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he Rubik’s Cube! is a simple, inexpensive puzzle
with only a handful of moving parts, yet some of its
simplest properties remain unknown more than

30 years after its introduction. One of the most fundamental
questions remains unsolved: How many moves are
required to solve it in the worst case? We consider a single
move to be a turn of any face, 90 degrees or 180 degrees in
any direction (the ‘face turn metric’).

In this metric, there are more than 36,000 distinct posi-
tions known that require at least 20 moves to solve [9]. No
positions are yet known that require 21 moves. Yet the best
theoretical approaches and computer searches to date have
only been able to prove there are no positions that require
more than 26 moves [4]; this gap is surprisingly large.

In this paper, we prove that all positions can be solved in
22 or fewer moves. We prove this new result by separating

the cube space into two billion sets, each with 20 billion
elements. We then divide our attention between finding an
upper bound on the distance of positions in specific sets,
and by combining those results to calculate an upper bound
on the full cube space.

The new contributions of this paper are:

1. We extend Kociemba’s near-optimal solving algorithm
to consider six transformations of a particular position
simultaneously, so it finds near-optimal positions more
quickly;

2. We convert his solving algorithm into a set solver that
solves billions of positions at a time at a rate of more
than 200 million positions a second;

3. We show how to eliminate a large number of the sets
from consideration, because the positions in them only
occur in conjunction with positions from other sets;

4. We combine the three contributions above with some
simple greedy algorithms to pick sets to solve, and, with
a huge amount of computer power donated by Sony
Pictures Imageworks, we actually run the sets, combine
the results, and prove that every position in the cube can
be solved in 22 moves or fewer.

Colors, Moves and the Size of Cube Space
The Rubik’s cube appears as a stack of 27 smaller cubes
(cubies), with each visible face of the cubies colored one of
six colors. Of these 27 cubies, seven form a fixed frame
around which the other 20 move. The seven that form the
fixed frame are the center cubies on each face and the
central cubie.

Each move on the cube consists of grabbing the nine
cubies that form a full face of the larger cube and rotating
them as a group 90 or 180 degrees around a central axis

Author’s photo of the cube " Rubik’s/Seven Towns. All Rights
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shared by the main cube and the nine cubies. Each move
maintains the set of fully visible cubie faces. The eight
corner cubies each always have the same set of three faces
visible, and the twelve edge cubies each always have the
same set of two faces visible. We will frequently use the
term ‘corner’ to mean ‘corner cubie’, and ‘edge’ to mean
‘edge cubie’.

In the solved position, each face of the main cube has a
single color. By convention, we associate these colors with
their orientation on the solved cube: U(p), F(ront), R(ight),
D(own), B(ack) and L(eft). Each move that uses a 90
degree clockwise twist is denoted by writing the face with
no suffix; each move that uses a 90 degree counterclock-
wise twist is specified with the face followed by a prime
symbol (0), and each move that uses a 180 degree twist is
specified with the face followed by the digit 2. So, a
clockwise quarter turn of the right face is represented by R,
and the move sequence R2L2U2D2F2B2 generates a pretty
pattern known as Pons Asinorum. We write the set of all
moves, containing the 18 combinations of faces and twists,
as S.

The way the moves in S can combine to generate dif-
ferent positions of the cube is not obvious, but is well
known [1]; we state the relevant results here. The corner
cubies may be permuted arbitrarily, or the edge cubies
arbitrarily, but not both at the same time; the parity of the
two permutations must match. This contributes a factor of
12!8!/2 toward the total number of reachable positions.

Every corner cubie has exactly one face with either the
U- or D-colored. We define the default orientation for
the corner cubies to be that where the U- or D-colored face
is on the whole-cube up or down face; the corner cubies
may also be twisted 120 degrees clockwise or counter-
clockwise with respect to this default orientation (looking
toward the center of the cube). Note that these orientations
for each cubie are preserved by the moves U, D, R2, L2, F2,
B2, but not by the moves R, L, F or B. This corner cubie
orientation is fully arbitrary, except that the sum of all the
twists for all the corner cubies must be a multiple of 360
degrees. These corner orientations contribute an additional
38/3 factor toward the total number of reachable positions.

We define the default edge orientation to be that ori-
entation in the solved state of the cube that is preserved by

the moves U, D, R, L, F2, B2 (but changed by F and B).
Each edge is either flipped from this orientation or not; the
count of flipped edges must be even. These edge orienta-
tions contribute an additional 212/2 factor toward the total
number of reachable positions.

The total number of reachable positions, and thus the
size of the cube group, is the product of these factors,
which is about 4.33 9 1019. We call the set of reachable
positions G. For each of these positions, an infinite number
of move sequences obtain that position. We define d(p),
the distance of a position p, to be the shortest length of any
move sequence that obtains that position from the identify.
We define the distance of a set of positions to be the
maximum of the distances of all the positions in that set.

As a convention, we will denote the successive appli-
cation of two move sequences by concatenation. We will
also denote the application of a sequence to a position, or
set of positions, by concatenation of the position and the
sequence. A sequence s will have its length denoted |s|;
the set of all sequences of length n of moves from set S will
be denoted by Sn, and the set of all sequences from S will
be denoted by S*.

Symmetry
The Rubik’s cube is highly symmetrical. There is no dis-
tinction among the faces except for the color; if we were to
toss the cube in the air and catch it, the cube itself remains
the same. Only the color corresponding to the up face, the
right face, and so on changes. Indeed, by tossing the cube,
catching it, and noting the colors on the various faces in the
new orientation, we can enumerate a total of 24 different
ways we can orient the cube, each with a distinct mapping
of colors to faces. Specifically, there are six different colors
the up face can have, and for each of those six colors, there
are four colors possible for the front face. These two face
colors fully define the orientation of the normal physical
cube.

If we peer in a mirror while performing this experiment,
wenotice that our alter egoholds a cubewithmirror-reversed
orientations; these mirror-reversed orientations present an
additional 24 possible mappings from colors to oriented
faces. We further notice that whenever we do a clockwise
move, our alter ego does a counterclockwise move.

If we choose a canonical color representation, then each
of these 48 orientations is a permutation of the cube colors.
We call this set of color permutations M. If a particular cube
position p is obtained by a move sequence s, we can obtain
fully corresponding positions by applying one of the 48
color permutations (say, m), performing the sequence s,
and then applying the inverse permutation of m. The
resulting position shares many properties with the original
one (especially, for us, distance). If we repeat this opera-
tion for all 48 permutations in M, we will obtain 48
positions. These positions are not always unique, but for
the vast majority of cube positions they will be. Using this
form of symmetry, we can reduce many explorations of the
cube space by a factor of 48.

Each cube position has a single specific inverse position.
If a position is reached by a move sequence s, then the

.........................................................................

A
U

T
H

O
R TOMAS ROKICKI designed and built his

first computer at age 15 in 1978, received his
Ph.D. in computer science from Stanford
University in 1993, and founded Instantis
with a few friends in 1999. He presently
lives in Palo Alto, California with his wife
Sue and dog Andy, where he is in perpet-
ual training for the Big Sur International
Marathon.

Palo Alto
CA
USA
e-mail: rokicki@gmail.com

34 THE MATHEMATICAL INTELLIGENCER



inverse position is reached by inverse move sequence s0. To
invert a move sequence, you reverse it and invert each
move; the face remains the same, but clockwise becomes
counterclockwise and vice versa. The set of symmetrical
positions of the inverse of position p is the same as the
inverses of the symmetrical positions of p. Some properties
of a position are shared by its inverse position (specifically,
distance).

We can partition the cube space into symmetry-plus-
inverse reduced sets by combining each position with its
symmetrical positions and their inverses; there are only
4.51 9 1017 such sets.

Calculating the Diameter
We are primarily interested in finding the maximum of the
distance for all positions; this is known as the diameter of
the group. For context, we review previous techniques for
solving the cube using a computer, since our technique is
derived from these.

Speedsolvers, cube aficionados who compete in how
fast they can solve the cube and other related puzzles, have
a wide variety of manual algorithms, from very simple
beginners’ methods to highly sophisticated methods that
require the memorization of dozens of move sequences.
Any of these algorithms are straightforward to implement
on the computer, but the best of these tend to require many
more moves than the actual distance of the position, so
these techniques are, in general, useless in calculating the
diameter.

Simple approaches to optimally solving a single position
fail because the size of cube space is so large. A simple
breadth-first search exhausts both memory and CPU time.
Iterative deepening, which uses depth-first search limited
by a given maximum depth that increases from zero until
the first solution is found, solves the memory exhaustion
problem but still requires an impractical amount of CPU
time.

A more practical algorithm is to compute all positions
that are within some small distance of solved (say, seven
moves, totaling 109,043,123 positions [10]), and store these
positions and their distances in memory. Then, iterative
deepening can be used from the position to be solved, at
each node examining the hash table to obtain a lower
bound on the remaining distance and terminating that
search branch if the sum of that bound and the current
depth is greater than the current maximum depth. Various
refinements are possible, such as only including one rep-
resentative of the set of symmetrically equivalent positions
in the hash table, or using a distance table of a subgroup of
the cube rather than just the close positions, or only storing
the distance mod 3 rather than the full distance. The first
such program was written in 1997 [5] and required several
days per position on average, but a recent version by
Herbert Kociemba using eight threads on an i7 920 pro-
cessor can find about 300 optimal solutions an hour. If we
were to use such a program to solve the reduced set of
4.51 9 1017 positions, one at a time, with today’s hardware,
we would require more than one million computers for
more than one hundred thousand years. No better algo-
rithm to optimally solve a single position is known.

It is not strictly necessary to optimally solve every
position to compute the diameter. We know that some
positions require at least 20 moves. The first such position
found is called superflip; it has every cubie in the correct
place, all corners correctly oriented, and all edges flipped
[8]. Because we have a lower bound on the diameter, we
need not optimally solve each position; once we find a
solution of length 20 or less, we can move on to the next
position. Kociemba devised an algorithm to quickly find
reasonably short but not necessarily optimal solutions to
arbitrary positions. That program (slightly improved as we
shall describe) can find move sequences of length 20 or less
at a rate of about 240 positions per second (subject to the
condition that there is such a sequence; no exceptions have
been found yet). Even with this kind of speed, proving all
4.51 9 1017 positions would require more than seven
thousand computers for more than seven thousand years.

Rather than using a tremendous amount of CPU time,
we can instead use a large amount of memory. If we have
enough memory or disk space to store two bits for each of
the 4.51 9 1017 positions, we can perform a breadth-first
search; some clever bit twiddling and some nice fast mul-
ticore processors should allow us to extend this table at a
rate of billions of positions a second. Unfortunately, this
approach would require over one hundred petabytes of
memory.

All hope is not lost. Technology marches onward; when
we get to the point we can solve a billion positions a sec-
ond, we will need only four computers for four years to
finish the proof. In the meantime, we can come up with
better techniques to refine the upper bound and improve
our techniques.

Kociemba’s Algorithm
Several techniques have been used to find an upper bound
on the diameter of the cube group. Thistlethwaite gave a
four-stage algorithm that requires a maximum of 52 moves.
Kociemba improved this to an algorithm that requires a
maximum of 29 moves (as shown by Michael Reid [7]). Our
work is based on Kociemba’s algorithm, so we will describe
it a bit further here. Kociemba himself has a much more
detailed explanation on his web site [3]. In 2006, Silviu
Radu reduced the upper bound to 27 [6], and in 2007
Kunkle and Cooperman reduced it to 26 [4].

Kociemba’s algorithm identifies a subset of 20 billion
positions, called H. Reid showed that every position in this
subset is solvable in at most 18 moves, and further that
every cube position is at most 12 moves from this subset.
Phase one finds a move sequence that takes an arbitrary
cube position to some position in the subset H, and phase
two finds a move sequence that takes this new position to
the fully solved state.

To describe this subset, we will introduce some new
terminology. A cubie belongs in a particular place, if it is in
that place in the solved cube. Thus, all cubies that have
some face colored U belong in one of the top nine cubies.
The middle layer consists of the nine cubies between the
top and bottom layers; only four of these cubies (edges all)
move.
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The subset H is composed of all positions that have the
following characteristics:

1. All corners and edges are in their default orientation (as
defined earlier).

2. The edge cubies that belong in the middle layer are
located in the middle layer.

The number of positions for which these conditions
hold are the permissible permutations of the corners, the
top and bottom edges, and the middle edges, with the
condition that the parity between the edge permutation
and the corner permutation must match. This is 8!8!4!/2, or
19.5 billion positions.

These characteristics are preserved by the moves U, U2,
U0, D, D2, D0, R2, L2, F2, B2, which we call the set A.
Further, these moves suffice to transform every position in
H to the solved state. (This is a nontrivial result, but it can
easily be shown by brute force enumeration.) For more
than 95% of the positions in H, the shortest move sequence
consisting only of moves from A is the same length as the
shortest move sequence consisting only of moves from S, as
shown in Table 1. Further, the worst case is 18 in both
cases.

Fitting a distance table for all 20 billion positions of H
into memory may seem challenging, but there are a few
tricks we can use. Because the defining characteristics of
this set treat the up and down faces differently than the
other B faces, all 48 symmetries of the cube cannot be used;
however, 16 can be used; we need only store one entry per
equivalence class. Further, instead of storing the distance,
which is an integer between 0 and 18 and would require
more than four bits each entry, we can store only the dis-

tance mod 3, requiring only two bits each entry. This can
be achieved by only performing lookups for positions that
are adjacent to a position at a known depth. By maintaining
a current position and a current distance, and updating the
distance as we perform each move, the distance mod 3 of
the new position gives us enough information to know
whether that position has a distance less than, equal to, or
greater than that of the previous position.

The remaining problem is how we can transform an
arbitrary cube position into a position in H in 12 or fewer
moves. To illustrate how this can be done, we describe a
way to relabel the cube so that all positions in H have the
same appearance, and all positions not in H have a dif-
ferent appearance.

Consider an arbitrary position p. To be in H, the per-
mutations of the corners are irrelevant; only the orientation
matters. To represent this, we remove all colored stickers
from the corners, replacing the stickers colored U or D with
U and leaving the other faces, say, the underlying black
plastic. (To make it easy to follow, we also replace the D
sticker in the center of the down face with U.) All corner
cubies are now interchangeable, but we have sufficient
information to note the orientation of the corners.

The permutation of the middle edges does not matter
either, but they must lie in the middle layer and be oriented
correctly. We thus remove the colored stickers from four
edge cubies that belong in the middle layer, replacing the F
and B colors with F and leaving the L and R colors as
black. (We also replace the B center sticker with F for
convenience.)

The permutations of the top and bottom edges also does
not matter; for these we do the same color change we did
for the corners (U and D get turned into U, and the other
four colors get removed).

With this transformation, all positions in H get turned
into the same solved cube: Eight corners, each with a U
sticker on either the up or down face; four middle edges,
each with an F sticker on either the front or back face; eight
top/bottom edges, each with a U sticker on the up or down
face. Every position not in H has a different appearance.

This relabeled puzzle has a much smaller state space
than the full cube space. Specifically, the space consists of
38/3 corner orientations multiplied by 212/2 edge orienta-

tions multiplied by
12
4

! "
ways to distribute four middle

edges among 12 edge positions, for a total of 2.22 9 109

positions. We call this set of positions R. With 16 ways to
reduce this by symmetry and using only two bits per state, a
full distance table is easy to fit in memory, and the full state
space can be explored easily. We shall call this relabeling
process r; it takes a position in G and transforms it into a
position in R.

Kociemba’s algorithm, then, is to take the original
position, call it a, compute r(a), the relabeling; solve the
relabeled puzzle with some sequence b 2 S!; apply those
moves to an original cube yielding ab which lies in H, and
then finish the solution with another sequence c 2 A! such
that abc is the solved cube. The final solution sequence is
bc.

Table 1. The number of positions in H at a given distance using moves
from S and moves from A; the numbers are strikingly similar

d moves in S moves in A

0 1 1

1 10 10

2 67 67

3 456 456

4 3,079 3,079

5 20,076 19,948

6 125,218 123,074

7 756,092 736,850

8 4,331,124 4,185,118

9 23,639,531 22,630,733

10 122,749,840 116,767,872

11 582,017,108 552,538,680

12 2,278,215,506 2,176,344,160

13 5,790,841,966 5,627,785,188

14 7,240,785,011 7,172,925,794

15 3,319,565,322 3,608,731,814

16 145,107,245 224,058,996

17 271,112 1,575,608

18 36 1,352

19,508,428,800 19,508,428,800
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Kociemba’s algorithm splits the problem into two roughly
equal subproblems, each of which is easy to exhaustively
explore using a lookup table that fits in memory, yielding a
fairly good solution to the much larger problem. This algo-
rithm can find a solution of distance 29 or less almost
instantaneously (in well under a millisecond). This defines
an upper bound on the worst-case position distance.

Kociemba extended this algorithm for another purpose:
To quickly find near-optimal solutions for a given position.
He proposed finding many phase-one solutions, starting
with the shortest and increasing in length, and then, for
each, finding the shortest phase-two solution. By consid-
ering dozens, thousands, or even millions of such
sequences, he has found that, in practice, nearly optimal
solutions are found very quickly. Given an input which is
the initial cube position denoted by a, his algorithm is
given as Algorithm 1. The algorithm can either run to
completion, or it can be terminated by the user or when a
solution of a desired length is attained.

In Kociemba’s algorithm, d2 is a table lookup that takes a
position in H and returns the distance to the identity ele-
ment (e) using moves in A. (Kociemba actually uses a
smaller, faster table that gives a bound on this value; see [3]
for details.) The for loop is implemented by a depth-first
recursive routine that maintains ab incrementally and has a
number of further refinements, such as not permitting b to
end in a move in A. The phase-two solution process is
omitted both because it is straightforward and because it
takes much less time than enumerating phase-one
solutions.

This algorithm is extremely effective. Some reasons are:

1. Phase-one solutions are found very fast and mostly
access the portions of the phase-one lookup table near
the solved position; this locality enhances the utility of
caches significantly.

2. When searching for a phase-two solution, almost always
the very first lookup shows that the distance to the
solved position would make the total solution longer
than the best found so far; thus, almost all phase-one
solutions are rejected with a single lookup in the phase-
two table.

3. Kociemba has found that, in practice, the algorithm runs
considerably faster if he does not consider phase-one
solutions that contain a strict prefix that is also a phase-

one solution. This is motivated by the fact that we had
already explored that prefix earlier (since we consider
phase-one solutions by increasing length).

4. The last move at the end of phase-one is always a
quarter turn of F, B, R or L; the inverse move is also a
solution of phase-one, so candidate solutions are always
found in pairs at the leaves of the phase-one search tree.

5. There are a number of optimizations that can be per-
formed for the phase-one search when the distance to H
is small, such as storing specifically which moves
decrease the distance from that point.

Kociemba’s algorithm can be run as described above, or
it can be run in triple-axis mode. Note how the algorithm
treats the up and down faces differently than the other four.
Instead of just exploring a single given position a, in triple-
axis mode we explore three rotated positions, one with the
cube rotated such that the right and left faces correspond to
upper and down, one such that the back and front faces
correspond to upper and down, and the original unrotated
position. We try each rotation for a given phase-one depth
before moving on to the next phase-one depth. Our tests
show that this finds smaller positions much faster than the
standard single-axis mode; when trying to find solutions of
length 20 or less, this works approximately six times faster
on average than a single-axis search.

We have taken this idea one step further; we also con-
sider the inverse position in three orientations for a new
six-axis mode. We find this gives, on average, a further
doubling of speed when trying to find positions of 20
moves or fewer.

Our Set Solver
Reid showed a bound of 30 by proving it takes no more
than 12 moves to bring an arbitrary cube position to the H
set (by solving the restickered cube), and then showing that
every cube position in H can be solved in 18 moves. (He
then reduced that to 29 with a clever insight we omit for
brevity [7].) Our proof of 22 is similar, but instead of using
just the H set, we use a union of over a million sets all
related to H.

Consider how Kociemba’s solver solves an arbitrary
position to find a near-optimal solution. It first brings the
position (a) into H, by solving the restickered puzzle using
some sequence of moves (b). It applies that sequence of
moves to the original cube, then looks up how far that
position is from solved by using a sequence c containing
only moves from A (those moves that stay within H), and
determines if the total sequence is better than the best
known one. It then finds another way to bring the position
into H, and checks how close it is to solved at that point. It
does this dozens, or hundreds, or thousands, millions or
even billions of times, each time checking for a shorter
solution.

We turn this technique inside out. Each sequence b that
solves the restickered position r(a) is a solution to some full
cube position that has the same restickering as the given
input position; so is each sequence bc where c 2 A!: For
every full-cube position in Ha, each of which has the same
restickering, there is some c ! A* such that bc solves that

Algorithm 1. Kociemba’s Algorithm

1: d / 0

2: l / ?

3: while d\ l do

4: for b [ Sd, r(ab) = e do

5: if d + d2(ab)\ l then

6: Solve phase two; report new better solution

7: l / d + d2(ab)

8: end if

9: end for

10: d/ d + 1

11: end while

" 2009 Springer Science+Business Media, LLC, Volume 32, Number 1, 2010 37



position. Rather than throwing most of these solutions
away, we keep track of what full cube position each bc
sequence solves, marking them off in a table, until we’ve
found some solution for every position that has the same
restickering as the original position. Where Kociemba’s
algorithm searches for b and c such that abc = e, we
instead search for b and c such that r(abc) = r(e). This way
we find optimal solutions to 20 billion positions at a time.
We are careful to do this in order of increasing length of bc,
so that every time we find a bc that leads to a position we
haven’t seen before, we know we have a optimal solution
to that position.

Since abc 2 H ; we can implement this by simply
replacing the lookup table d2 on H with a bitmap on H
indicating whether the position abc has already been seen.
When every bit in the table has been set, we know we have
found an optimal solution to every position in Ha.

For our purposes, we do not need an optimal solution to
every position; all we need is a bound on the distance of
the entire set. Just as in Kociemba’s solver, the deeper the
phase-one search is allowed to go, the longer the program
takes; yet, a shallow phase-one search will still find a
solution to every position in the set. We use a tunable
parameter m that limits the depth of the phase-one search
to trade off execution time against the optimality of the
solutions found.

The main input to our set solver is a sequence a2 S!;
which takes the solved cube into some position; the set that
will be solved is Ha. Another input is the maximum depth
m to run the phase-one search; we have found the value
m = 16 is usually sufficient to prove an upper bound for
the distance of the set to be 20. To find the exact dis-
tance, m should be set to ?. Our algorithm is given as
Algorithm 2.

At the end of each iteration of themain loop, f contains all
positions abc such that |bc|\d. The prepass (line 4),
corresponding to Kociemba’s phase-two, extends the set f

by sequences ending with a move from A; the search (lines
9–11), corresponding to Kociemba’s phase-one, extends the
set f with move sequences not ending in a move from A.

Unlike Kociemba’s algorithm, we do permit our phase-
one search to enter and then leave theH group; we do this in
order to compute the precise set bound. We have not yet
explored the performance impact of this on our running
time.

The set f is represented by a bitmap, one bit per posi-
tion. For the prepass (line 4), we need to have both a
source and destination set, so we need to have two of these
bitmaps in memory at once. Our memory requirements are
completely dominated by these bitmaps.

The indexing of f is done by splitting the cube position
into independent coordinates, representing the permuta-
tion of the corners, the permutation of the up/down edges,
and finally the permutation of the middle edges.

The time spent in the code is split between the prepass
and the search phases. The prepass is a simple scan over
the entire f set, multiplying by the 10 moves in A; this can
be done efficiently by handling the coordinates from most
significant to least significant in a recursive algorithm so
that the inner loop only need deal with the permutation of
the middle edges, and the more expensive corner coordi-
nate computation is performed early in the recursion and
thus substantially fewer times. In the innermost loop, we
perform the move and bitmap update on all possible
middle edge permutations using a lookup table and some
bit-parallel logic operations.

The time in the search phase (lines 9–11) is very small
for low d, because there are few sequences s that satisfy the
conditions, but as d grows, so does the time for the search
phase, exponentially. Typically a search at level d + 1 will
require 10 times as much time as a search at level d. By
limitingm to 16 in the typical case, we limit the total time in
the search phase, and the whole program runs fast. For
values of m of 17 or higher, the search phase will dominate
the total runtime.

The Set Graph
The set R of relabeled positions of G has about two billion
elements. Consider a position a 2 R; we can define the
parent set of a to be all elements g 2 G such that r(g) = a.
Let us pick a single one of the elements i in the parent set of
a; the entire parent set can be represented by Hi. Each such
set has precisely the same number of elements, about 20
billion; every pair of sets is either identical or disjoint; and
the union of all of the sets is G, the full cube space. (This
can be shown with elementary group theory because H is a
subgroup of G and each set Hi is a coset.)

These sets are all related by the full set of cube moves
(S). Consider a cube position a and its set Ha. The set Hab
for b 2 S is adjacent to the set Ha. We can consider R as a
graph, where the vertices are the sets represented by the
positions of R, and the edges are moves in S. Clearly, for
any given position, |d(ab) - d(a)| B 1, and therefore the
same is true for sets as a whole: |d(Hab) - d(Ha)| B 1. If
we have shown that d(Ha) B c for some value of c, we
have also shown that d(Has) B c + |s|, where s is a
sequence of moves of length |s|. This allows us to find an

Algorithm 2. Set Solver

1: f / [

2: d / 0

3: loop

4: f / f [ fA {prepass}

5: if f = H then

6: return d

7: end if

8: if d B m then

9: for b [ Sd, r(ab) = e do {search}

10: f / f [ ab

11: end for

12: end if

13: if f = H then

14: return d

15: end if

16: d/ d + 1

17: end loop
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upper bound for one set and use it to infer constraints on
upper bounds of neighboring sets in the graph of R.

The relabeled puzzle shows 16-way symmetry, so there
are only about 139million relabeled positionswhen reduced
by this symmetry. This reducedgrapheasily fits intomemory,
and operations on this graph can be performed reasonably
quickly. For each vertex, we maintain a value which is the
least upper bound we have proved to date. These values are
initialized to 30, since we know every position and, thus,
every set has a distanceof nomore than that. Aswe solvenew
sets, we update the value for the vertex associated with that
set, and update adjacent vertices recursively with the new
upper bound implied by this value.

Improving the Bound
Some sets we solve have relatively few positions in the
furthest distance. Since for lower values of m our set solver
only gives us an upper bound on the set distance, in many
cases the true distance of all these positions is less than the
calculated upper bound. By solving these explicitly using a
single-position cube solver, and proving they do not
require as many moves as our set solver found, we can
frequently reduce our bound on the distance for the set by
1. To facilitate this, if the count of unsolved positions in one
of the sets falls below 65,536 at the top of the loop, we
print each of these positions to a log file.

To solve these positions, we first use our six-axis
implementation of Kociemba’s solution algorithm. Since
the solution distance we seek is almost always 19 or 20, this
algorithm finds solutions very quickly, usually in a fraction
of a second. For those positions that resist Kociemba’s
solver, we solve them using our optimal solver.

Reducing Memory Use
During the prepass, we compute f/ f [ fA, where both the
original and the new f is represented by a bitmap with one
bit per position. Since the set size is almost 20 billion, this
would normally require 2.4 GB per set for a total of about
4.8 GB. This is more memory than can be allocated on 32-
bit operating systems, and is more memory than can be
added to many modern computers. We can reduce the
memory requirements substantially by keeping only a
portion of the source and destination bitmaps in memory at
any given time.

We do this by splitting the bitmap index into two parts,
one calculated from the corner permutation and the other
calculated by the edge permutation. We then split each
bitmap into pieces, one piece per corner permutation; there
are 8! such pieces. For every source bitmap part, corre-
sponding to some source corner permutation, and every
single move from A, there is only a single destination bitmap
part, and this is found by performing the move from A on
the corner permutation corresponding to the source bitmap
part. As we proceed through the prepass, we consider each
corner permutation in turn, allocating destination bitmap
parts only as we need them, and freeing source bitmap parts
as soon as we are finished with them. With a small program
that performs a randomized search guided by some ad hoc
heuristics, we have found a good ordering of the corner

permuations such that the maxiumum amount of memory
required at any one time during the prepass is only 3.2 GB,
which enables the set solver to be run on machines with
only 4 GB of physical memory.

Choosing Sets to Solve
This work grew out of a search for distance 21 positions [9]
that involved solving a number of these sets exactly. We
thus started this work with a few thousand sets already
solved; we used those as our base set. At every point during
this exploration we maintained the symmetry-reduced
graph R on disk annotated with the best upper bound we
had proven for each corresponding set. To select a new set
to solve, we used a simple greedy strategy. We chose a
vertex that, when we pushed its bound down to 20 and
propagated its implications over the graph R, would reduce
the maximum number of vertices from above 22 to 22 or
fewer; we call this value the ‘impact’ of the vertex. We
evaluated the impact of a few hundred vertices, and chose
the one with the greatest impact to solve. Once we had
selected a vertex, we added it to the list of sets to solve,
updated the relevant vertices on the in-memory copy of the
graph (not the persistent one on disk), and repeated this
process to select another vertex.

We typically generated lists of a few thousand sets to
solve in this manner. Since some of the sets actually were
found to have a bound of 19 or even 18, and this changed
the graph in different ways than our above algorithm
assumed, we generated a brand new list of vertices to solve
every few days based on the updated R graph.

Results
Approximately 6,000 sets, sufficient to prove an upper
bound of 25, were all computed on home machines
between October 2007 and March 2008. When those results
were announced, we were contacted by John Welborn of
Sony Pictures Imageworks, offering some idle computer
time on a large render farm to push the computation
further. Using these machines, we were quickly able to
solve sets to prove bounds of 24 (26,380 sets requiring
approximately one core year) and 23 (180,090 sets requir-
ing approximately seven core years). With some additional
time, we managed to finally prove a bound of 22 (1,265,326
sets requiring 50 core years). The sets were run on a het-
erogeneous collection of machines, some multicore, some
single-core, some older and slower and some more mod-
ern. Since these sets were run, the set solver has seen
significant performance improvement and processor tech-
nology has advanced; on a single Intel i7 920 processor, we
believe we can reproduce all these results in only 16 core
years (four CPU years on this processor).

All of these sets were shown to have a distance of 20 or
less, using searches through depth d = 16 or depth d = 15.
Approximately 4.2% were shown to have a distance of 19.

We continue to execute sets, and we are making pro-
gress toward proving a bound of 21. Once this is done, we
believe that with only a few more core centuries, we can
show a new bound of 20 on the diameter of the cube
group.
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The Quarter-Turn Metric
These general ideas apply nearly equally well to the
quarter-turn metric, where each 180-degree twist requires
two (quarter) moves. The fundamental algorithms remain
the same, except each 180-degree move (half move) has
weight two. Implementing this in our set solver did intro-
duce one complication: The prepass operation f / f [ fA
does not properly handle the half moves. This problem can
be solved by considering permutation parity.

Every permutation is either of odd or even parity; it is of
odd parity if an odd number of element swaps is needed to
restore the permutation to the identity, and even if an even
number of swaps is needed. Every quarter move performs a
permutation of odd parity on the corners and also on the
edges; every half move performs a permutation of even
parity. Thus, the parity of the corner permutation always
matches the parity of the edge permutation, and this is
always equal to the parity of the number of quarter turns
performed from the solved state.

The positions in the set H are evenly divided between
those of odd parity (H1) and those of even parity (H0).
Similarly, we can consider our intermediate set of positions
f to be split into odd (f1) and even (f0) parity, and the
moves in A to be split into quarter moves (A1) and half
moves (A0). At step d in the quarter-turn metric, we can
only find positions whose parity is the same as the parity of
d. Thus, before the prepass, the half of f that has the
opposite parity to d represents positions at distance d - 1
or less, but the half that has the same parity as d represents
positions at d - 2 or less. To reflect newly reachable
positions at distance d, we can apply the half moves (A0) to
the half with the same parity as d, and apply the quarter
moves (A1) to the half with the other parity. Line four in
Algorithm 2 must be replaced by the code shown in
Algorithm 3.

The distances in the phase-one pruning table (d2) are of
course different in the quarter-turn metric, and in general
Kociemba’s algorithm is somewhat less effective; the solu-
tions found quickly tend to be somewhat further from
optimal than with the half-turn metric. Similarly, the quarter-
turn metric version of our set solver requires searching
deeper in phase one. Specifically, for almost all sets,
searching through d = 19, taking about five minutes on our
i7 920, proves almost all positions in that set can be solved in
25 or fewer moves. Typically, only one or two positions are
left, and these are very quickly solved by Kociemba’s algo-
rithm in 24 moves, leaving a bound of 25 for the whole set.

In the quarter-turn metric, there is only one position
known that has a distance of 26; this position was found by
Michael Reid. We solved 24,759 sets in the quarter-turn
metric to a depth of 19; each of these was found to have a
bound of 25 or less, except for the single set which inclu-
ded Reid’s position. These sets sufficed to show that there is
no cube position that requires 30 or more moves, lower-
ing the upper bound in the quarter-turn metric from 34 [6]
to 29.
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