SOLUTION OF THE SPECTRA PUZZLE'

Robert L. Lamphere
Elizabethtown Community College
Elizabethtown, KY 42701
(270) 769-2371
Robert.Lamphere @ KCTCS.EDU

ABSTRACT

In this paper, we solve the SPECTRA Puzzle and express the solution in terms of
color-pathsets. We can add, invert, and combine these sets by the addition, inverse,
and the union operators, respectively. We express the solution by a mathematical
formula in which we use color-path sets and its operators. To simplify the C++
implementation of the solution, we define a C++ SPECTRA class. We translate the
mathematical formula into C++ code by using the SPECTRA class. The SPECTRA
class contains a color-path set and the set operators. The color-path set is
implemented as a linked list and the set operators are implemented by extending the
C++ operators “+7, “--“and “*”.

INTRODUCTION

We believe puzzles have pedagogical value. For example, Tower of Hanoi and Spinout
are puzzles that illustrate recursion. We have used Tower of Hanoi and Spinout with success
in our programming courses. Not only do these puzzles offer a means for students to acquire
skill in recursive programming, but they also give the students an opportunity to use their
mathematical skills in setting-up and solving the Tower of Hanoi and Spinout recursion
equations. For a description and analysis of Tower of Hanoi, see [1], and for a description,
analysis and a program solution of Spinout see [2, 3]. SPECTRA, on the other hand, is a
puzzle whose solution does not depend on recursion. We are going to introduce a set of color-

paths and three set operators; an addition operator “+”, an inverse operator “--“, and a union
operator “€”. The solution will be given as a mathematical formula involving set operators and

: Copyright © 2002 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

223

JCSC 18, 2 (December 2002)

color-path sets. Even though the formula solves the puzzle, using the formula to get the actual
solutions is cumbersome. To help us to compute the solutions from the formula, we define a
C++ SPECTRA class in terms of the color-path set and the set operators. When overloaded,
the C++ “+7, “--*“ and “*” operators will become our addition, inverse and union operators,
respectively. We use this SPECTRA class to write a C++ program that will compute all
solutions of the puzzle and determine the number of solutions that satisfy the given conditions;
for example, to determine the number of solutions that uses a specified number of colors.

The puzzle’s solution contains numerous pedagogical nuggets. It uses the mathematical
concept of set and set operators. One of the operators is non-commutative. The SPECTRA
class flows naturally from the color-path set and the set operators. The C++ program that
computes the solutions follows directly from the mathematical formula and the SPECTRA class.

In the following sections, we will describe the SPECTRA puzzle, develop a mathematical
formula that solves the puzzle, define the SPECTRA class, and use that class and formula to
write the C++ program that will find all the puzzle solutions.

DESCRIPTION.

The SPECTRA puzzle is from the IQ Company Ltd. SPECTRA consists of 12 mounted
discs onrotating arms (see Figure 1). Each disc consists of six wedges witheach wedge having
a different color. There are six small rotatable arms withtwo discs on each arm. Two of these
small arms are attached at opposite ends of the puzzle’s base. The four remaining small arms
are attached to the opposite ends of two larger rotatable arms. The two larger arms are
attached to the opposite ends of a still larger rotatable arm that is attached to the puzzle’s base.

P
il
Lt %

Figure 1. Spectra Figure 2. Spectra showing
rotatable arms

Eight wedge colors are used in the puzzle and the colors vary from disc to disc. The
different colors are represented by the following letters: B for blue, G for green, O for orange,
P for pink, R for red, U for purple, W for white, and Y for yellow.

The SPECTRA puzzle is completely solved when the color wedges are lined up so that
the colors match-up end-to-end with the same first and lastcolors. The puzzle is partially solved
when the first and last colors are different. There could be many complete and partial solutions.
When the complete and partial solutions are known, we can determine the number of complete
and partial solutions, the number of solutions containing six colors, seven colors, and eight
colors.

224

CCSC: Southeastern Conference

When the twelve discs lie in a straight line along the SPECTRA’s base, we call it a
SPECTRA Configuration. Since the discs are rotatable and the discs themselves are on
rotatable arms, many possible SPECTRA configurations exists. (In fact, 2°6'> such
configurations exists.) The objective of the puzzle is to find those SPECTRA configurations
which partially or completely solve the puzzle.

DEFINITION OF COLOR-PATH SET.

Each wedge of a disc is paired withits diametrical opposite. Since each disc contains six
wedges, there are three such pairings. For example, in Figure 3, the green (G) and white (W)
wedges form a pair, the pink (P) and blue (B) wedges form a pair, and the red (R) and orange
(O) wedges form a pair. These three pairings can be represented by the symbols GW, PB, RO,
respectively. These symbols are formed by combining the wedges’ color letters; for instance,
RO and OR represent the red and orange pairing.

Figure 3.

Before defining Color-Path set, we need to give several definitions.

Orientation Axis Definition. The orientation axis is the straight line that runs down the middle
of the SPECTRA’s base, or equivalently, the straight line that passes through the center of the
two arms which are attached at the ends of the SPECTRA’s base (arms A and B in Figure 9).

Disc Orientation Definition. The disc orientation is defined by the wedge pairing that lies on
the orientation axis. It is expressed by the wedge pairing symbol with the left wedge’s color
listed first.

The disc orientation is defined by the wedge pairing that lies on the orientation axis. Since
the disc’s wedge colors are different from each other, only one wedge pairing can lie on the
orientation axis at any one time, and the left wedge’s color is listed first and uniquely determines
the disc’s orientation. For example, the disc in Figure 3 is represented by RO. The red wedge
(R) lies to the left of the orange wedge (O) on the orientation axis. Any other position of the disc
will not have the red and orange wedges on the disc’s orientation axis with the red wedge to
the left of the orange wedge. Therefore, the symbol RO uniquely determines the disc’s position.

Color-Path Definition. Color-Path is the line up of the color wedges along the orientation axis
and it is represented by their color symbols going from left to right.

Examples. The color-path in Figure 4 is BY YP. Another color-pathis BYBG, this color-
path comes from rotating the right disc counter-clockwise until the blue wedge is on the
orientation axis. Figure 4 contains 36 different color-paths.

225

JCSC 18, 2 (December 2002)

Eachofthe 2°6'> SPECTRA Configurations contain a color-path. Each rotatable arm has
many different color-paths associated with it, and each disc has six color-paths.

Admissible Color-Path. A color-path withits color wedges lined up along the orientation axis
so their color’s match-up end-to-end is an admissible color-paths.

Examples. The color-path BYYP in Figure 4 is an admissible color-path. Another
admissible color-path is WRRU. The color-path BYBG, however, is not an admissible color-
path because the wedge colors do not match-up end-to-end.

Figure 4.

Color-Path Set Definition. A collection of all possible admissible color-paths for any disc,
rotatable arm, or SPECTRA configuration will be called a color-path set. These sets will be
represented by [] and their names given in bold.

For example, the color-path set for the arm in Figure 4 is [BYYP, WRRU, OPPY,
YBBG].

We can associate a color-path set witheach disc. For example, the color-path set for the
disc in Figure 3 is [GW, BP, RO, WG, PB, OR]; the orientation axis being the horizontal line
through the disc’s center. Note that the color-paths GW and WG are not the same. The color-
path GW corresponds to the disc being oriented with the green wedge to the left of the white
wedge and with both wedges on the orientation axis. The color-path WG has the white wedge
to the left of the green wedge and also has both wedges on the orientation axis.

ADDITION OPERATOR “+”.

Addition Definition. Let A and B be color-path sets. Then A + B is the color-path set
formed by concatenating the color-paths of A to those of B’s only if the right most color letter
of A’s color-path matches the left most color letter of B’s color-path.

Example. Referring to Figure 4, we have for the left disc, A = [BY, YB, OP, PO, RW,
WR], and for the right disc, B = [YP, PY, BG, GB, RU, UR]. Then,

(1) A+ B = [BYYP, YBBG, OPPY, WRRU].

The Y in A’s color-path BY is matched withthe Y inB’s color-path YP yielding the first color-
path, BYYP, in (1). The A’s color-paths YB, OP, and WR are similarly matched with B’s
color-paths BG, PY, and RU yielding the other three color-paths in (1).

Computing B + A, we have
() B + A=[YPPO, PYYB, GBBY, URRW].

226

CCSC: Southeastern Conference

Now comparing (1) and (2), we find A+ B B + A. Hence, the addition operator “+” is not
commutative.

Theorem 1. Suppose arms A and B are adjacent and A and B be their color-path sets. Then
A + B yields all the admissible continuous color-paths that run along arms A and B.

Proof. Follows from the definition of addition.

Given three color-path sets, A, B and C, we may form the two expressions A + (B + C)
and (A + B) + C. As with addition of the integers, there is an associative law for the addition
operator “+.”

Theorem 2. Let A, B, and C be color-path sets. Then,
A+(B+C)= (A+B)+C. (associative law)

Proof. Let b..c be any color-path of set B. Pick any color-path from C, say c..d, such that, the
ending color of path b..c is the same as the beginning color of path c..d. Then, by definition of
the addition operator, (B + C) yields the color-path, b..cc..d. Now pick any color-path from
A, say a..b, such that, the ending color of path a..b and the beginning color of path b..cc..d are
equal. Then, A + (B + C) yields the color-path a..bb..cc..d. Similarly, the operation (A + B)
produces the color-path, a..bb..c; therefore, (A + B) + C yields the color-path, a..bb..cc..d.
, the same color-path that comes from A + (B + C). Hence,

A+ B+C)=(A+B)+C.

INVERSE OPERATOR “--”.

Inverse Definition. Let A be a color-path set. Then --A is the color-path set containing the
color-paths found in A with the color-path-color symbols written in inverted order.

Example. Let A = [BYYPPG, RGGYYR, BWWOOG]. Then
_A = [GPPYYB, RYYGGR, GOOWWB].

Theorem3. Let A be the color-path set for arm A. Let AN be arm A rotated 180° and AN be
its color-path set. Then AN = --A.

Proof. When arm A is rotated 180°, its admissible color-paths remain admissible color-paths.
Thus, A and AN contain the same number of color-paths. Since arm Al is arm A rotated 180°,
the color wedges that make up the color-paths of arm AN are those of arm A in reverse order.
Therefore, to get the color-paths of AN, reverse the color symbols in each A’s color-path.

Hence, it follows from the definition of the inverse operator that AN = --A.
From the definition of “+” and “--*“ we have the following

Theorem 4. Let arms A and B be adjacent and attached to arm C. Let arms A, B, and C
color-path sets be A, B, and C, respectively. Let C = A + B. Then

~C=-B+-A

227

JCSC 18, 2 (December 2002)

Proof. From Theorem 1, we have that C is the set of all admissible color-paths onarm C. Now
rotating arm C 180° results in rotating arms A and B 180° and putting the rotated-arm B to the
left of the rotated-arm A. Thus by Theorem 1, --B + --A is the color-path set of all the
admissible color-paths from rotated-arm B to rotated-arm A, i.e., all the color-paths that runs
along arm C after arm C is rotated 180°. The wedge colors in the admissible color-paths that
run along the rotated-arm C are the same wedge colors in the color-paths along arm C (before
being rotated), except the wedge colors are inverted. This conclusion follows from the simple
observations that any valid color-path on any arm is still a valid color-path after that arm is
rotated 180°, and rotating any arm 180° results in inverting that arm’s wedge-colors.

Hence, by Theorem 3,
--C=--B +--A.

UNION OPERATOR “¢”.

Union Definition. Let A and B be color-path sets. Then A € B is the color-path set containing
A’s color-paths and B’s color-paths.

Example. Let A =[BYYPPG,RGGYYR, GRRWWP]andB = [GYYB, PUUW]. Then
A ¢ B =[BYYPPG, RGGYYR, GRRWWP, GYYB, PUUW].

Theorem 5. If A, B, and C are color-path sets and C = A ¢ B, then --C = --A € --B.

Proof. Let c be a color-path in--C. From Theorem 2, we have that ¢ is aninverted color-path
of C. It follows from the inverse definition, that c is either in --A or --B and therefore ¢ is in
--A ¢ --B. Similarly, if d is a color-pathof C, then d is in either A or B. Let e be the inverted
d, i.e., d with its colors inverted . Then, e is in both --A € --B and, by the inverse definition,
mn --C. Hence,

-C=-Ac-B.

CALCULATING ADMISSIBLE COLOR-PATHS.

The following example illustrates how the addition and inverse operators are used to find
all the admissible color-paths for a givenrotatable arm C with two smaller rotatable arms A and
B attached to it. There are several cases (see Figures 5, 6, 7 and 8) we need to consider. The
first case is the configuration of Figure 5.

Figure 5. Arm C.

228

CCSC: Southeastern Conference

The rotatable arm A is made-up of discs w and x (w is the left disc and x the right one)
and rotatable arm B is made-up of discs y and z.

We have, w=[GR, UB, OW, RG, BU, WO] and x =[OR, GW, BP, RO, WG, PB].
Then by Theorem 1, the admissible color- paths on arm A is given by

A =w+ x=[GRRO, UBBP, OWWG, RGGW, WOOR], and by Theorem 2,
--A =x + w=[ORRG, PBBU, GWWO, WGGR, ROOW].

And similarly let y = [BR, UG, YW, RB, GU, WY] and z = [GR, YW, PB, RG, WY, BP].
Then

B =y +z=[BRRG, UGGR, YWWY, RBBP, WYYW] and
--B =z+y=[GRRB, RGGU, YWWY, PBBR, WYYW].
Thus by Theorem 1, the admissible color- paths on arm C of Figure 5 is
A + B =[WOORRBBP, RGGWWYYW].

We will use the color-path sets A, --A, B, and --B to compute other color-path sets that
are associated with the different configurations (Figures 6, 7 and 8).

The admissible color-paths for arm C after rotating arm B (see Figure 6) is given by

A + --B = [UBBPPBBR, OWWGGRRB, WOORRGGU, RGGWWYYW],

Figure 6. Arm C with B-arm rotated

and after rotating arm A, with arm B in its original position, the admissible color-paths for arm
C (see Figure 7)) is then given by

--A + B =[PBBUUGGR, WGGRRBBP, ROOWWYYW],

Figure 7. Arm C with A-arm rotated

and
-- A + -- B =[ORRGGRRB, WGGRRGGU, ROOWWYYW]

229

JCSC 18, 2 (December 2002)

gives the admissible color-paths for arm C whenboth arms A and B are rotated (see Figure 8).

Figure 8. Arm C with A and B arms rotated

Let C be a color-path set. Now use the union operator, €, to combine all the above
color-path sets into one color-path set, namely,

3) C = (A+B)c(A +--B)e(--A + B)c(--A + --B).
Then by Theorem 1, C contains all the admissible color-paths that exists on arm C.

C contains all the admissible color-paths of arm C, but the color-paths contain no direct
informationon how the rotatable arms A and B are oriented. For an arm, any color-path of that
arm’s color-path set cannot be used to determine how the arms attached to it are configured.

Now rotate arm C. The rotation puts arm B to the left of arm A. From Theorems 1 and
3, the color-path sets,

B+ A,
--B + A,

B + --A, and
--B + --A,

contain all the admissible color-paths that exists on C’s rotated arm. Now combine these sets
into a single color-path set E, where

E=B+A)c(--B+A)c(B + --A)c(--B + --A).
E contains all the admissible color-paths that run along C’s rotated arm.

We could use Theorems 4 and 5 on equation (3) to find E, viz., E = --C.

SOLUTION.

The SPECTRA puzzle with its different arms labeled is shown in Figure 9. Referring to
that figure, we note that arm G is made up of arms C and D; arm H is made up of arms E and
F; and arm M is made up of arms G and H. The arms A, B, and M are attached to the puzzle’s
base. (Arms A and B in figure 9 are not the same arms in Figure 5.) All the arms are rotatable.

230

CCSC: Southeastern Conference

I 930 |4D &P PR

= I
M

Figure 9. SPECTRA PUZZLE with arms labeled.

Let A, B, C,D, E, and F be arms A, B, C, D, E and F color-path sets, respectively.

For the calculations below, we will assume that the color-path sets A, B, C, D, E, and
F are known. They are easily calculated because their corresponding arms contain only two
discs.

Let G, Hand M be the color-path sets for arms G, H and M, respectively. Then applying

Theorems 1 and 3 to arms G and H, we find
©) G=(C+D)c(C+--D)e(--C+D)c(--C + --D), and
H=(E+F)¢c(E+ --F)c(--E + F)¢(--E + --F),

and, since arm M is comprised of arms G and H,
@) M=(G+H)e(G+--H)e(--G+H)e(--G + --H).
M contains all the admissible color-paths that run along arm M.

We can now compute all the solutions of the SPECTRA puzzle from the three color-path
sets, A, B and M. Applying Theorems 1, 2 and 3 to arms A, M and B, we find

@® S=A+M+B)c(A+M+--Bc(A+--M+B)c(A+-M + --B)c
—-A+M+B)c(--A+M +-B)c (--A+--M + B) c(--A + --M + --B),

where, S contains all the partial and complete solutions to the SPECTRA puzzle, i.e, all the
admissible color-paths that run along the length of the puzzle’s base. Recall that complete
solutions are the ones whose color-paths have equal beginning and ending colors, and partial
solutions do not.

Even though (8) solves the puzzle, using it to get the actual solutions is cumbersome. We
require help in the form of a C++ computer program to compute the solutions efficiently. To
simplify the C4++ implementation of (8), we define a C++ SPECTRA class. This SPECTRA
class implements color-path sets as an abstract data type that supports the addition, inverse and
union set operations.

SPECTRA CLASS.

The solution of the SPECTRA puzzle, as given by (8), can be easily implemented as a
C++ program givena SPECTRA class. This approach to implementing the solutionis a natural
approach to pursue. The SPECTRA class implements color-path sets as an abstract data type
that supports the addition, inverse and union set operations. A C++ variable declared as a
SPECTRA type will be a color-path set. The C++ operators “+7, “--*“, and “*” will function

231

JCSC 18, 2 (December 2002)

as the addition, inverse and union color-path set operators. We have successfully implemented
our solution using this approach. We provide below the SPECTRA class we used to implement
our solution and a small description of each of the class methods.

struct ColorNode

{

char Colors[26];
ColorNode *NextNode;
}i

typedef ColorNode* ColorPath;

Color-Path Node Definition

Color-pathsetbecomes a linked list in our SPECTRA class. Each color-path inthe color-
path set is a node in that linked list. The definition of the color-path node is given in the shaded
box above. The node consists of a pointer (*NextNode) to the next color-path node and an
array (Colors) of the SPECTRA color letters representing the color-path. The linked list -
ColorPath - is in the private section of the SPECTRA class.

The SPECTRA class is sufficient to solve the SPECTRA puzzle. Later we will add other
methods which will determine the number of partial and complete solutions the puzzle has, and
the number of solutions containing six, seven and eight colors.

232

CCSC: Southeastern Conference

class SPECTRA
{

private:

ColorPath ColorPathSet; // Color list. Color path is a
// linked list.
public:
SPECTRA(); // default constructor.
SPECTRA(ColorPath); // default constructor.

void Add(char ColorList[]);// insert a color-path into

// SPECTRA'’s linked list
void Display(); // Print all the color-paths in the

// SPECTRA’s linked list

// Add color-paths
SPECTRA SPECTRA: :operator+(const SPECTRA a);
SPECTRA SPECTRA::operator--(); // Reverse color-paths
// Union operator

Class definition for SPECTRA

The following descriptions of the SPECTRA methods are sufficient for anyone who wants
to implement the SPECTRA class.

Description of the SPECTRA Methods. All methods use the class variable ColorPath,
which is the linked list that represents the color-path set. A linked list node contains one color-
path.

The constructors SPECTRA() and SPECTRA (ColorPath a) initialize the linked list to
NULL and to the color-path set a, respectively. The color-path set a should be duplicated and
the duplicated copy should be assigned to the class variable ColorPathSet.

The method Add takes for input ColorList, which is a color-path, and inserts it as the
first element in ColorPathSet. ColorList is a string of wedge color letters.

The method Display prints all the color-paths in the linked list ColorPathSet. Each
color-path is inclosed in brackets ([]).

The addition method (“4*) corresponds to the color-path set’s addition operator. The
color-path set addition operator “+” extends the C++ addition operator. The method takes two
SPECTRA variables as input and adds their linked lists (ColorPathSets) together. Their sum
becomes a linked list in a new SPECTRA type variable. The new variable is returned. The input
variables are not modified.

L

The inverse method (“--*) corresponds to the color-path set’s inverse operator. The

color-path set inverse operator “--” extends the C++ decrement operator. The inverse method
takes as input one SPECTRA variable and reverses the color-path’s color letters for each

233

JCSC 18, 2 (December 2002)

color-path node in the linked list. The inverse becomes a linked list in a new SPECTRA
variable. The new variable is returned. The input variable is not modified.

The union method (‘“**) corresponds to the color-path unionset operator - €. The color-
path set operator “€” extends the C++ multiplication operator “*”’. The method takes as input
two SPECTRA variables and combines their linked lists. The union method simply concatenates
the two input SPECTRA variable’s linked lists. The resulting linked list becomes the linked list
ina new SPECTRA variable and that variable is returned. The input variables are not modified.

SPECTRA PROGRAM.

In this section, we translate the SPECTRA puzzle solution given by equation (8) into a
C++ programusing the SPECTRA class. The program’s logic parallels the derivation steps we
used to derive (8). Following the derivation steps leading to equation (8), and using Figure 9's
labeling, we find the following program’s solution algorithm:

(1) Initialize the SPECTRA variables A, B, C, D, E, and F to the arms A,
B, C, D, E and F color-path sets, respectively.

(2) Compute all the color-paths that run along arms G and H (equation (6)).

(3) Compute all the color-paths that runs along arm M (equation (7)).

(4) Compute all the complete and partial solutions of the SPECTRA puzzle
(equation (8)).

(5) Print the SPECTRA puzzle’s complete and partial solutions.

SPECTRA Program Solution Algorithm

Converting the above solution algorithm into a C++ program yields the following C++
program.

void main ()

{
SPECTRA A, B, C, D, E, F, G, H, M, S;
// We need to initialize A, B, C, D, E and F to the
// admissible color-paths for each rotatable arm,
// respectively. We give the initialization for C
and

// the other initializations are not shown.

234

CCSC: Southeastern Conference

C.Add (“WGGR") ;
C.Add (“RYYW”);
C.Add (“GWWY”) ;
C.Add(“YRRG");
C.Add(“OUUP”);

// compute all admissible color-paths for arm G
G=(C+D)*(C+ —=D)*(=—C + D)*(—=C + --D);
// compute all admissible color-paths for arm H
H=(E+F)*(E+ ——F)*(--E + F)*(—-E + —-F);
// Now, compute all admissible color-paths for arm M
M= (G+H)*(G+ —-H)*(-—G + H)*(--G + —--H);
// Finally, compute all the solutions, i.e,
// admissible color-paths from one end of the
// SPECTRA’'s base to the other end, of the puzzle.
S=(A+M+B)*(A+M+ —-B)*(A + —-M + B)*
(A + -—-M + —-B)*(——A + M + B)*(—=A + M + —-B)*
(-=-A + —-M + B)*(—-A + --M + --B);
S.Display() // Print all the solutions
}

SPECTRA Program

The above SPECTRA program outputs 85 solutions. The partial solution of six colors,
[WRRBBRRGGWWOOWWGGRRYYBBG]; the two complete solutions,
[URRWWYYWWGGRRYYWWGGBBOOU] and
[OPPYYWWGGBBPPBBUUGGRRBBO], containing seven colors and eight colors,
respectively, are three of the 85 solutions.

Extension. We can extend the SPECTRA class by adding to it the methods listed in the
shaded box below. These additional methods compute the number of partial and complete
solutions, the number of complete solutions, the number of solutions in which 6-colors are used,
and the number of solutions in which 7 and 8 colors are used.

// The following methods are used to count the complete

// and partial solutions, to count the number of solutions

// that uses 6-colors, 7-colors, and 8-colors.

int Count(); // return the number of complete and partial

// solutions (nodes)

int BEcount(); // return the number of complete solutions

int EightColorsUsed(); // return the number of solutions
// (nodes) that uses 8 colors

int SevenColorsUsed(); // return the number of solutions
// (nodes) that uses 7 colors

int SixColorsUsed(); // return the number of solutions
// (nodes) that uses 6 colors

New Spectra Class methods

235

JCSC 18, 2 (December 2002)

After adding these new methods to the SPECTRA class, place the following code

cout <<
<<
<<
<<
<<
<<
<<
<<
<<
<<

“\nThere are “ << S.count()

“ solutions, of which “ << S.BEcount()

“ are complete solutions. Additionally, “
“there are \n”

S.SixColorsUsed ()

“ solutions using 6 colors, *“
S.SevenColorsUsed()

“ solutions using 7 colors, and “
EightColorsUsed()

“\n solutions using 8 colors”;

into the SPECTRA program after the S.Display() instruction. The above code results in the

following output:

There are 85 solutions, of which 12 are complete solutions. Additionally, there are
16 solutions using 6 colors, 52 solutions using 7 colors, and 17 solutions using 8

colors.

ACKNOWLEDGMENT. Many thanks to Ms. Martiza Nall for her generous help in creating

the figures shown here.

REFERENCES

1. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics: A

Foundation for Computer Science. Addison-Wesley, 1989.

2. Robert L. Lamphere, “Spinout Puzzle and Recursion”, The Journal of Computing in Small

Colleges, Vol. 15, n.2, (January 2000) 232 - 241.

3. Robert L. Lamphere, “A Recurrence Relation in the Spinout Puzzle”, The College

Mathematics Journal, 27(1996) 286 - 289.

236

