take every node in this sequence and apply the *' 
operator, then we get a legal sequence of positions from the starting position to position x*'. (Note that the starting 
position is invariant under the *' operator.) Since the set in question contains all positions reachable in exactly d 
steps from the starting position it must contain x*'. By only storing one of the two symmetrical positions we can 
reduce the memory requirement by a factor of two. 

A similar redundancy occurs because the final position is the initial position with ' applied. This means that the 
set of nodes accessible from the starting position in d moves is the reflection of the set reachable in d moves from 
the final position. This means that we do not have to store the list of positions reachable from the final position in d 
moves, which reduces the storage requirement by another factor of two. 

Here is how we incorporate these ideas into the program to save space. Initially the c-list contains just the 
starting position. When we generate a position (say x) adjacent to one in the c-list, we check if x, x*, x', or x*' are in 
the hash table. If none of them are, then we insert x into the hash table, then we do nothing. (x and x*' are accessible 
from the starting position in d+1 moves). If x' or x* is in the hash table then x is the middle position; the program 
computes the number of moves in the solution (based on the generation number of x' or x*) and d, and terminates. (x' 
and x* are accessible from the final position in d+1 moves.) 
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