

Fig. 1

Sept. 24, 1940.
E. U. CONDON ET AL

MACEINE TO PLAY GAME OF NCM
Original Filed April 26, 194011 Sheets-Sheet 2
Fig. 2.
Fig. 3.

WITNESSES:

INVENTORS
EdwardUCondon, Gereld L. Tawney, and WillardA. Derr. BY

Sept. 24, 1940.
E. U. CONDON ET AL

2,215,544
MACHINE TO PLAY GAME OF NIM
Original Filed April 26, 194011 Sheets-Sheet 3

Sept. 24, 1940.
E. U. CONDON ET AL

2,215,544
MACHINE TO PLAY GAME OF NIM
Original Filed April 26, $1940 \quad 11$ Sheets-Sheet 4

Sept. 24, 1940.
E. U. CONDON ET AL.

MACHINE TO PLAY GAME OF NTM
Original Filed April 26, $1940 \quad 11$ Sheets-Sheet 5

Sept. 24, 1940.
E. U. CONDON ET AL

MACHINE TO PLAY GAME OF NIM
Original Filed April 26, $1940 \quad 11$ Sheets-Sheet 6

Sept. 24, 1940.
E. U. CONDON ET AL

2,215,544
MACHINE TO PLAY GAME OF NIM
Original Filed April 26, $1940 \quad 11$ Sheetṣ-Sheet 7

Sept. 24, 1940.
E. U. CONDON ET AL
$2,215,544$
MACHINE TO PLAY GAME OF NIM
Original Filed April 26, $1940 \quad 11$ Sheets-Sheet 8

MACHINE TO PLAY GAME OF NIM
Original Filed April 26, 194011 Sheets-Sheet 9

Sept. 24, 1940.
MACHINE TO PLAY GAME OF NIM
Original Filed April 26, $1940 \quad 11$ Sheets-Sheet 10

Sept. 24, 1940.
E. U. CONDON ET AL

2,215,544
MACHINE TO PLAY GAME OF NIM
Originai Filed April 26, 194011 Sheets-Sheet 11

Edward U Con
Fig. 12.
Edward U. Condon, GereldL.Tawney,
and Willard A. Derr. BY

UNITED STATES PATENT OFFICE

2,215,544

MACHINE TO PLAY GAME OF NIM .

Edward U. Condon, Edgewood, and Gereld L. Tawney and Willard A. Derr, Wilkinsburg, Pa., assignors to Westinghouse Electric \& Manufacturing Company, East Pittsburgh, Pa., a corporation of Pennsylvania

Application April 26, 1940, Serial No. 331,784
17 Claims. (C1. 273-130)

Our invention relates to control apparatus and has particular relation to electrical apparatus for automatically making the moves of one party in a game between two opponents. Nim is played by two opponents with a pluraily of sets of like elements. There may be any arbitrary number of elements in each set but it is preferred that no two sets shall have the same number. The players make their moves alter-
10 nately as in checkers and each player, in his turn, may remove any number of elements from any one set. A player may remove elements from different sets during different moves. The player who removes the last element leaving no elements to be removed by his opponent is the winner of the game.

Nim is to a certain extent similar to checkers. The latter game can be won or lost during the first few moves. Unless the elements are initially won by the player making the first move. Mathematical analysis reveals that to win at Nim, a player must first express the number of elements in each set as a sum of different integral or zero powers of 2. He must then establish and maintain an array of sets such that all integral or zero powers of 2 contained in the numbers of elements of the sets are present in an even number of sets. The number of elements removed by the other player in his turn from one set contain either one power of 2 or several different powers of 2 , and therefore, there remain one or more powers of 2 in an odd number of sets after the latter moves. The second player cannot therefore establish a winning combination once it has been established by his opponent and the latter can always reestablish the winning combination.

For a better understanding of NIm and the manner in which it is played, we may consider an example. Assume that originally there are three sets of like elements; 9 elements in set No. 1; 7 elements in set No. 2, and 5 elements in set No. 3. In playing the game, each player, in his turn, may remove any number of elements from set No. 1, set No. 2, or set No. 3. He may, for example, remove 6 elements from set No. 1 in making his first play and after the other player moves, he may remove any number of elements from the same or another set, say set No. 3. The 50 player removing the last element is the winner. To make certain of winning the game, the first player must remove a number of elements so that powers of 2 remaining in set No. 1, set No. 2, and set No. 3 after his move are each present in an even number of sets.

Initially the array of sets may be analyzed as follows:

Set $\# 1-9=8+1=2^{3}$	$+2^{0}$ Set $\# 2-7=$
Set \#3-5=	$2^{2}+2^{1}+2^{0}$
$\mathbf{2}^{2}$	$\mathbf{2}^{0}$

5
The zero power of 2 is present in all three sets. The first power of 2 is present only in set No. 2. The second power of 2 is present in set No. 2 and set No. 3. The third power of 2 is present in set No. 1. The first player can assure himself of winning the game by removing sufficient elements from set No. 1 to balance the odd 2^{1} in set No. 2. Accordingly, he removes 7 elements from set No. 1 , leaving two elements. Set No. 1 now contains only the first power of 2 ; set No. 2 contains the second power of 2 , the first power of 2 and the zero power of 2; and set No. 3 contains the second power of 2 and the zero power of 2 . It is seen that each power of 2 contained in the sets is present in two sets. After the first player has made the play just suggested, the second player cannot win the game regardless of what play he makes unless the first player fails to maintain the winning combination.
For example, if the second player removes one element from set No. 2, leaving six elements in this set, the first player should remove one element from set No. 3, leaving the combination set No. 1 two elements, set No. 2 six elements, and set No. 3 four elements. If the second player now removes another element from set No. 2, the first player should remove one element from set No. 1, leaving set No. 1 one element, set No. 2 five elements, and set No. 3 four elements. If the second player now removes another element from set No. 2 the first player removes the remaining eiement from set No. 1 leaving set No. 2 four elements and set No. 3 four elements. If the second player now removes an element from set No. 3, the first player removes an element from set No. 2, leaving 3 elements in each of the two sets. If the second player now removes still another element from set No. 3, the first player removes an element from set No. 2 and on the removal of a further element by the second player from set No. 3, the first player removes still another element from set No. 2 leaving one element in each set. Whichever element the second player removes, the first player necessarily removes the last element.

It is an object of our invention to provide an electrical system for playing Nim.

Another object of our invention is to provide
an electrical system which shall perform the plays of one player in the game of Nim.
A further object of our invention is to provide electrical apparatus for playing Nim wherein the player opposing the apparatus shall be capable of winning if he makes a series of correct moves.

More concisely stated, it is an object of our invention to provide a device for playing Nim the game is being played.
In accordance with our invention, we provide a system in which the like elements used in playing Nim are a plurality of sets of lamps. Any combination of sets may be established by extinguishing certain of the lamps in each of the sets. The lamps are connected in circuits which are controlled by manually operable switches. A player may in his turn extinguish any desired 20 number of lamps in any one set only by operating a switch. Thereafter he may operate another switch, causing certain additional lamps in one of the sets to be extinguished automatically. The operations may be repeated by the 25 player until either he or the machine extinguishes the last lamps. Preferably the number of lamps initially energized is such that the player who operates the control element may Win, if, in his first move, he establishes a winning combination and if he maintains the winning combination when making the following moves in his turn. However, if the player makes one incorrect move, the machine sets up the 5 winning combination and thereafter the player is certain to lose.

The novel features that we consider characteristic of our invention are set forth with particularity in the appended claims. The invention Itself; however, both as to its organization 0 and its method of operation, together with additional objects and advantages thereof, will best be understood from the following description of a specific embodiment when read in connection with the accompanying drawings in which:
Figure 1 is a view in perspective of a structure in accordance with our invention;
Fig. 2 is a view in side elevation of the structure shown in Fig. 1;

Fig. 3 is a view in rear elevation of the strucpart; and

Figs. 2 to 12, together, constitute a diagrammatic view showing the electrical circuit used in the practice of our invention.
${ }_{5} 5$

The Meceanical Structure

The apparatus shown in the drawings comprises a casing 13 having the form of a desk. The casing comprises a vertical chamber 15 from 60 the front surface of which communicating chamber 11 extends. The latter chamber has a height somewhat greater than half the height of the chamber 15. The top 19 of the chamber 11 is at a slight angle to the horizontal and constitutes a 65 platform similar to the working surface of a desis. In the surface 21 of the chamber 15, above the top 19, a piurality of lenses 23 are arranged in vertical rows. Behind each row the lamps used in the playing of Nim are mounted.
70 Specificaily our invention is shown as applied in a system in which there are four sets of elements and a maximum of seven elements in any set. There are accorcingly four rows of lamps with seven lamps in each row. The rows are as designated, zespectively, as a, b, c and d, and the
individual lamps in each row are identifed by the letter of their row and a number, depending on their position with reference to the top of the row. Thus the lamps in row a are $a 1, a 2, a 3, a 4$, a5, a6 and al from top to bottom; the lamps in row b from top to bottom are $b l$ to $b 7$; the lamps in row c from top to bottom are cl to c1; and the lamps in row a from top to bottom are al to $d 7$.

The surface 21 of the chamber 15 is also pro- 10 vided with short slots 25, 21 and 29 behind which counters 30 are disposed. The counter on the extreme right PWC Indicates the number of games won by the player, the counter in the center MWC indicates the number of games won by the apparatus and the counter on the extreme left TP indicates the total number of games played.

Just above the platform 19, the surface 21 of the chamber 15 is provided with an opening 31 partially enclosed in its lower end by a semicup 33 into which a token drops when a player wins a game. The tokens are stacked in a channel 35 extending at a slight angle to the vertical from the top of the chamber 15 to the opening 31 and are released one at a time when a relay SG is actuated and ${ }_{s}$ actuates the token release device TRL.

Near the top of the surface 21 there is an elongated slot 37 in which a plaque having printed thereon the instructions for operating the apparatus is disposed. A cube 39 is supported from the top of the chamber 15 on legs 4.1. In each of the vertical faces of the cube 4, rows of lamps 43 are disposed. The lamps in each of the rows in the faces of the cube are connected in parallel with correspondingly positioned lamps. The cube 39, therefore, displays in all directions and at all times the same pattern as the lamps in the rows a, b, c and d behind the lenses 23. The lamps behind the lenses are used in playing Nim with the apparatus, and the lamps on the cube indicate the progress of the same as it is being played.

A plurality of relays for performing the various operations in playing the game are disposed on a frame 45 in the chamber 15. The relays and the lamps may be energized from the usual commercial alternating current supply through a plurality of power supply units, each consisting of a transformer (not shown) and a dry rectifier 47. The power supply units are disposed in the shorter chamber if below the platform 19.
From the top of the chamber 15 a pair of lamps P and M extend. The lamp P is green and is energized when the player is making a move. The lamp M is red and is energized when the apparatus is making a move. When the apparatus move has been completed, the lamp M is extinguished and the lamp P is energized.

The circuit

The lamps al to al, bl to bl , cl to cl , and al to $d 7$ used in playing the game are connected in circuits which are controlled by relays AI to A7, BI to B1, CI to C7 and DI to D1, respectively. The relays are prowlded with back contacts IAI to IA7, IBI to IBI, ICI to IC1, and IDI to ID1 which normally maintain the lamp circufts closed. The relays AI to A1 are controlled by a master relay A, the relays BI to B7 by a master relay B , the relays C 1 to Cl by a master relay C, and the relays DI to DI by a master relay D. The master relays are actuated by. jushbutions PA, PB, PC and PD, respectively,
which are disposed in a row in the platform 19 so as to be conveniently operated by a player. When a player operates one of the pushbuttons PA to PD, he extinguishes the energized lamp
5 having the lowest subscript in the corresponding row. Successive operations of the same pushbutton extinguish other lamps in the same row in succession. Once a player has actuated a pushbutton in any row, the pushbuttons corre10 sponding to the other rows are locked out by the operation of relays AL, BL, CL and DL, respectively. The player may, however, actuate another pushbutton MTR which energizes a relay TR so that the apparatus operates automatically to extinguish lamps in one of the rows, this preparing the apparatus for another play by the player.

At the beginning of the game not all of the lamps in all of the rows are energized. Certain of the relays Al to D1 are intially actuated so that a selected combination is displayed. The apparatus may be designed so that any number of the combinations that can be made with four groups of seven elements each can be displayed. However, space limitations do not permit the use of all of the combinations, and, therefore, in the practice of our invention only a selected number of combinations are used. In the apparatus shown in the drawings, the combinations set forth 30 in the following table are displayed in sequence.

Set up	Row a	Row b	Row c	Row d
Combination \#1.	7	6	3	4
Combination \#2.	3	4	7	5
Combination \#3	2	7	5	3
Combination \#4.	6	5	4	3
Combination \#5	3	2	4	7
Combination \#6.	2	7	5	4
Combination \#7.	3	7	6	I
Combination \#8	6	2	1	7
Combination \#9.	2	5	6	4

The sequential display of the combinations is controlled by the relays S11, S12, $\mathbf{S 2 1 ,} \mathbf{S 2 2 , S 3 1 ,}$ S32, S41, S42, S51, S52, S61, S62, S71, S72, S81, S82, and S91, S92. The combinations are permutated by the operation of relays N, P and Q .

The performance of the apparatus is dependent on the automatic analysis of the number of the energized lamps in each row into sums of zero or integral powers of 2 . Since the maximum number of lamps that may be energized in any row is 7, the only powers of 2 to be considered are the zero power, the first power, and the second power. The relays $\mathrm{AZ}, \mathrm{BZ}, \mathrm{CZ}$ and DZ are actuated when the numbers of energized lamps in the corresponding rows a, b, c and d, respectively, contain a zero power of 2 ; the relays AF, BF, CF and DF are actuated when the numbers of energized lamps in the rows a, b, c and d, respectively contain a first power of 2; and the relays AS, BS, CD and DS are actuated when the numbers of energized lamps in the rows a, b, c and d, respectively, contain a second power of 2 . To properly play the game, the apparatus must also determine whether any power of 2 is. contained in the number of energized lamps in an even number or an odd number of rows. For this purpose, the relays EZ, EF and ES are provided. These relays are energized if the zero power, the first power and the second power, respectively, are contained in the number of energized lamps in an even number of rows. The relays are also energized if the corresponding power is entirely absent from the number of lamps in all of the rows.

When the transfer button MTR is actuated and actuates the relay TR, the apparatus may operate in two different ways. If all of the powers of 2 contained in the numbers of lamps in the rows are present in an even number of rows, the machine performs a random operation. In such a case the relay RM is actuated and then the relay RMS is actuated. This is followed by the actuation of one of the relays $\mathrm{AR}, \mathrm{BR}, \mathrm{CR}$, DR, which selects the row of lamps a, b, c or $d, 10$ respectively, in which the number of energized lamps is a maximum. A certain number of the lamps in the selected row is then extinguished by the cooperation of the relays R1, R2 and R3, the relays X, Y and Z, the relays $R X$ and $R Y$, and the relays $\mathrm{RCl}, \mathrm{RC} 2$ and RC 3 . The number of lamps which is extinguished is determined by the sequential operation of the relays R1, R2 and R3, relay RI being actuated when the apparatus makes the first random move; R2 being actuated when the apparatus makes the second successive random move, and $R 3$ being actuated when the apparatus makes the third successive random move. R1 deenergizes one lamp, R2 two and R3 three. If further successive random moves are required, the sequence is repeated.
If the powers of 2 contained in the numbers of lamps in the different rows are not present in an even number of rows when button MTR is operated, cooperation of the transfer relay TR with the relays EZ, EF; ES results in actuation of the relays CM and CMS. In such a case the player has manifestly made an incorrect move and the relays CM and CMS now produce a sequence which results in a correct move so that after one incorrect move by the player, the apparatus is assured of winning the game. In such a case, the correct row is selected by the cooperation of relays CM and CMS and relays AZ, AF, AS, $\mathrm{BZ}, \mathrm{BF}, \mathrm{BS}, \mathrm{CZ}, \mathrm{CF}, \mathrm{CS}, \mathrm{DZ}, \mathrm{DF}, \mathrm{DS}$, which in turn control relays ARZ, BRZ, CRZ and DRZ $\mathrm{AR}, \mathrm{BR}, \mathrm{CR}$ and DR , which correspond to the lamps a, b, c and d, respectively.

The transfer operation is controlled by relay TR and relay T10 which are actuated when relay TS is actuated. Relays TI to T 9 are actuated subsequentially after the transfer relay $T R$ is energized. The former relays control the red lamp M. The lamp M is energized when the transfer operation begins and is gradually deenergized until the transfer operation is completed. The relay Tlo cooperates with the interlocked relays PI and P2 which initiate the actual extinction of lamps. After the game is completed, the resetting for a new game takes place by the operation of the relay RE. Relay ER deenergizes transfer relay TR when the relay RM is set for a random operation involving the extinguishing of more energized lamps than are available. For example, if only one lamp in each row is energized and relay RM is set to extinguish three lamps, relay ER deenergizes relay TR. As indicated, relays CMS, RMS, TI to T9, P1, P2 and P3 are slow to release but pick up instantaneously.

Player makes first move

To illustrate the operation of the apparatus, we shall trace the performance of the machine when a game is being played therewith. When the power supply switch (not shown) for the apparatus is closed, all of the lamps $a I$ to $d 1$ are energized. In addition, relays AS, BS, CS and DS are energized. Relay AS is energized through contact 2 A 4 and conductor 51 , relay BS is energized through contact 2B4 and conductor 53, re-
lay CS is energized through contact 2C4 and conductor 55 , and relay DS is energized through contact 2D4 and conductor 57. Because relays AS to DS are energized, relay ES is energized. The 6 circuit for relay ES extends through contacts 3AS, 3BS, 4CS and 3DS. Contact 3ES is, therefore, pulled up and relay SII is actuated through conductor 59 and contacts IQ. IP and IN. Relay SII closes contact 3 SII, actuating relay $\mathbf{S 1 2}$.

10

 up a playing combination on the apparatus. All of the contacts 1512 to 8 S 12 are polarized positive from contact $2 R E$ through conductor 61. Contact 8 S 12 closes a circuit extending through conductor 63, conductor 65 , conductor 67 , relay BI, actuating the relay, opening contact $\mid \mathrm{BI}$ and extinguishing lamp bl. The relay is locked in through contact 3B!.Contact 7SI2 closes a circuit extending through CI, extinguishing lamp 11, conductor 13, relay manner, contacts 6S12, 5SI2 and 4S12 extinguish lamps $c 2, c 3$ and c4. Contacts 3S12, 2S12 and IS12 extinguish lamps di to $d 3$, respectively. 25 The display of lamps then corresponds to combination 1 on the chart. There are seven energized lamps in row a, six energized in row \bar{b}, three energized in row c, and four energized in row d.
Relay N is, moreover, actuated through contact 2P, conductor 15, contact ISII and relay SII.
Relays $A Z$ and $A F$ are now actuated in addition to AS. Relay AZ is energized through contact IAN and conductor 11. Relay AF is enerRelay BF is energized through contact 2B2 and conductor 81. Relay CS is now deenergized because contact 2C4 is open. Relay CF is energized through front contact 2C4, contact 2C6, and conductor 83. Relay CZ is energized through contact ICN and conductor 85.

Player moves

With the apparatus in the condition just described, the player elects to operate button PA. Relay A is now actuated in a circuit extending from the back contact IRMS, contact ICMS, conductor 87, back contact 2DL, back contact 3CL, back contact 2BL, conductor 89, pushbutton PA, conductor 31, relay A. Relay Ai is now actuated through contacts 4A2, 4A4, 4A6, 2AN and 2A and lamp $a \|$ is extinguished., Relay $A 工$ is also actuated in a circuit extending from positive conductor 89, through contact IA and conductor 93. Relay AI locks out the other rows of lamps b, c and d and prevents the player from extinguishing lamps in the other rows, since by the rules of the game he is permitted to extinguish the lamps in only one row in making a play. When key PA is released, relay A is deenergized and relay AN is energized in a circuit extending through contact 3 A , contacts 5 A , 5 A 2 and conductor 95 . AZ is then deenergized because contact IAN is opened. $A Z$ is deenergized now to denote that the row 65 contains no zero power.

Since the number of zero powers of 2 which are now contained in the numbers of energized lamps in the different rows is odd, the relay EZ is deenergized. This relay was originally energized in a circuit extending through front con:tact 2 AZ , bacz contact 2 BZ , front contact 2 CZ , and back contact 2 DZ . Since front contact 2 AZ is openeá, relay EZ is now deenergized.

One leying operation is now completed. The
but he continues and operates key PA again. In this case, relay A is again actuated and this time relay A2 is actuated through contact 2A, front contact 2AN, back contact 4AT, back contact 4AS, back contact 3A3, and contact 4AI. Lamp $a 2$ is, therefore, extinguished. Moreover, relay AF, which was originally maintained actuated through the back contact 2A2, is now deenergized since this contact is opened. There is, moreover, now an even number of rows, the energized number of lamps of which contain a first power of 2, and, therefore, relay EF is actuated. This relay is actuated in a circuit extending through back contact 3 AF , front contact $4 B F$, front contact 3CF, and back contact 3DF
When the player now releases button PA, relay A is deenergized and relay AN is deenergized because contact 5A2 is open. Relay AZ is now energized because contact IAN is closed and relay EZ is energized because front contact 2 AZ is again closed.

The player now elects to again press button PA. This time relays A and A3 are energized in succession and lamp a3 is extingulshed. When the button PA is.released, relay A is deenergized and relay AN is energized through back contact 3A, contact 4A3, and contact 5A4. Relays AZ and EZ are then deenergized in succession.
The player now again actuates button PA. Thus time relays A and A4 are actuated in succession and lamp at is extinguished. Now relay AS is deenergized because back contact 2A4 is opened, and because front contact 2A4 is closed relay AF is energized through contact 2A5, contact 2A6, and conductor 79 . The operation of relays $A S$ and $A F$ is in_{5} accordance with the condition of lamps a. There are now only 3 a lamps energized and, therefore, there is no longer a second power contained in the number of energized a lamps, but there is a first power. Next, relay ES is energized because the number of rows of lamps in which the second power of 2 is included in the number of energized lamps is even. The circuit for relay ES extends through back contact 3AS, front contact 4BS, back contact 3CS and front contact 3DS. Moreover, relay EF-is deenergized because front contact 3AF is opened. When the button PA is now released, relays A and $A N$ are successively deenergized and in succession relays $A Z$ and EZ are energized.

The player again operates button PA. This time relays A and A5 operate, lamp a5 is extinguished, and on the release of the button, relay A is deenergized, relay AN energized and relays $A Z$ and $E Z$ are deenergized in succession.
A further operation of the button PA results in the sequence of operations, actuation of relays A and $A 6$, extinction of lamp $a 6$, deenergization of relay AF, energization of relay EFF, release of button, deenergization of relays A and AN, energization of relay AZ and relay EZ. The player has now elected to have the extinguishing of the above mentioned lamps constitute his move. He has extinguished six lamps so that only one lamp remains energized in row a. The number of lamps are now as follows:

```
Row a 1=
Row b 6=2 2+21
Row c }3=\mp@subsup{2}{}{1}+\mp@subsup{2}{}{2
Row d 4=22
```

Since the powers of 2 contained in the numbers of energized lamps are now present in an even number of rows, the player has made a correct
move. The relays which are now energlzed to indicate the powers of 2 which are present in the various rows are $\mathrm{AZ}, \mathrm{BF}, \mathrm{BS}, \mathrm{BN}, \mathrm{CA}, \mathrm{CF}$, DS, EZ, EF and ES.

The player now operates the transfer key MTR. The operation of the key closes a circuit through relay $T R$ extending through back contact IRMS, contact ICMS, conductor 81, back contact 1 BL , front contact 3 AL , conductor 97 , button MTRR and conductor 99. Relay TI is now energized through contact 2TR, conductor 101 , and back contact $1 T 10$. Following relay TI , relays T2 to T 9 are energized in succession, relay T2 being energized through contact $1 T 1$, relay $T 3$ being energized through contact $\mid T 2$, etc. A negligible length of time elapses before relay T 9 is energized. As relays TI to T 9 are energized, the resistances 103 in series with the lamp M are successively short circuited.

The actuation of relay TR also produces actuation of relay RM which is the relay for causing the apparatus to make a random play. The relay RM is actuated in a circuit extending through contact 2 TR , conductor 101 , front contact 2 ES , front contact 2EF, front contact 2 EZ and contact 2CMS. Relay BR is also actuated on the actuation of relay TR. The circuit for relay BR extends through contact $1 T R$, conductor 105 , back contact IDR, back contact ICR, back contact IBR, back contact IAR, conductor 107, front contacts IES, IEF and IEZ, conductor 109, back contact 2AS, front contact 2BS and conductor 111.

Relay RMS is energized through contact 2RM of relay RM. Relay R1 is energized in a circuit through contact 3RMS, conductor 113 , and back contacts IZ, IY and IX. Relay X is now energized through conductor 115 , contact $2 Y$, relay X, contact $\mid R I$ and relay RI. After relay $T 9$ operates, relay Tlo operates because its circuit is closed through contact IT'. The operation of T10 opens back contact 2 T 10 and closes front contact 2T10. The lamp P is, therefore, extinguished and lamp M is brightly energized, indicating that a transfer play is taking place. The back contact 1 TiO is, moreover, opened, and this opens the circuit through relay $T /$ so that $T I$ is deenergized and contact ITI opens after a short time delay. The opening of contact $|T|$ is followed by the opening of contacts 1T2 to IT8 and the gradual deenergization of relays T 2 to T 9 . Lamp M is, therefore, gradually dimmed.

The release of $\mathbf{T 9}$ completes a circuit for energizing relay PI. The circuit for relay PI extends through contact 2 TR , conductor 101 , front contact ITIO, back contact IT9, conductor II7, and back contact 3Pa. Actuation of PI is followed by actuation of P 2 through front contact 2 P I. The circuit through relay PI is now opened because back contact 3 P 2 is opened. However, contact 2 PI remains actuated. Therefore, relay B is actuated. This relay is in a circuit extending through contact 2 TR , conductor 101, front contact ITIO, back contact IT9, conductor IIT, front contact 3 P 2 , contact IPI, conductor 119, contact IRM, conductor 121 , contact 3BR, conductor 123, contact IBS, conductor 125 and conductor 121. Relay B2 is, therefore, energized in a circuit extending through contact 2B, front contact 2BN, back contact 4B1, back contact 4B5, back contact 3B3, and contact 4BI. Lamp 62 is, therefore, extinguished and relay BF is deenergized because back contact 2B2 is opened. Since
the number of rows with a first power of 2 is now odd, relay EF opens.

After contact IPI of relay PI opens, relay \mathbf{B} is deenergized. Relay RCI is now closed in a circuit extending through back contact 2PI, contact 2P2, conductor 129, contact 5RM, conductor 13I, back contact IRY and back contact IRX. Moreover, relay P2 is deenergized because front contact 2 PI is opened but the contacts of relay P2 are not actuated for a short interval of time.

Because front contact 3B is now open, the circuit for relay BN is opened and this relay is deenergized. By the actuation of relay RCI the holding circuit of relay RM is opened at contact 3RCI. The holding circuit extends through contact IRE, conductor 133, contact 3RCI, conductor 135 , contact 3 Ri , conductor 137 and contact $3 R M$. Because contact IBN is closed, relay BZ is actuated. Because contact $2 R M$ opens relay RMS is deenergized and after a predetermined delay, its contacts open. Because contact 4RM is opened, transfer relay TR is deenergized.

Sufficient time has now elapsed so that the contacts of relay P2 drop out. Moreover, because front contact 2BZ closes, relay EZ becomes deenergized, as is necessary, since the zero power of 2 is now present in an odd number of rows. Relay RMS has not as yet dropped out and RX is energized through front contact IRMS, conductor 139 , contact $2 R Y$, contact $1 R C I$ and relay RCI. Because contact $2 T R$ is opened, the holding circuit for relay Tlo through front contact ITIO is opened and TiO is deenergized. Relay $B R$ is deenergized because contact $1 T R$ is opened. Since front contact 2 T 10 is opened and back contact $2 T 10$ is closed, lamp M is extinguished and lamp P is energized.
Sufficient time has now elapsed so that the contacts of relay RMS drop out. Because front contact IRMS opens, relay RX drops out and relay RCl, which was sealed in through front contact IRMS, also drops out. The random move of the apparatus is now at an end and the following relays are now energized: $\mathbf{A Z}, \mathbf{B Z}, \mathbf{B S}, \mathbf{C Z}$, CF, DS, ES, X and RI.

Player makes second move

The player elects row c for a second move. The operation of the relays and the contacts is analogous to the operation during the first move, but in this case, the relays of row c are involved. The operator closes button PC and relays $\mathbf{C 5}$ and CL are energized. Relay C5 extinguishes lamp c5 and relay CL locks out the other pushbuttons PA, PB and PD. When button PC is released, relay C is deenergized, relay $C N$ energized, relay CZ deenergized, and relay EZ energized. Another operation of button PC produces the sequence: C energized, C6 energized, lamp c6 deenergized, relay CF deenergized, and relay EF energized. On the release of button PC, relay C is deenergized, relay $C N$ deenergized, relay $\mathbf{C Z}$ energized and relay EZ deenergized. Another operation of button PC causes relay C to be energized, relay $\mathbf{C 1}$ to be energized and lamp $c 7$ to be deenergized. The release of button PC causes relay C to be deenergized, relay $C N$ to be energized, relay $C Z$ to be deenergized and relay EZ to be energized.

All of the lamps in row c are now extinguished. The combination of energized lamps is now as 70 follows:

> Row a $1=$ Row b $5=2^{2}$ Row c $0=$ Row d $4=2^{2}$

There are an even number of rows containing all powers of 2 and, therefore, the player has made a correct move, and when the apparatus moves, it is again to make a random move. The following relays are energized: $\mathrm{AZ}, \mathrm{BZ}, \mathrm{BS}, \mathrm{DS}$, CL, EZ, ES, EF, RI, X.

Apparatus makes a second random move

The player now again operates the transfer button MTR. Relay TR is energized in the same manner as before, as are relays Tl and RM. Relay $B R$ is energized in a circuit extending through contact $1 T R$, conductor 105 , back contact $1 D R$, back contact ICR, back contact IBR, back con5 tact IAR, conductor 107, front contact IES, front contact IEF, front contact $I E Z$, conductor 109 , back contact 2AS, front contact 2BS and conductor 111. Following the actuation of relay Ti, relays T2 to T10 are sequentially energized. Because contact 3RMS is closed, relay R2 is energized in a circuit through contact 3RMS, conductor 113 , back contact 1 Z , back contact 1 Y , front contact 1 K , and contact 2RI. Relay CL is deenergized because back contact IRMS is opened. When relay $T 10$ is energized, lamp P is deenergized and lamp M is energized through front contact 2 Tl 10 . Relays Tl to Tg are next sequentially deenergized with a predetermined delay and the lamp M dims as more and more resistance is introduced into the lamp circuit.

Eventually, front contact 4 TS opens and back contact 1 TO closes. At this point relays PI and $P 2$ are energized in the same manner as in the aransier move. After P2 is energized, PI is deenergized, and after a predetermined time its contacts drop out. However, before this occurs, relay \mathbb{B} is energized. The energizing circuit extends through contact 2 TR , conductor 101 , front contact 1 Tl 10 , back contact 1 TS , conductor 117 , front contact $3 T 2$, contact 1 PI , conductor 119 , contact IRMI, conductor: 121 , contact 3 BR , conductor 123, contact IBS, conductor 125, and conductor 127. Reley ER is now energized through contact 2B, back contact 2BN, back contact 4B6, back contact IBD and front contect $4 B 2$. Liamp ō is now extinguished.
Sufficient time has now elapsed so that front contact $2 P 1$ of reiay PI opens and back contact aPl closes. Relay RC! is, therefore, energized through back contact $2 P 1$, contact 2P2, conductor 120, contact 5Rill, conductor 131 , back contact $1 R \mathbb{Z}$ and bacls contact $\mathbb{R N}$. Relay $\mathbb{P} 2$ is deenergized by the opening of front contact $2 P 1$, and aiter a predetermined time, its contacts drop out. Moreover, relay BN is energized through contact AB3 in the usual manner. Relays BZ and FZ become deenergized as has been explained several times above.
Now sufficient time has elapsed so that the contacts of relay P open. Relay $P I$ is now again energized in the circuit which has been traced through contact \&TR. It is to be noted that relay RM does not become deenergized after the in 2 circuit extending through contact IRE, conductor 133, contact 3RC2, conductor 141, contact $3 R 2$, conductor 137 , and contact 3 RM . When 70 relay P! is energized, relay P2 is energized and thereafter relay $P \mathbb{1}$ is deenergized and after a predetermined time interval its contacts open. However, before this occurs, relay B is energized, relay $B 4$ is energized, and lamp b4 is extinguished. Relay BS is now deenergized and relay BF is
energized in circuits analogous to those traced with reference to the lamps of row a.
Sufficient time has now elapsed so that relay PI is deenergized. Relay ES is deenergized because front contact 4BS opens. Relay EF is deenergized because back contact 4BF opens. When front contact 2PI opens, relay P2 is deenergized, and after a predetermined time, its contacts drop out. Relay B opens because contact IP1 opens and relay RC2 closes through 10 back contact 2P1, contact 2P2, conductor 129 , contact 5RM, conductor 131, back contact IRY, front contact IRX and contact 2RCI. The deenergization of relay B is followed by the deenergization of relay BN.

Relays BZ and EZ close in sequence in a manner explained with reference to the relays of row a. On the deenergization of relay RM, relay RMS is deenergized and after a predetermined delay, its contacts are opened. Relay TR, which was sealed in through contacts 3 TR , 4 RM , conductor 143, contact IER, conductor 133 and contact $I R E$, is deenergized because the holding circuit for relay TR is broken when contact 3RC2 opens and relay RM opens. Relay RY is energized through front contact IRMS, which has not as yet opened, conductor 139, contact IRC2, and relay RC2. Relay TIO, which was locked in through contact 2TR, now is deenergized. Relay BR , which was locked in through contact 1 TR , also opens.
Relay RX was energized through contact 2RY and it is deenergized when this contact opens. Relay RCI, also locked through contact 2RY, also opens. When relay T10 is deenergized, lamp M is deenergized and lamp P is energized.

Now sufficient time has elapsed and relay RMS drops out. The holding circuit for relay RC2 was closed through front contact IRMS and, therefore, this relay becomes deenergized. RY is also deenergized for the same reason. Relay Y, on the other hand, is energized through conductor 115, contact 2Z, conductor 145, contact IR2, and relay R2. Because contact $2 Y$ now opens, relay RI, sealed in through contact $\mid R 1$, conductor 141, relay X, contact $2 Y$ and conductor 115, opens. For the same reeson, relay X is aiso deenergized. The second move by the machine is now complete. The relays which remain energized are $A Z, B Z, B F, D S, D N, E Z, R 2$ and Y.

Player makes third play

On the third play the player operates key PD only once. Relays D, D4 and DL are energized In the manner explained with reference to the other rows of lamps. Similarly lamp $d 4$ is deenergized, relay DS is deenergized, relay DF is energized, and relays ES and EF are energized. On the release of button PD, relays D and $D N$ are deenergized in sequence and relay $D Z$ is energized and is followed by the deenergization of relay EZ. The relays which now remain energized are AZ, BZ, BF, DZ, DF, DL, EF, ES, R2, and Y. The array of rows is now as follows:

> Row a $1=$ Row b $3=2^{1}+2^{0}$ Row co Row $d^{3}=2^{1}+2^{0}$

The zero power of 2 is now contained in the number of energized lamps in an odd number of rows and, therefore, the player has made an incorrect move. tact 3 PI , conductor 133, and contact IRE, is opened, so that relay CM is deenergized. Relay TR which was locked in through contact 3TR and contact 4 CM is deenergized by the opening of contact 4CM. Relay CMS is deenergized by the opening of contact 2CM and it begins to drop out. While relay CMS is dropping out, relay TIO, which was sealed in through contact 2TR, becomes deenergized. Relay AR, which was sealed in through contact ITR, conductor 105, back con-
65 tact IDR, back contact ICR, back contact IBR and front contact IAR, is deenergized because its sealing circuit is open at ITR. Relay ARZ, which was sealed in the same circuit as relay AR through contact IARZ, is also deenergized. The
70 dropping out of contact TiO results in the deenergization of lamp M and the energization of lamp P. Relay CMS drops out after lamp \mathbf{P} is energized.

The relays which now remain energized are $75 \mathrm{AN}, \mathrm{BZ}, \mathrm{BF}, \mathrm{DZ}, \mathrm{DF}, \mathrm{EZ}, \mathrm{EF}$ and ES. Since there
now remain three energized lamps in row b and three energized lamps in row d, the apparatus has clearly made a correct move.

Player makes fourth move-an incorrect move

The player can no longer make a correct move. He now elects to operate pushbutton PB twice. The first operation results in the deenergization of lamp b5, the energization of relay BN and the deenergization of relays BZ and EZ . The second operation results in the deenergization of lamp b6, the deenergization of relays BF, EF and BN, and the energization of relays BZ and EZ. The relays which are now energized are BL, BZ, DZ, DF, EZ and ES. There are now three lamps in row d and one lamp in row b.
Apparatus makes fourth move-a correct move
The operation of the transfer button MTR now results in the energization of relays TR, TI to TIO, CM and CMS in the manner explained. Relay DR is energized in the circuit extending through contact ITR, conductor 105, back contact IDR, back contact ICR, back contact IBR, back contact $1 A R$, conductor 107, front contact IES, back contact IEF, conductor (59, back contact 2AF, back contact 2BF, back contact 2CF, front contact. 2DF, and conductor 161. Relay BL is deenergized because contact ICMS is opened.

When front contact IT 10 closes, relay TI is deenergized and relays Tl to T 9 drop out in sequence, each with a predetermined time delay. When relay T9 drops out, relays P1 and P2 are closed in sequence and relay $P I$ is thereafter deenergized but does not drop out. Relay D is now energized through contact 2 TR , conductor 101 , front contact ITIO, back contact IT9, conductor 111, front contact 3P2, contact IPI, conductor 119, contact ICM, conductor 155, contact 2DR and conductor 163. Relay D5 is now energized and lamp $d 5$ is deenergized. Thereafter contact IPI opens, relay D is deenergized, relay DN is energized and relays DZ and EZ are deenergized in sequence. Now relay P2 drops out

However, relay CM remains energized through contact 2 TR , conductor 10 , front contact 2ES, back contact 2 EF , conductor 165 , contact 2 RMS , and conductor 149. Therefore, the stick circuit through contact 3TR for relay TR remains closed. Because contact 2TR thus remains closed, relays PI and P2 are again energized in sequence, and then deenergized in sequence with a certain time delay and lamp d6 is extinguished. Relay $D F$ is now deenergized, relay EF is energized, and relays DZ and EZ are energized. Relay CM 6 is now deenergized because its circuit through contact 2EF is opened. As a result, relay CMS is deenergized and begins to drop out. Relay TR is also deenergized as are relays T10 and DR. The lamp M is now extinguished and lamp P is energized. After lamp P is energized, relay CMS drops out. Only relays $B Z, D Z, E Z, E F$ and ES remain energized and there is only one energized lamp in row b, and one energized lamp in row d.

Player makes fifth move-an incorrect move
To complete the game the player now operates button PB, deenergizing lamp b7, energizing relays BL and BN and deenergizing relays BZ and EZ. Relays BL, BN, DZ, EF and ES are now energized.

Apparatus makes fifth move to win game
The player now operates transfer button MTR and relays TR, TI to TIO, CM and CMS are energized while relay BL is deenergized. Relav

DRZ is now energized through contact ITR conductor 105, back contact IDR, back contact $I C R$, back contact IPR, back contact IAR, conductor 107, front contact IES, front contact IEF,
δ back contact IEZ, conductor 151, back contact 1 AZ , back contact 1 BZ , back contact 1 CZ , contact IBZ and conductor 169. Contact IDRZ is now closed and relay DR is energized through this contact in a circuit which is otherwise the same

After relay T10 is energized, relays Tl to T 9 are deenergized with the usual time delay and lamp M is energized and dimmed. When relay TS drops out relays PI and P2 are energized in sequence and relay PI is deenergized and drops out after a predetermined interval of time. Because contact $1 \mathrm{P} \mid$ and front contact 3P2 are closed, relay D is energized, relay DT is energized and the last energized lamp $d 7$ is extinguished.
The apparatus has now won the game.

Indicating and resetting operation

Because all of the lamps $a 7, b 7, c 1$ and $d 7$ are deenergized, relay MW is energized in a circuit through contact 2A7, contact 2B1, contact 2C7, contact 2D7, conductor 171, and front contact IP2. The total games counter TP is energized through closed contact 2 MW and, therefore, indicates that another game has been completed. The counter MWC, which indicates the number of games won by the apparatus is also energized through contact 3MW. The lamps are also prepared for another game by the closure of relay S21 in a circuit through contact 4 MW , conductor 173, back contact 3Q, back contact 3P, front contact 3 N , conductor 175 , contact 2 S 11 , and conductor 177 . Relay RE is energized through contact 1 MW .
Relay $\mathbf{S 2 R}^{22}$ is energized because contact 3521 is closed. Contact $1 R E$ is opened when relay $R E$ is energized and, therefore, relay AI is deenergized because its holding circuit through contact $\| R E$, conductor 133, conductor 175 , contact $3 A 0$, is opened. In-the same manner, relays $B 1, C 1$ and $D 1$ are deenergized and the corresponding lamps are energized. Because contact 5 Al is now open, relay AN, which was energized through conductor 35, contact 5A2, contact 5A1, and contact 3A, is deenergized. In the same manner, relays BN and CN are deenergized. Relay $\mathbb{C M}$, which was locked in through contact SCM, is deenergized when contact 3P! opens. Relay D is deenergized because its cirm cuit is opened at contact API. Relay DR is deenergized because its hoiding circuit is opened at contact $1 T R$, relay $T R$ being deenergized because its holding circuit is open at IPE. The holding circuit for relay DRZ is also opened at contact ITR. When P1 is deenergized, P2 is also deenergized, but does not drop out.
The holding circuit for relay A2 is broken when front contact 2A1 is opened. The same is true of relays $A 8$ and $A 4$. In the same manner, relays B2, B3, B4, C2, C3, C4, D2, D3 and D4 are deenergized and the corresponding lamps are energized. When relay T / O is deenergized, lamp M is deenergized and lamp P is energized. When relay CM is deenergized, relay CMS is deenergized since its holding circuit is opened. When relays A5, A6 and A7 are opened and these relays are deenergized. In the same manner, relays B5, B6, B7, C5, C6, C7, D5, D6 and D7 are deenergized snd the corresponding lamps are energized. At this time a sufficient interval has
elapsed so that relay $\mathbf{P 2}$ drops out. Since relays A7, B1, C1 and D1 are deenergized, the circuit for relay MW is opened and it becomes deenergized. Relay RE is, therefore, deenergized and after a predetermined time interval it drops out. Moreover, counters TP and MWC are deenergized. Moreover, when relay S21 was energized, relay P was energized in a circuit through contact 2 Q , conductor I71, contact IS2I, and relay S22. At this time relay CMS drops out. When relay P is energized, relay N is deenergized because its circuit is opened at contact 2P. For the same reason, relay SII is deenergized. Relay SI2 is opened up because contact 3 SII is opened. The contacts of $\mathbf{5 2 2}$ close and relays AI, A2, A3, A4, BI, B2, B3, D1 and D2 are energized in the same manner as the corresponding relays were energized when relay Sl2 was energized for combination No. 1. The corresponding lamps $a 1, a 2, a 3, a 4, b 1, b 2, b 3, d 1$ and d2 are deenergized and the relays AZ, AF, BS, $C Z, C F, C S, D Z, D S, B N$ and EF are energized in preparation for a second game.
The apparatus is now prepared for another game. The array of energized lamps is, however, different than at the beginning of the first game. In this case there are three lamps energized in row a, four in row b, seven in row c and five in row d, corresponding to combination No. 2.
Another game may be repeated in the manner described above, and after the end of this game, the apparatus sets up combination No. 3. This continues until combination No. 9 is set up, and after that combination No. 1 is set up again.
Although we have shown and described certain specific embodiments of our invention, we are fully aware that many modifications thereof are possible. Our invention, therefore, is not to be restricted except insofar as is necessitated by the prior art and by the spirit of the appended claims.

We claim as our invention:

1. In combination, a predetermined number of elements, each of said elements having a plurality of possible electrical conditions and means responsive to the condition of said elements and actuable only if the number of said elements in one of said conditions includes the nth power of r, where r is an integer and n is zero or an integer.
2. In combination, a predetermined number of elements, each of said elements having at least two possible electrical conditions and means responsive to the condition of said elements and actuable only if the number of said elements in one of said conditions includes the nth power of 2 where n is zero or an integer.
3. In combination, a predetermined number of elements, each of said elements having at least two possible electrical conditions, a separate circuit controlling means for each of the powers of 2 included in said number and means for actuating said circuit controlling means in dependance upon the powers of 2 included in the number of said elements that are in one of said conditions.
4. In combination, a predetermined number of elements, each of said elements having at least two possible electrical conditions, selective means for controlling the condition of said elements, a separate circuit controlling means for each of the powers of 2 included in said number and means responsive to sald selective means for actuating said circuit controlling means in dependence upon the powers of 2 included in the number of said elements that are in one of said conditions.
5. In combination, a plurality of sets of elements, each set having a predetermined number of like elements and each element having at least two possible electrical conditions, means resets and act in any set in one of said conditions includes the nth power of 2 where n is zero or an integer and means to be actuated by said responsive means when the sum of total number of occurrences of each power of 2 in all said sets is even.
6. In combination, a plurality of sets of elements, each set having a predetermined number of like elements and each element having at least two possible electrical conditions, means responsive to the condition of sald elements in said sets and actuable in each of the powers of 2 included in the number of elements in one of said conditions occurs an even number of times in said sets.
7. In combination, a predetermined number of sets of elements, each of said elements having at least two possible electrical conditions and each set having a predetermined number of sald elements, selective means for controlling the condition of said elements and means responsive to said selective means if each of the powers of 2 included in the number of elements in one of said conditions occurs an even number of times in said sets.
8. In combination, a predetermined number of sets of elements, each of said elements having at least two possible electrical conditions and 5 each set having a predetermined number of said elements, selective means for controlling the condition of said elements, a circuit controller corresponding to each of the powers of 2 included in the number of elements in each said set, means responsive to said selective means for actuating 40 said circuit controller in dependence upon the powers of 2 included in the numbers of elements in said sets that are in a predetermined condition and means actuable by said responsive means if each of the powers of 2 included in the num45 ber of elements in sald one of said conditions occurs an even number of times in said sets.
9. In combination, a plurality of sets of elements. each element having at least two electrical 50 conditions and each set having a predetermined number of elements, selective means for initially maintaining certain of said elements in one of said conditions and certain others in another of said conditions, means for reverting all sald ele55 ments to said other condition in a sequence which is predeterminable at will and means cooperative with said selective means after said elements have been reverted to said other conditions for reverting certain of said elements to said one of said 60 conditions while the remainder are in said other condition, the number of said elements reverted to said one of said conditions being different than the number initially maintained in said one of said conditions.
05 10. In combination, a plurality of sets of elements, each said set having a predetermined number of elements and said elements having at least two conditions, means for altering the condition of the elements in each said set at will and
70 means for preventing the alteration of the condition of the elements in any other set at will after the condition of the elements in one said set has been altered at will.
10. In combination, a plurality of sets of ele75 ments, each said set having a predetermined
number of elements and said elements having at least two conditions, means for altering the condition of the elements in each said set at will, said altering means being operable repeatedly and including means cooperative with said elements for altering the condition of a different element in a set for each successive operation of said altering means, and means for preventing the alteration of the condition of one element in any other set at will after the condition of the elements in one said set has been altered at will.
11. In combination, a plurality of sets of elements, each said set having a predetermined number of elements and said elements having at least two conditions, means for altering the condition of the elements in each said set at will, and means, responsive to the number of elements in a predetermined condition remaining in said sets after an alteration, for automatically altering the condition of said elements in said sets.
12. In combination, a plurality of sets of elements, each said set having a predetermined number of elements and said elements having at least two conditions, means for altering the condition of the elements in each said set at will, and means, responsive to the number of elements in a predetermined condition remaining in said sets after an alteration, for automatically altering the condition of said elements in said sets, said responsive means producing an alteration of one type when each of the powers of 2 included in the number of elements in one condition in said sets occurs an even number of times in said sets and an alteration of another type when any power of 2 included in the number of elements in said one condition occurs an odd number of times in said sets.
13. In combination, a plurality of sets of elements, each said set having a predetermined number of elements and said elements having at least two conditions, means for altering the condition of the elements in each said set at will, means for preventing the alteration of the condition of the elements in any other set at will after the condition of the elements in one said set has been altered at will and means for automatically altering the conditions of the elements in said sets in response to the number of elements in one condition remaining in said sets after an alteration at will.
14. In combination, a plurality of sets of elements, each said set having a predetermined number of elements and said elements having at least two conditions, means for altering the condition of the elements in each said set at will, means for preventing the alteration of the condition of the elements in any other set at will after the condition of the elements in one said set has been altered at will and means for automatically altering the conditions of the elements in said sets in response to the number of elements in one condition remaining in said sets after an alteration at will, said automatically altering means producing an alteration of one type when each of the powers of 2 included in the number of elements in one condition in said sets occurs an even number of times in said sets and an alteration of another type when any power of 2 included in the number of elements in said one condition in said sets occurs an odd number of times in said sets.
15. In combination, a plurality of sets of elements, each sald set having a predetermined number of elements and said elements having at
least two conditions, means for altering the condition of the elements in each said set at will, said altering means being operable repeatedly, and including means cooperative with said elements for altering the condition of a different element in a set for each successive operation thereof, means for preventing the alteration of the condition of one element in any other set at will after the condition of the elements in one said set has been altered at will and means for automatically alterIng the conditions of the elements in sain sets in response to the number of elements in one condition remaining in said sets arter an alteration at , sed automatically altering means producing an aiteration of one type when each of the powers of two includedin the number of elements in one condition in said sets occurs an even number of times in said sets and an alteration of onother the whea any power of 2 included in the numa
ber of elements in said one condition in said sets occurs an odd number of times in said sets.
16. In combination, a plurality of sets of elements, each said set having a predetermined number of elements and said elements having at 5 leasit two conditions, means for altering the condition of the elements in each said set at will, means for preventing the alteration of the condition of the elements in any other set at will after the condition of the elements in one said set 10 has been altered at will and means for automatically altering the conditions of the elements in said sets in response to the number of elements in one condition remaining in said sets after an alteration at will and means for rendering said preventing means ineffective after an operation of said automatically altering means.

MDWARD U. CONDON.
CBRTMD I. TAWNEY.
WIITARD A. DERR.

