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Tower of Hanoi

The tower of Hanoi (commonly also known as the "towers of Hanoi"), is a puzzle invented 
by E. Lucas in 1883. Given a stack of  disks arranged from largest on the bottom to

smallest on top placed on a rod, together with two empty rods, the towers of Hanoi
puzzle asks for the minimum number of moves required to move the stack from one rod
to another, where moves are allowed only if they place smaller disks on top of larger
disks. The puzzle with  pegs and  disks is sometimes known as Reve's puzzle.

The problem is isomorphic to finding a Hamiltonian path on an -hypercube (Gardner
1957, 1959).

Given three rods and  disks, the sequence  giving the number of the disk (
 to ) to be moved at the th step is given by the remarkably simple recursive

procedure of starting with the list  for a single disk, and recursively computing

(1)

For the first few values of , this gives the sequences shown in the following table. A
solution of the three-rod four-disk problem is illustrated above.

1 1

2 1, 2, 1

3 1, 2, 1, 3, 1, 2, 1

4 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1
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As the number of disks is increases (again for three rods), an infinite sequence is 
obtained, the first few terms of which are illustrated in the table above (Sloane's
A001511). Amazingly, this is exactly the binary carry sequence plus one. Even more 
amazingly, the number of disks moved after the th step is the same as the element 

which needs to be added or deleted in the th addend of the Ryser formula (Gardner 
1988, Vardi 1991). A simple method for hand-solving uses disks painted with alternating
colors. No two disks of the same color are ever placed atop each other, and no disk is
moved twice in a row (P. Tokarczuk, pers. comm. Jun. 23, 2004).

As a result of the above procedure, the number of moves  required to solve the puzzle
of  disks on three rods is given by the recurrence relation

(2)

with . Solving gives

(3)

i.e., the Mersenne numbers.

For three rods, the proof that the above solution is minimal can be achieved using the 
Lucas correspondence which relates Pascal's triangle to the Hanoi graph. While 
algorithms are known for transferring disks on four rods, none has been proved minimal.

A Hanoi graph can be constructed whose graph vertices correspond to legal
configurations of  towers of Hanoi, where the graph vertices are adjacent if the
corresponding configurations can be obtained by a legal move. The puzzle itself can be
solved using a binary Gray code.

Poole (1994) and Rangel-Mondragón give Mathematica routines for solving the Hanoi 

towers problem. Poole's algorithm works for an arbitrary disk configuration, and provides
the solution in the fewest possible moves.

The minimal numbers of moves required to order , 2, ... disk on four rods are
given by 1, 3, 5, 9, 13, 17, 25, 33, ... (Sloane's A007664). It is conjectured that this 
sequence is given by the recurrence

(4)

with  and  the positive floor integer solution to

(5)

i.e.,

(6)

This would then given the explicit formula

(7)

SEE ALSO: Binary Carry Sequence, Gray Code, Pancake Sorting, Puz-Graph, Ryser 
Formula
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