11/29/13 5:17 PM

Cube Explorer 5.01

If you like Cube Explorer you can show your appreciation.

PayPal

Donate

Please note: Cube Explorer is not derived from, is not associated with and is not endorsed or
sponsered by the owner of the RUBIK'S CUBE Trademark. This owner is Seven Towns Limited,
the manufacturer and worldwide distributor of the RUBIK'S CUBE three dimensional puzzle and
provider of an electronic version of the puzzle via its official web site.

Cube Explorer is a non-commercial, educational product. It is freeware and the result of scientific
research.

© 2013 [Herbert Kociemba

http://kociemba.org/homex.htm Page 1 of 1

http://www.rubiks.com/
mailto:kociemba@t-online.de

11/29/13 5:17 PM

The Two-Phase-Algorithm

The following description is intended to give you a basic idea of how the algorithm works.

The 6 different faces of the Cube are called U(p), D(own), R(ight), L(eft), F(ront) and B(ack). While
U denotes an Up Face quarter turn of 90 degrees clockwise, U2 denotes a 180 degrees turn and
U' denotes a quarter turn of 90 degrees counter-clockwise. A sequence like U D R' D2 of Cube
moves is called a maneuver.

If you turn the faces of a solved cube and do not use the moves R, R, L, L', F, F', B and B' you will
only generate a subset of all possible cubes. This subset is denoted by G1 = <U,D,R2,L2,F2,B2>.
In this subset, the orientations of the corners and edges cannot be changed. That is, the
orientation of an edge or corner at a certain location is always the same. And the four edges in the
UD-slice (between the U-face and D-face) stay isolated in that slice.

In phase 1, the algorithm looks for maneuvers which will transform a scrambled cube to G1. That
is, the orientations of corners and edges have to be constrained and the edges of the UD-slice
have to be transferred into that slice. In this abstract space, a move just transforms a triple (x,y,z)

into another triple (x',y',z"). All cubes of G1 have the same triple (x0,y0,z0) and this is the goal
state of phase 1.

To find this goal state the program uses a search algorithm which is called iterative deepening A*
with a lowerbound heuristic function (IDA*). In the case of the Cube, this means that it iterates
through all maneuvers of increasing length. The heuristic function h1(x,y,z) estimates for each
cube state (x,y,z) the number of moves that are necessary to reach the goal state. It is essential
that the function never overestimates this number. In Cube Explorer 2, it gives the exact number of
moves which are necessary to reach the goal state in Phase 1. The heuristic allows pruning while
generating the maneuvers, which is essential if you do not want to wait a very, very long time
before the goal state is reached. The heuristic function h1 is a memory based lookup table and
allows pruning up to 12 moves in advance.

In phase 2 the algorithm restores the cube in the subgroup G1, using only moves of this subgroup.
It restores the permutation of the 8 corners, the permutation of the 8 edges of the U-face and D-

face and the permutation of the 4 UD-slice edges. The heuristic function h2(a,b,c) only estimates
the number of moves that are necessary to reach the goal state, because there are too many
different elements in G1.

http://kociemba.org/twophase.htm Page 1 of 2

11/29/13 5:17 PM

The algorithm does not stop when a first solution is found but continues to search for shorter
solutions by carrying out phase 2 from suboptimal solutions of phase 1. For example, if the first
solution has 10 moves in phase 1 followed by 12 moves in phase 2, the second solution could
have 11 moves in phase 1 and only 5 moves in phase 2. The length of the phase 1 maneuvers
increase and the length of the phase 2 maneuvers decrease. If the phase 2 length reaches zero,
the solution is optimal and the algorithm stops.

In the current implementation the Two-Phase-Algorithm does not look for some solutions that are
optimal overall, those that must cross into and back out of phase 2. This increases the speed
considerably. Use the Optimal Solver, if you want to prove some maneuver to be optimal.

http://kociemba.org/twophase.htm Page 2 of 2

The Performance of the Two-Phase-Algorithm 11/29/13 5:17 PM

Two-Phase-Algorithm and God's Algorithm:

God's number is 20

The algorithm which gives an optimal solution in the sense that there is no shorter solution is called God's
algorithm. There are cube positions (for example the superflip which flips all 12 edges), which are known to
have a shortest maneuver length of 20 moves to be solved. After 30 years it has finally been shown in July
2010, that all cube positions can be solved within 20 moves or less.

God's Number is 20

An overview is given on the webpage http://cube20.org/.

Our proof was recently published in SIAM Journal on Discrete Mathematics (Volume 27, Issue 2).

A tried to make a few webpages, which give more detailed information about the proof without being too
technical. Some subgroups and their cosets play an important role here, and if you have some basic
knowlege of group theory and combinatorics you should be able to follow the train of thoughts.

1. The subgroup H and its cosets

2. The subgroup Q and its cosets

3. Solving a reduced set cover problem
4. A fast coset solver

The Two-Phase-Algorithm gives near optimal solutions

| generated 1 million random cubes on a 3 GHz Pentium 4 PC, trying to find a cube which was not solvable
within 20 moves with the Two-Phase-Algorithm.

But the Two-Phase-Algorithm solved all generated random positions within 20 moves. More precisely, it
solved about 30000 random cubes per hour and the final distribution of the maneuver length was:

13: 4, 14: 18, 15: 81, 16: 609, 17: 3893, 18: 23411, 19: 141366, 20: 830618.

Nevertheless the computation of God's number showed, that there some very rare positions which are quite
hard to solve within 20 moves with the two-phase algorithm, for example the cube generated by the

maneuver
LR2U2B'D2LD2F U RU2L'F'D'R'B2 D2 R'U'F2 . On my machine this one takes 16 minutes (in
triple search mode).

http://kociemba.org/performance.htm Page 1 of 4

http://cube20.org/
http://kociemba.org/math/papers/rubik20.pdf
http://kociemba.org/math/20moves/subgroupH.html
http://kociemba.org/math/20moves/subgroupQ.html
http://kociemba.org/math/20moves/setcover.html
http://kociemba.org/math/20moves/cosetsolver.html

The Performance of the Two-Phase-Algorithm

Optimal Cube Solver

11/29/13 5:17 PM

In 2009 | used Cube Explorer 4.64s and an Intel Core i7 920 CPU machine (Vista 64 bit with 6 GB of RAM)

to solve 100000 random positions optimally in parallel on 8 cores (4 physical and 4 virtual cores).

67099

18 197 2710

Ve
T T T T T T |

14 15 16 17 18 19 20

On average the program solved about 7000 cubes/day ! In this sense Cube Explorer's implementation of
God's Algorithm does a decent job.. The average optimal solving length is ~17.7 . If you want to download

the 100000 optimally solved cubes for some reason, you can do this here.

In January 2010 Tomas Rokicki even solved 1 million random cubes optimally and got the following
distribution, which is very close to the distribution | got:

670407

267027

1 14 172
_—ny oy o o Y

T T T T T T T T 1

I

http://kociemba.org/performance.htm

Page 2 of 4

http://kociemba.org/math/optman/100000optcubes.zip

The Performance of the Two-Phase-Algorithm 11/29/13 5:17 PM

12 13 14 15 16 17 18 19 20

As you can see, it is unlikely to find a cube position which really needs 20 moves by random. Presumably
the chance is less than 1071, see here for details.

The first cube proved in 1995 to need 20 moves was the superflip, a highly symmetric cube position.

Theoretical Probability Distribution

Though we now know, that all positions can be solved within 20 moves, the theoretical distribution for the
maneuver length of God's Algorithm for Rubiks Cube is only known for maneuver lengths less than 16.

Because there are 1, 18, 243, 3240, 43239, 574908, 7618438, 100803036,1332343288, 17596479795,
232248063316, 3063288809012, 40374425656248, 531653418284628, 6989320578825358,
91365146187124313 positions which have a shortes maneuver length of n moves for n =0 to 15 (see
sequence A080601 in the On-Line Encyclopedia of Integer Sequences) and there are
43252003274489856000 different cube positions, we get for the probability P to solve a random cube
optimally in n moves:

Maneuver Length n Probability P Branching Factor B
0 2.31203 *10°20 18
1 4.16166*1071° 13.5
2 5.61824*10718 13.3333
3 7.49098*10°17 13.3454
4 9.99699*10°16 13.2961
5 1.32921*1014 13.2516
6 1.76141*10713 13.2315
7 2.3306*10712 13.2173
8 3.08042*10°11 13.2072
9 4.06836*10710 13.1986
10 5.36965*1079 13.1897
11 7.08242x1078 13.1801
12 9.33469*10°7 13.1681
13 1.22920%10°° 13.1464
14 1.61595*10™ 13.0721
15 0.0021124 ~12.8 (simulation)
16 simulation result: ~0.0264 +0.0003" ~10.1 (simulation)
17 simulation result: ~0.267 +0.0009 ~2.51 (simulation)
18 simulation result: ~0.6704 +0.0009" ~0.051 (simulation)
19 simulation result: ~0.03387 +0.0004" probably below 3*10710
20 P>0, but probably below 1011 0
>2N n -

http://kociemba.org/performance.htm Page 3 of 4

http://cubezzz.dyndns.org/drupal/?q=node/view/167
http://kociemba.org/math/oh.htm
http://oeis.org/A080601
http://www.research.att.com/%7Enjas/sequences/Seis.html

The Performance of the Two-Phase-Algorithm 11/29/13 5:17 PM

*:95% confidence interval

Important milestones on the path towards God's number

Phase 1 of the Two-Phase-Algorithm needs at most 12 moves and phase 2 needs at most 18 moves.
Michael Reid showed in 1995, that the 18 moves case for phase 2 always can be avoided. So all cubes can
be solved within 29 moves.

Gene Cooperman and Dan Kunkle claim in this paper (2007) to have proven that 26 moves suffice, but
there is yet a gap in the paper. This gap seems to be fixed meanwhile (August 2007, see Kunkles comment
in the_Domain of the Cube Forum but the corrected paper is not available.

Silviu Radu proved in_this paper (also 2007) that 27 moves suffice.

In May 2008 Tomas Rokicki proved, that 23 moves suffice, analyzing more than 200000 cosets of the
phase 2 subgroup of the Two-Phase-Algorithm (Domain of the Cube Forum). The method is similar to the
method Rokicki describes in this paper (also 2008) for 25 moves.

In August 2008 Tomas Rokicki reduced the upper bound to 22 moves after having analyzed 1.28 million
cosets within 50 core-years of CPU time (Domain of the Cube Forum). See_this well written paper for
details.

In July 2010 Morley Davidson, John Dethridge, Tomas Rokicki and me proved that God's Number for the
Cube is exactly 20.

http://kociemba.org/performance.htm Page 4 of 4

http://kociemba.org/math/papers/rubik26.pdf
http://cubezzz.dyndns.org/drupal/?q=node/view/86
http://kociemba.org/math/papers/rubik27.pdf
http://cubezzz.dyndns.org/drupal/?q=node/view/117
http://kociemba.org/math/papers/rubik25.pdf
http://cubezzz.dyndns.org/drupal/?q=node/view/121
http://kociemba.org/math/papers/rubik22.pdf
http://kociemba.org/math/papers/rubik20.pdf

Symmetric Patterns 11/29/13 5:18 PM

Symmetric Patterns in Detail

You can search for cubes of all symmetry types with the Symmetry Editor module of Cube
Explorer.

Look here first for the mathematical background of symmetric patterns and an explanation of the
pictograms.

An external page with good information about the schoenflies symbols can be found here.

We know God's algorithm for all the 164,604,041,664 symmetric cubes which exist. The following
table gives the distribution:

Distance Number Distance Number
of 1 11f 9,732,164
1f 18 12f 35,024,904
2f 51 13f 122,054,340
3f 312 14f 436,197,214
4f 1,335 15f 1,763,452,505
5f 4,380 16f 8,035,307,127
6f 17,782 17f 37,542,012,922
7f 70,188 18f 95,387,902,305
8f 229,336 19f 21,267,102,443
of 851,139 20f 1,091,994
10f 2,989,204 21f 0

Reducing the 1,091,994 symmetric cubes with 20 moves by symmetry and antisymmetry we find
exactly 32,625 essentially different symmetric cubes which need 20 moves to be solved. They are
included in the file 20moves.zip.

The details for the different symmetry types can be found below.

_ Schoenflies- Number of _N”!“ber_ 9f cubes Shortest aenerator for exactlv this More

http://kociemba.org/symmetric2.htm Page 1 of 3

http://kociemba.org/math/symmetric.htm
http://www.reciprocalnet.org/edumodules/symmetry/
http://kociemba.org/math/optman/20moves.zip

Symmetric Patterns

lype

Symbol
5 o
@ o
T
T
Ca
o o
s
O %
@ Ow
& o
@ cw
Can
D o
D s
Iﬁ'i D,q (edge)

Doy (face)

ng
Don (edge)

i

71 D2 (edge)

Don(face)

http://kociemba.org/symmetric2.htm

Symmetries

48

24

24

24

12

12

naving at least this
symmetry

4

24

72

16

48

432

7776

3,779,136

128

512

1024

1536

147456

442368

3072

512

2048

12288

98304

symmetry

do nothing

U2L2F2D2U2F2R2U2

BFLRB'FFD'ULRDU
ULDUL'D'URB2U2B2L'R'
UI
UL'RB2U'R2BL2D'F2L'R'
Ul
DBDU2B2F2L2R2U FU
B D'UL'RB'FU
L'RU2R2D2F2LRD2

uz2 D2

ub

D2

ub

u

UR2L2U2R2L2D

UF2B2D2F2B2U

URLF2B2R'L'U
UR2L2D2F2B2U
B2 D2 U2 F2

UF2U2D2F2D

11/29/13 5:18 PM

Information

i

B

2

2

2

2

2

i

B

2

2

i

2

2

i

B

2

2

i

2

2

Page 2 of 3

http://kociemba.org/math/oh.htm
http://kociemba.org/math/o.htm
http://kociemba.org/math/td.htm
http://kociemba.org/math/th.htm
http://kociemba.org/math/t.htm
http://kociemba.org/math/d3d.htm
http://kociemba.org/math/c3v.htm
http://kociemba.org/math/d3.htm
http://kociemba.org/math/s6.htm
http://kociemba.org/math/c3.htm
http://kociemba.org/math/d4h.htm
http://kociemba.org/math/d4.htm
http://kociemba.org/math/c4v.htm
http://kociemba.org/math/c4h.htm
http://kociemba.org/math/c4.htm
http://kociemba.org/math/s4.htm
http://kociemba.org/math/d2d_e.htm
http://kociemba.org/math/d2d_f.htm
http://kociemba.org/math/d2h_e.htm
http://kociemba.org/math/d2h_f.htm
http://kociemba.org/math/d2_e.htm

Symmetric Patterns

ORI RDID D

IS

N

294912 R2L2F B

65536 UR2L2U2F2B2U'

1,179,648 R2 L2 U2

98304 B2 R2 B2 R2 B2 R2

589824 U'DF2B2

98304 UR2UDR2D

15,288,238,080 L RU2

2,548,039,680 UR2D'U'R2U'

18,345,885,696 F2 R2

424,673,280 UB2UDB2D'

45,864,714,240 UD'RL'

43,252,003,274,489,856,000 U R

11/29/13 5:18 PM

2

2

[

i

[

2

i

B

2

2

i

B

http://kociemba.org/symmetric2.htm

Page 3 of 3

http://kociemba.org/math/d2_f.htm
http://kociemba.org/math/c2v_a1.htm
http://kociemba.org/math/c2v_a2.htm
http://kociemba.org/math/c2v_b.htm
http://kociemba.org/math/c2h_a.htm
http://kociemba.org/math/c2h_b.htm
http://kociemba.org/math/c2_a.htm
http://kociemba.org/math/c2_b.htm
http://kociemba.org/math/cs_a.htm
http://kociemba.org/math/cs_b.htm
http://kociemba.org/math/ci.htm
http://kociemba.org/math/c1.htm

Antisymmetric Patterns 11/29/13 5:18 PM

G

Symmetry and Antisymmetry

You can search for cubes of all types of symmetry/antisymmetry types with the Symmetry Editor
module of Cube Explorer.

Look here first for the mathematical background of symmetric patterns and an explanation of the
pictograms.

An external page with good information about the schoenflies symbols can be found here.

We use the symmetrygroup M of the cube with 48 elements to construct a group with 96 elements
using the direct product M x C,, where C, = {1,a} is the cyclic group of order 2. Now we are able to

extend the concept of symmetry to the concept of antisymmetry.

While applying (m ,1) to a cube c just means that we apply the symmetryoperation m to to cube,
(m,a) means that we apply m first and then take the inverse of this cube. We call a cube ¢ which is
invariant under (m,a) antisymmetric. This is equivalent to the statement that applying m gives the
inverse of the cube.

In a mathematically precise sense we define a group action of M x C, on the set of cubes by

(m1).y=mym™' and (m,a).y=(mym™)" for any cube y. All cubes in the same orbit are
related by conjugacy by whole-cube symmetry or/and inversion. In particular all cubes in an orbit
share the same optimal maneuver length.

The inverse of a cube has nothing to do with the point reflection at the center of the cube which
also is called an inversion. With the inverse of a cube c we mean the inverse regarding the
permutation. The inverse of a cube generated for example with the maneuver R U' L2 then is L2 U
R'..

While M has 33 different subgroups up to conjugation M x C, has 131 different subgroups. This
can be verified easily with GAP:

M:= Group((1,2,3)(4,6,5),(2,3,5,4),(1,6)(2,5)(3,4));
M1:=DirectProduct(M,Group((1,2)));
Size(ConjugacyClassesSubgroups(M));

33

Size(ConjugacyClassesSubgroups(M1));

131

http://kociemba.org/antisymmetric.html Page 1 of 9

http://kociemba.org/math/symmetric.htm
http://www.reciprocalnet.org/edumodules/symmetry/
http://www.gap-system.org/

Antisymmetric Patterns 11/29/13 5:18 PM

Each of the 131 subgroups of M x C, defines an unique type of symmetry/antisymmetry. There are
3 different types of subgroups:

1. If H is any of the 33 essentially different subgroups of M, (H,1) is a subgroup of M x C, which

is isomorphic to H.

2. If H is a subgroup of M, (H,1)u(H,a) also is a subgroup of M x C,. This gives 33 additional
cases.

3. If Hy and H, are subgroups of M with Hic Hy and | Hy | =2 | Hq |, then (H4,1) u(Hy\ Hq,a) is
a subgroup of M x C,. Hy\ H¢ denotes the difference set of H, and Hy We have 65 different
types of this most interesting case.

Symmetries/Antisymmetries of type 3

In the animated gifs below, the blinking elements are those of H,\ H4. Applying these elements of
M give the inverse cube, while applying the not blinking elements of H4 leave the cube unchanged.

Number of
Size of cubes
T)I/-Ipe H1 H2 Su'bgrclj-lup conjugacy mod M x Cowith Shortc:ls: gen:e'rator fo: exactly
size [H| class exactly this s antisymmetry
symmetry
31 £ 0 o, 48 1 0
32 [0 T4 O, 48 1 0
. B2LR2B2F2D2 U2R
3.3 I-E}H Th Op, 48 1 4 F2DU2B2F2L2R2U'
(16f%)
<o BFLR'BFD'ULRD'
<o BFLRB'FFD'ULRDU
3.5 |\o\|;| T Ty 24 1 6 (12*)
DUR2BD2U2L'D2 U2
3.6 Cav Daqg 12 4 8 R B'R2 D' U' (14f*)
3.7 D D 12 4 88 DBDU2B2F2L2R2U'
@ 3 3 F U (11
3.8 @ Sg Dag 12 4 1338 B'D'UL'RB'F U (8f)
3.9 [l T T, 24 1 0
D'B2DL2D2B2UB2U’
310 [T] G Cay 6 4 43740 ()
3.11 @ D4 Dan 16 3 80 UD (2f)

http://kociemba.org/antisymmetric.html Page 2 of 9

Antisymmetric Patterns 11/29/13 5:18 PM

312 5 Daq(face) Dy 16 3 80 U'LRB2F2L' R U (8*)
F2R2D2F2LRU2F2 L'
3.13 @ Cuy Dan 16 3 176 R (101
o> e
314 [§] Ca D, 16 3 448 U D' (2f)
3.15 D, (edge) Dy 16 3 0
3.16 {{f}} Das(edge) Day 16 3 496 B F L2 R2 B' F' U2 (7f*)
- B2 L R2 B2 F2 D2 U2 R
3.17 Don(face) Dap 16 3 60 F2D' B2 F2 L2 R2 U
(15f*)
B2D'U'R2B2 U2 F2D U’
3.18 @ Ca D3 6 4 8780 o)
LRB'F U2B' F U2L'R'
3.19 @ D, (edge) Dy 8 3 64 (10
3.20 @ C4 D4 8 3 2080 UB2F2L2R2 D' (6
321 [[J Dp(face) Dy 8 3 490 B'F'L R (4
L2B2U2B2R2 U2 L2 D'
3.22 @ Co (al) Dyg(face) 8 3 32 U Rz (1)
3.23 @ D, (face) Dogy(face) 8 3 490 B F LR (4f*)
3.24 @ Sy Dyg(face) 8 3 6144 D'B2F2U2B2F2 U (7f*)
3.25 @ Co (al) Cuy 8 3 32 UB2F2 D2 L2 R2 U' (7
3.26) C4 Cuy 8 3 4192 U (1)
3.27 ﬁﬁj Cyp (a2) Cay 8 3 1136 L2 R2 D2 B2 F2 (5f*)
3.28 @ C4 Cun 8 3 448 BFUBFLRDLR (10f)
BFDBFLRDLR
3.29 @ S4 Cun 8 3 1568 10
3.30 Con(@) Can 8 3 0
B2 F2 UR2 B2 F2 R2 U’
331 [F) Caf(al) Dan(edge) 8 3 4544 L2 R2 (10f)
332 £} Co(b) Dyn(edge) 8 6 12800 D B2D'U' B2 D2 U' (7f)
e o 1 &T ~ o M _ S | R, e e i 2

http://kociemba.org/antisymmetric.html Page 3 of 9

Antisymmetric Patterns 11/29/13 5:18 PM

333 4§13 L2nD) Uzieage) s b 12800 D' RZ D U RZ U (bt")
3.34 @ D, (edge) Doy, (edge) 8 3 6688 D' F2 D2 U2 F2 U' (6*)
3.35 Con(a) Dy (edge) 8 3 10176 R2 D2 U2 R2 D U' (6f*)
L2 F' L2 D2 U2 R2 B' R2
3.36 @ D, (edge) Dyq(edge) 8 3 144 DU (1o
3.37 @ S, Dyy(edge) 8 3 6224 ULRU2LRU (7f)
D' L2 B2 U2 B2 R2 U2 L2
338 [[[J] Cov(a2) Daqledge) 8 3 192 D' U R2 U’ (12)
U'F2 R2 D U2 F2 D2 L2
3.39 @ Cs Se 6 4 364 U'B2 R2 U' (12f*)
3.40 @ D,(face) 'Dop(face) 8 1 2288 D B2 D2 U2 F2 U (6f)
3.41 Con(a) Donface) 8 3 14144 D' B2 D2 U2 F2 U (6*)
3.42 @ Co (@2) Dyn(face) 8 3 29232 U2 L2 B2 F2 R2 (5f)
3.43 @ Co(b) Cyp(al) 4 6 481856 B'LBL' RF'R'F (8F)
3.44 @ C,(a) Cyp(al) 4 3 1,776,960 BF ULR (5/)
3.45 @ Cs(d) Cyy (b) 4 6 481856 RD'R'DB R (6f*)
3.46 @ Cy(d) = Coyy(b) 4 6 2024512 UR2F2D U R2 U (7f)
3.47 Cs(a) | Cyy(b) 4 6 3,539,648 R2 B2 (2*)
U'R2 D B2 R2 B2 D B2 U’
3.48 @ Ce(d) Cop(b) 4 6 481848 ot
D' R2 D2 B2 D2 R2 U'
349 {7} Cab) Con(d) 4 6 | 2024424 o2
3.50 @ C, Cop (b) 4 6 3,695,238 L' RB'F (4
3.51 @ C,(b) D,(edge) 4 6 592064 U R2U2F2D2R2 U' (7f)
3.52 @ C,(a) D,(edge) 4 3 514384 LRD' UB' F (6
3.53 @ C, (a) Cs 4 3 10832 B'F' U2 L R (5
3.54 @ C,(a) Dy(face) 4 3 512816 D L2 R2 U' (4f*)
355 [T] Ca(a) S, 4 3 3264 UB'F'L'R' D (6f*)

http://kociemba.org/antisymmetric.html Page 4 of 9

Antisymmetric Patterns 11/29/13 5:18 PM

3.56 @ C,(@) Con(a) 4 3 1,765,392 DLR U (4f)
357 C.@ Cop(a) 4 3 1,731,088 = L2 B2 L2 D2 U2 (5f*)
3.58 @ C, Cop, () 4 3 1,863,344 D2 L2B2L2 U2 (5f)
3.59 Eﬁ C,(@) Cn(@2) 4 3 1,766,720 DLRD (4F)
3.60 C.(@ Cyn(a2) 4 6 3,474,976 F2 U2 B2 (3f*)
3.61 @ C1 Cs (b) 2 6 108,272,809,188 R B (2f*)

3.62 @ C4 C, (b) 2 6 21,419,485,172 R B' (2f*)

3.63 @ C4 Cs (a) 2 3 10,677,084,112 F U2 B' (3f%)
3.64 @ Cq Cs (a) 2 3 54,180,798,352 U R D (3f%)
3.65 @ C1 (0F 2 1 18,059,430,572 RURLDL (6f)

Symmetries/Antisymmetries of type 2

Cubes having this symmetry/antisymmetry are those of antisymmetry type 1 with the additional
requirement that they are selfinverse.

Number of
Type Schoenflies- Subgroup Sl_ze of mod (I:wu:eg with Shortest generator for exactly this
H Symbol size |H| cor;jllan:cy exactly tf\is antisymmetry
symmetry
21 o 96 1 4 Solved Cube (0f)
22 £ o 48 1 0
23 1 T 48 1 0
24 [T, 48 1 2 U2 L2 F2 D2 U2 F2 R2 U2 (8f*)
25 [l 7T 24 1 0
ULDULD'URB2U2B2L'R’
T Iir'o'rpolroncpiaN'cH 1 'o!

http://kociemba.org/antisymmetric.html Page 5 of 9

Antisymmetric Patterns

2.7

N
o

N
©

© DB DD K

2.10

2.11

212

213

2.14

2.15

2.16

217

2.18

219

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

@ QD DD

.y

£

e

D D 0 D

SZ

& @

Dog (edge)
D,q (face)
D2, (edge)
Do (face)
D, (edge)
D, (face)
Cay (at)
Co, (a2)
Cay (b)
Con (a)

Con (b)

228 @ C, (a)

http://kociemba.org/antisymmetric.html

12

12

12

32

16

16

16

oo

24

12

164

124

80

176

64

448

368

336

80

960

1302

3312

880

4544

29312

12800

13856

12788

512640

11/29/13 5:18 PM

Wk I\ W VUV I\4 W Y 4N

U' (13f)
DFUBFRBLR D'LU (12
U2R2UB2F D'U'FDUB2F

U' R2 U2 (15f*)

BULFUL B U2FR F2U2
(12f*)

D2 U2 (2*)
U B2 F2 L2 R2 U' (6f*)
U2 (1f%)

B2DU' R2FU2F R'D2 L' B2
D2 B'L'F R' (16f*)

B2F2UL2R2D2B2F2 U' L2
R2 (11f*)

B2 R'D2B2 F2 U2 L' F2 U2 (9f*)

U'L2 R2 U2 L2 R2 U' (7f*)

UL2B'L2 D2 U2 R2 F'R2 U’
(10

U' B2 F2 D2 L2 R2 U' (7f*)
B2 D2 U2 F2 (4f*)
U R2 D2 U2 R2 U' (6f*)
BL'RB2F2LR F' (8f*)

L2 B' L2 D2 U2 R2 F' R2 U2 (9f)
B2 D2 U2 F2 U2 (5f*)
D'L2D U L2 U' (6f)

U'BF L2R2BF' U (8f)
D U2 R2 D' U' R2 U' (7f)

D L2 R2 D' (4f)

Page 6 of 9

Antisymmetric Patterns

2.29 ﬁﬁ
2.30
231 @
2.32 @
233 Ng

—_—

—_—

592040

1,731,088

481848

616848

3,558,670,020

11/29/13 5:18 PM

UR2 U2 F2 U2 R2 U' (7*)
R2 F2 R2 (3f)
B2 D' F2 L2 B2 U' R2 (7f*)

R2 U2 F2 U2 R2 (5f)

R U2 R’ (3f)

Symmetries/Antisymmetries of type 1

These symmetries/antisymmetries directly correspond to the 33 symmetry types of the cube given
here. So it might be better to call cubes which are invariant under one of these subgroups of M x
C, symmetric instead of antisymmetric. But be aware that there is a subtle difference between a

cube having the symmetries of a subgroup H of M and a cube having the symmetries of a
subgroup (H,1) of M x C,. For example entry 1.5 tells us that there are no cubes with symmetry

(T,1). But there are 12 cubes which exactly have the symmetry of the subgroup T of M if we ignore
antisymmetries.

H

1.1 5

12 BY%

-l

13 [

L

14 [

B
S

1.5 [eTel

16 £13
17
1.8 {73
1.9 [Y)

AAI\|<::H>|

Symbol

Op

http://kociemba.org/antisymmetric.html

Type Schoenflies- Subgroup
size |H|

48

24

24

24

12

12

Size of

1

Number of cubes
conjugacy mod M x Cowith exactly
class

this symmetry

0

48

1260

AAAON A

Shortest generator for exactly this
antisymmetry

R2D2RB2DUF2RU2R2
D'F2L'R'F2 U' (16f*)

RFRURDBDU2B2F2L2
R U' (14f)
D'U' B2 L2 D' UR2F2 U2
(9f%)

Ml AL Il NnA LIl P M /74ANLk\

http://kociemba.org/symmetric2.htm#tabstart

Antisymmetric Patterns

http://kociemba.org/antisymmetric.html

16

444004

16

48

96

14496

47536

320

16

310

6512

9604

3200

115504

11264

52688

11264

951,909,808

315,851,984

1,141,184,640

52,088,192

11/29/13 5:18 PM

U LDZL D UDZU DU \I1VI)

D U B2 F2 L2 R2 (6f*)

U2 B2 F2 L2 R2 (5f*)

R2BR2D'B2F2 L2 R2 U'R2
B' R2 (12f*)

U F2 B2 R2 L2 (5f%)

U'F' B'U2R2L2F'B'U (9f)

F2 L2 R2 U2 L2 R2 U2 F2 U2
(9f)
D'U'R2 B2 F2 U2 B2 F2 U2
R2 (10f*)

B'L2R2D2 U2 F' U2L'B2 F2
D2 U2 R' U2 (14f*)

UR'LFBRLU (8
R L U2 D2 (4f)

R2 L2 U'F2B2D' F2 R2 L2 F2
(10f)

U2 L2 R2 (3f*)

B'U'F2DL2DR2 U B2F R2
L2 (12f*)

R2 L2 U D' (4f*)

B2R2U' F2L2B'D'BR2F' U
F (12f)

URL (3f*
UL2D U L2 U (6
U D' R2 (3

D R2 D UR2 U' (6f)

Page 8 of 9

Antisymmetric Patterns 11/29/13 5:18 PM

1.32 Ui Z il Y0L,3/8,138 RLUZFZUZRZ(bT)

1.33 @ Cq 1 1 450,541,590,977,171,858 U R2 (2f*)

How to count the number of "essentially” different cubes up to symmetry and inversion

In 2005 Mike Godfrey and me obtained this number using the Lemma of Burnside. A direct
analysis of the 131 different subgroup types not only verifies the number 450,541,810,590,509,978
but furthermore gives the number of essentially different cubes having a specific symmetry type H.

For any cube y, the stabilizer subgroup Stab(y) is the subgroup H of M x C, that fixes y and hence
defines the symmetry/antisymmetry of y.

The orbit Orb(y) for any cube vy is the set of all cubes we get by applying the group action of all 96
elements of M x C, to y. All cubes in Orb(y) are equivalent, in particular they have the same

maneuver length.

Let S(H) be the union of all cubes which have the stabilizer subgroup H or a stabilizer subgroup
conjugate to H. Then the orbit Orb(y) of any element of S(H) is a subset of S(H). Each Orbit has
the same number of elements, namely [M x C,| / |H| = 96/|H|.

If we divide |S(H)| by this number we get the number O(H) of different orbits of S(H). We can
interpret O(H) as the number of essentially different cubes which have the symmetry/antisymmetry
of type H.

O(H) = [S(H)I [H| / 96

Though it seems difficult to classify all 43,252,003,274,489,856,000 different cubes regarding their
stabilizer subgroup on first sight, separating corners and edges and the fact that most of the cubes
are of type 1.33 make it possible to do this classification within a couple of hours of CPU-time.
O(H) is given in the column "Number of cubes mod M x C, with exactly this symmetry".

If we add the counts O(H) for all 131 cases we exactly get 450,541,810,590,509,978 in
accordance with the result of 2005.

http://kociemba.org/antisymmetric.html Page 9 of 9

https://groups.google.com/forum/#!msg/sci.math/vm7qr9Pvnqo/FhlnIao6o48J

The Performance of the Two-Phase-Algorithm 11/29/13 5:18 PM

Cubes with Twisted Centers

Usually you can ignore the twists of the center facelets
of the cube. But if there are pictures on the facelets
you will not get the desired result if you just solve the
cube in the usual way. There are 2048 possible ways
the center facelets still can be twisted.

| used Cube Explorer to show that all 2048 possible

| center twist can be solved within 21 moves or less and
there is essentially only one situation which really
needs 21 moves in the usual face turn metric. If slice
moves are allowed (slice turn metric) all situations can
be solved within 18 moves and there is only one case
which really needs 18 moves.

Up to symmetry and inversion there are exactly 73
nontrivial cases. They are listed below.

URLF2B2R'L'D'RLF2B2R'L" (14f*) u+d-

means for example, that the given maneuver has an optimal solution of 14 moves and twists the
U-center facelet 90 degree clockwise and the D-center facelet 90 degree counterclockwise.

From the 73 maneuvers below you only need a combination of the first few to solve your cube, the
others are more ore less of theoretical intererest. If you want to load them directly into Cube
Explorer to analyse for example the symmetries, use the files_centertwists_f.txt and
centertwists_s.txt for the face turn or the slice turn metric.

URLU2R'L'URLU2R'L' (12f*,12s%) u++

U2 L'R B2 D2 F2 L R' D2 B2 (10f*)
M U2 B2 D2 M' D2 B2 U2 (8s*)

U2 R2F2B2L2D2R2F2B2L2 (10f*)
L2 S2 L2 U2 R2 S2 R2 U2 (8s*) u++ d++

URLF2B2R' L'D'RLF2B2R'L' (14f)
M'E2 M U'M E2 M' U (8s*)
UFBLR U D F UDL'RF B (14f)
S'E'SU'S'E S U (8s*

u++ f++

u+ d-

u+ f-

http://kociemba.org/twisted.htm Page 1 of 5

http://kociemba.org/math/centertwists_f.txt
http://kociemba.org/math/centertwists_s.txt

The Performance of the Two-Phase-Algorithm 11/29/13 5:18 PM

URUR2U R B2L2F2DR2F2LB2L (15%) U+ d+
ME2L2F2R'L'F"M'S2R2 U2 L'R' U' (14s%)

UFUDF2L'RFBUF B'LR'F2D (16f*) U+ f+
D'FDUF2U2MERE M U2F2U' (14s*)

RLD2R'L'DF2R2D2L2B2R2U2B2L2D (16f*)
zZ2SEF2L2B2E'SU BFU2B'F' U' (14s%)

URUDFBRLUDF2D RL FB' D' (17f)
yL2S'E'SEL2DME M U' (11s*)

UDF2UD'FR2U2D2L2B'U2B2R2D2L2F2 (17f*)
MS2MD'MUM2S2D M U' (11s%)

URUR2U'D'L'F2D2B2R'DLUD'B2D' (17f*)
xXB'L'ER2E'M'U2F2U2R D UR2U' (14s%)

FURL'UDRLFB'RLFUD' RL'B'(18f*)

u++ d++ f++

u+ f++ r+

u++ f+ b+

u++ f++ r++

S'E'SUMS ESM U (10s") ut f+ b+
UF B R2F B L2B2 D' F2 R2 D2 R2 F2 R2 D2 B2 L2 (18f) b d e
y2x D2ME R2 E'M D2 F'R2 E2 M' U2 L' R' U' (155%)

L'D2B2R U2B2D2L'F2L2UL U L' U'L' U'L U (19F*) e
zx I'B2ERLF D2S' E'R2S'D UR' U' (158"

UBU'B' U B U'BUF2R2U2 L2 F B2 R2 D2 L2 B2 (19f*) b et

zS'M2B2U2F2MS'L'SMF2U2B'F' U' (15s%)

U2F2LR U2F2B2U2L'RF2D2 (12f*)
S2D2 M'U2 S2 D2 M' U2 (8s*)

UF2L2 UF2R2B2D F2 L2 D R2 B2 L2 (14f)
y M' E2 B2 M' B2 E' M D2 M' D' U' (11s*)
UFLRUDFB'LUD LR F BD (16f)
ZESE B M E' ME F (9s*)
UFBLRURFBUDLR FL D (16f)
y'XE'SEB'RSM S'L'U (10s*)

UF2 U2 F2 U2 L2 R2 B2 D' F2 U2 B2 U2 L2 R2 B2 (16f*)
SE2S'UMS' E2S M U' (10s*)
UBFR'LUDBFUDRL B F D (16f)

SMSM S'ES'E'(8s*)
UL2F2B2R2D'FBR2U2F B L2 U2 F2 L2 (16f*)

y'S'E2S DS U2SES' D2S U (12s%) U+ d- f++ [+
UFBL'RUD F2B' UDLR'F B D2 (16f)
SE'S'UM2SES' M2 U' (10s*)
UBFRL'UD B FUDR'LB'F D (16f)

u++ d++ f++ b++

u++ d++ f++ [++

u+ d- f+ I-

u+ f+r-I-

u+ d- f++ b++

u+ d- f- b+

u+ d++ f++ b-

VESESUD S E'S U2 (10s%) u+ d+ - b-
UF2R2L2B2D F2 U2 B U2 R2 L2 D2 F D2 B2 (16f*)

SSESUDMS E'SM D' U (125 u+d+ f+ b
URF2RLUDFBRLURLFBD (17f)

Y X E'SEB' R2SM' S'L'R' U (11s*) ut - ret -
UFUBL2BR2F2UF2R2B2U' D F U F2 (17 e

http://kociemba.org/twisted.htm Page 2 of 5

The Performance of the Two-Phase-Algorithm

yxMB2M'S'R2U2L2BR2E2M U2L'R'U' (15s%)
UD'F'B'L2B2UFB'U'D'B'L2R2 F L2 D2 B (18f*)
S'MB2DS2D'R2F2D'M S'L2 F2 R2 U' (15s%)

ULUDL2D2B'FLR'ULRU2R2BF' D' (18f*)
LEMD2F2D'U'FE'SU2L2D'U' (14s%)

ULRF2B2U2L'R'D'FB'L2F B U2D2 L2 F2 (18f*)
xXMB2MS2L2D2L2FR2E2M'D2L'R"U' (15s%)

ULULULUL UR'L'"U2B2D2L B2U2F2R2 (19f*)
zL'DLRD2SM'S'L2BE S'D2 R2 U' (15s%)

U2B2LB2D'URL'BFDUF R LD UB'F (19f)
yEBFMSR2U RLU2L2S' M F' U2 (15s%)
UFBL2UD'F'B'UDL2F LRF2L R B'D (19f*
ZxESMEF2U2B F'D'LRU2L'R U (15s*)
UFB'L'RUF2U2D2B2L'R'F'BUDLR2D (19f*)
YSMES E'M'D'ME' M U (11s*)
URL'FBUDRD FB'RLU D' R2U2F U2 R2 (20f*)
zZ2x' F'R2B2M'SMS2U'B'F'U2B2M S'R' U’ (16s%)
ULRB'L2D2R2F2UD'LUDF U2 R2 D2 B2 L R' (20f*)
ZxE'MERFEMSM E'B'U (12s*

UFU2D2FB'RLF2RLBU' D F2D (16f)
zx2L'B2LRF'D'U'B2D'U' S'E2 F' U' (14s¥)
URLU2L2U DR LD2F2U D'RL' D' (16f)
E'MEM U2S' M SM U2 (10s*)

URUD FBRL D FB2U DR'LF B (17f)
xEME' R2LSE'S'ER (10s*
URL'BUDFBR'LUDF2RFB' D (17f)
ZMEM E'L2F M SMB' U2 (11s*)

UDR2UD'L2 U2 F2 L F2 U2 D2 B2 R' D2 L2 F2 (17*)
zZ2x'MS'M'F2M'S'L E M2 E'R' U2 (12s%)

URUD FBRL'D'F2B2U' DR'LF B'D' (18f*

X SMSMS2L'EME'R (10s*)
URL2UDFBRLUDF2DRL'FB'D (18f*)
yXS2E'S'EFR2S'MSLRU (12s%)
FBU2R2L2F B'UR2F2U2R2F2R2 D2 R2 F2 D (18f*)
x2S'E2SU'B'L'R'F2LRB'D' U F2 U' (15s%)
URLU2L2FUDF B'RL'UD' F2R'F' B D (19f)
yEBFM SL2D'ME'L2B2L'R F' U2 (15s%)
UF2RL'U'DFBR'L'F UD RLF BR2F2 (19
F2MSRLU'D'L'S' M B2U2B'F' U’ (15s%)

U2F B R2ZUDBL R U'DFBRU' D F2LR (19
ZxS'MSRFMESE MB'U (12s*
UR2FR2BR2UDR2LF B U R2D'F B'L' D (19f*)
ZxE'S'D2M F2UDMB'R2S' MD2LR U (16s%)

UR2F2BU2LF2U2D2B2RD2B'L2D F2 R2 L2 B2 (19f*)

http://kociemba.org/twisted.htm

u+ f+ r++ |++

u+ d++ r++ |+

u+ d+ f++ b++

u+ d++ f++ r+

u+ d+ f- |+

u+ d+ f+ b-

u+ f++ b++ |-

u+ d- f+ r+

u+ f+ b+ |+

u++ d++ f++ r++ |[++

u+ d+ f++r+ |-

u+ d- f+ b++ r+

u+ d+ f++ b- r+

u++ f++ b++r+ |+

u+ d++ f++ b++ r+

u+ d++ f++ r+ |++

u+ d- f++ r++ |[++

u+ d+ f+ r+ |[++

u+t f+ b++r- |-

u+ d+ f++ b+ r-

u+ d+ f- b- r++

4+ A+ f++ r+ 1+

11/29/13 5:18 PM

Page 3 of 5

The Performance of the Two-Phase-Algorithm

http://kociemba.org/twisted.htm

yx2S8'U2ZME'SMF2L2B2DLRU2L R U (16s%)

URF2R'LB2UDFBR'LUR'L'F'BL2D (19f)
Z2xX'FFR2ZE'FBR' SMB2D2S MF2R'U' (15s*)

URUDR2U'D'LUD'RLF2L2U'DRL'D' (19f%)
yxERLF2R2E'SMD'LRD2L'R"U' (15s%)

URUDFBRLDR2U2BU' DRL'B2D2F'B'(20f*)
ZR'BBESD2R2U' D'R'S'E'S U2 F2 U' (15s%)
UD'FBUF B'UD'B'U2F2BL2D2B U2B R2 B (20f*)
ZD'SSESD'F2U'D'B'M'SR2 U2 L'R' U' (16s%)

URLU2D2R'L'F2 B2 U' D' R2 L2 D (14f*)
S2EMS2M S M2 S'E' (9s*)

ULR UD'LR U DB2F2L'RD (14f)
S2M'S'EMS'E' (7s%)

URLUDF2RL UDR'LB2D' (14f)
y'E'M U2 S U D S' D2 M' U2 (10s*)
URLF2B2R'L'DFBR2L2F' B' D2 (15f*)

y ME2M' D S2 E'M S2 M' U' (10s¥)

U2RLD F' B'R2L2D2F B U'R' L' F2 B2 (16*)
y2FBM2D2B' F U'RLS2D2L'R' U’ (14s*)
RLUDLFB UDRL F UD' FB' U2 D2 (18f*)
S'E'SMER'SM'S'R (10s%)
UFLRUDFBLR2B2UD' L'RF B'D (18f)
y2SE'S'D2M E'RS'M S R' U2 (125%)

R2 U2 L' F2 D2 U2 L2 R2 F2 R' U2 R2 D' L2 B2 F2 R2 U' (18f*)
E'S'ESU2S EME'S M U2 (12s%)
FUDBRLFUDBRLFU D B RL (18f*)

M ER2B2L2S' D'ME'SL2D M2D'B2R2 U' (17s%)
URFBDRLFUDLFB URL BD (18f*)
SE'M'S'EMUS2MS2M U (12s%)

URF B'L2B2UD'R'LBR2U' DF BR'L'D (19f)
y'E'RB'F'L2B2E S'DB2MSL'R' U2 (15s%)
FUR2FB'UDF BL2U' D'FBD F B' D2 B (19f)
Zx2R'FM ESD2L2U2M EF D UF2U' (15s*)
UR2U2D2L2FBRL' U'D'BU D'R'LF B D2 (19
yME M'DM2E' M S'E'S M U’ (12s%)
FUDB2D2FB' RLUD R FB' U DL2B2R'L' (20f)
zL'B2R2S'M'SD'ME'R2B2 LR F' U' (15s%)
ULRU2D'B2UR2DLR UDL2R'F2L D2R D' (20f*)
zxX'L'F2E'ME'L2U'B'F'D2M'S M' F2 R' U' (16s%)
UFL2FR2FUD' R'D2R2F B'U'FB'L2 D2 L' D' (20f*)
yXM S EEMEBR'S'M'SL'R2 U (13s*)
LRD'F'B'L2RB2L F'B'U'LRD2F L2 F2 B' U2 (20f*)
Z2RU2ME2R2B'ES'ME'SL2 U2L' R U R (17s%)

UF2R2B2LF2U2D2B2R'DR2F2L2BR2U2D2L2 F' (20f*)
ZxFEME'R'L'U2S'EB'M'S2R2 U2 L"'R'U'R (18s%)

u+ d++ f++ r++ |-

u+ d- f++ r+ |-

u+ d- f++ b- r+

u+ f++ b- r++ |++

u++ d++ f++ b++ r++ [++

u+ d- f++ b++r- |+

u+ d+ f++ b++ r+ |+

u+ d- f++ b++ r++ |[++

u+ d+ f++ b++ r++ |++

u+ d- f+ b++ r++ |-

u+ d+ f+ b++ r++ |+

u+ d+ f++ b++ r- |-

u+ d+ f+ b+ r- |-

u+ d- f+ b-r+ I-

u+ d+ f++ b- r+ |++

u+ d- f+ b+ r++ [++

u+ d++ f++ b- r++ |++

u+ d- f+ b++ r+ |++

u+ d++ f++ b++ r++ |+

u+ d++ f+ b++ r- |-

u+ d+ f+ b-r- |+

u+ d+ f+ b+ r+ |+

11/29/13 5:18 PM

Page 4 of 5

The Performance of the Two-Phase-Algorithm 11/29/13 5:18 PM

FUFB'RZLUDF B2RL'D'RL'BUD'R'B'(20f*)
XEMELESEFMS M F' R (13s¥)
UDR'LUD'BRL'UDR'LBD2L2B'U2D2F R2 (21f*)
yMEMDMSMF ES'E'FU' (13s*)

u+ d- f+ b+ r- |-

u+ d+ f+ b+ r+ |-

http://kociemba.org/twisted.htm Page 5 of 5

Download

11/29/13 5:19 PM

Download

Cube Explorer 5.01 needs 128 MB of RAM and runs on all Windows platforms from Windows 98
to Windows 7 (32 bit or 64 bit).

Download Cube Explorer (938 kb)

| also have a special version Cube Explorer 5.01s available, which uses more than 2 GB of RAM
for the huge optimal solver tables. It is about 15 times faster than the standard optimal solver and
optimally solves a random cube in less than two minutes on average on a 3 GHz Pentium 4
machine.

With a 32 bit operating system, only Windows XP Professional supports a virtual address space of
more than 2 GB for an application. Even with these versions you have to use the /3GB switch in
the Boot.ini file to support more than 2 GB of RAM for an application (see here for details).

You may download this special version here.

If you run Windows Vista 64 bit, this version will run without any problems if you have about 4 GB
of RAM installed. With an Intel Core i7 920 CPU I solved about 300 cubes optimally within one
hour by doing the computations in parallel to keep all 8 cores (4 physical and 4 virtual cores) busy.

If you are interested in an Optimal Cube Solver in the Quarter Turn Metric which runs on the
command line under LINUX and WINDOWS, you can download the documented C source code
here. An already compiled version for Windows is available here. The program also accepts the
file format of Cube Explorer, so you can generate your cubes in Cube Explorer and feed them to
this program.

Bruce MacKenzie has ported this command line program to run on a MAC (nomen est omen). You
can download the program here.

A working version of the two-phase-algorithm is not too easy to program. For demonstration
purposes | wrote a Java package which implements the two-phase-algorithm in its simplest form
without any symmetry reductions.

The package org.kociemba.twophase, the sourcecode and the corresponding javadocs are
included in the file twonhase.iar . The little .Java nroaram GlJI examnle.iar (Version 2009.02_16).

http://kociemba.org/download.htm

Page 1 of 2

http://kociemba.org/cube501.zip
http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://kociemba.org/cube501s.zip
http://kociemba.org/optiqtmSrc.zip
http://kociemba.org/optiqtmWinExe.zip
http://kociemba.org/macsolver.zip
http://kociemba.org/twophase.jar
http://kociemba.org/GUI_example.jar

Download 11/29/13 5:19 PM

which is an ekecurtablrerjarr file shows an éxéfnbler how to use the packégé. \
The tables in this implementation take only about 5 MB and are generated within seconds.
Nevertheless the package routine solved about 26000 random cubes/hour if the maximum

maneuver length was set to 21 moves and about 800 random cubes/hour if it was set to 20 moves
maximum length.

You may use this package for free but you must include an appropriate credit line.

Last but not least | implemented the Two-Phase-Algorithm into a Mathematica-package. The code
runs very slow, but it is also very short. It might be interesting from a theoretical point of view.

The interactive editor function in the package needs at least Version 6.0 of Mathematica.

http://kociemba.org/download.htm Page 2 of 2

http://kociemba.org/twophase.jar
http://kociemba.org/GUI_example.jar
http://kociemba.org/TwoPhase_Mathematica.zip

11/29/13 5:19 PM

Cube Links

Here are a few of my favorite links concerning Rubik's Cube:

Domain of the Cube Forum

Jaap's Puzzle Page
Michael Reid's Rubik's Cube Page

David Joyner's Homepage

Werner Randelshofer's Pretty Pattern Page

Speedsolving the Rubik's Cube & Other Puzzles
Jessica Fridrich's Speed Cubing Page

Speedcubing.com

http://kociemba.org/links.htm Page 1 of 1

http://204.225.123.154/
http://www.jaapsch.net/puzzles/
http://www.math.ucf.edu/%7Ereid/Rubik/
http://www.math.ucf.edu/%7Ereid/Rubik/
http://wdjoyner.com/
http://www.randelshofer.ch/rubik/patterns.html
http://www.speedsolving.com/
http://www.ws.binghamton.edu/fridrich/cube.html
http://www.speedcubing.com/

Introduction 11/29/13 5:19 PM

Introduction

The following pages are an attempt to give some insight of the mathematical ideas and algorithms
developed and used in Cube Explorer.

There are several problems | had to struggle with. First, English is not my native language and
some of my explanations may be difficult to understand or incomprehensible at all. Second, |
studied mathematics a long time ago and my terminology will surely be incorrect in some parts.
Third, | only could sketch the main ideas of all that, what was necessary to write Cube Explorer.

But | hope that nevertheless it is a help for those who are interested in understanding the Two-
Phase Algorithm or want to implement the algorithm in their own program.

http://kociemba.org/math/intro.htm Page 1 of 1

The Faceletlevel 11/29/13 5:20 PM

Permutations and the Facelet Level

If we look at clean the cube, we see 6*9 facelets.

B1|B2|B3
B4 |B5|B6
L1|L2|L3|F1|F2|F3 B7|B8|B9

L4 |L5|L6|F4 [F5|F6
L7|L8|L9|F7|F8|F9

If we apply a move to the cube, the facelets are rearranged. Such a rearrangement is called a

permutation.
We use the six letters U, R, F, D, B, L to describe the six 90° clockwise face movements. We use

for example F2 to denote a 180° turn and F' to denote a 270° turn, i.e. a 90° turn anti-clockwise of
the front face.

If we apply for example a F-move to the cube depicted above we get the following result:

F7|F4|F1

ol |l na

http://kociemba.org/math/faceletlevel.htm Page 1 of 5

The Faceletlevel 11/29/13 5:20 PM

I.'Oll.'Dll'L

To explain the representation of such permutations, we will only look at the yellow facelets for a
moment. There are two possibilities for this representation in the example.

1. F1is carried to F3 (F1->F3), F2-5F6, F3-F9, F4-F2, F5-F5, F6-)F8, F7-F1, F8-F4, FO-F7.

We can write
F1 F2 F3 F4 F5 F6 F7 F8 F9

F3 F6 F9 F2 F5 F8 F1 F4 F7

2. F1is replaced by F7 (F1«-F7), F2«<-F4, F3«-F1, F4«-F8, F5¢-F5, F6<-F2, F7«-F9, F8¢F6,
F9<«-F3. We can write

F1 F2 F3 F4 F5 F6 F7 F8 F9
F7 F4 F1 F8 F5 F2 F9 F6 F3

Because the first row of the tables is always the same, we can omit this row. So we can write just
(F3,F6,F9,F2,F5,F8,F1,F4,F7) in the is carried to representation or
(F7,F4,F1,F8,F5,F2,F9,F6,F3) in the is replaced by representation.

In most cases we will not use the short form without a table here for the sake of clearness.

We use the first representation on the facelet level, and the second on the cubie level.
In the rest of this chapter the is carried to representation is used.

We are able to define a product of two permutations.

For example

F1 F2 F3 F4 F5 F6 F7 F8 F9
F2 F1 F6 F3 F5 F4 F8 F7 F9

F1 F2 F3 F4 F5 F6 F7 F8 F9
F3 F6 F9 F2 F5 F8 F1 F4 F7

http://kociemba.org/math/faceletlevel.htm

Page 2 of 5

The Faceletlevel

F1 F2 F3 F4 F5 Fe6 F7 F8 F9
F6 F3 F8 F9 F5 F2 F4 F1

because for example F1-)F2 by the first permutation and F2->F6 by the second, so we have
F1->F6 in the product.

The multiplication of permutation has some similarities with the common multiplication with
numbers, but there is one big difference: While for example 3*5=5*3, you usually may not

F7

exchange the order of the two permutations.

But in the above example, we have

F1 F2 F3 F4
F3 F6 F9 F2

F1 F2 F3 F4
F2 F1 F6 F3

F1 F2 F3 F4
F6 F4 F9 F1

and this is something different. The multiplication of permutations is not commutative.

Another important term is the inverse permutation.

Consider the F-move

F1 F2 F3 F4
F3 F6 F9 F2

and the permutation

F1 F2 F3 F4
F7 F4 F1 F8

In this case

F1 1 F2 I F3 1 F4

http://kociemba.org/math/faceletlevel.htm

F5
F5

F5
F5

F5
F5

F5
F5

F5
F5

F5

F6
F8

F6
F4

F6
F7

F6
F8

F6
F2

F6

F7
F1

F7
F8

F7
F2

F7
F1

F7
F9

F7

F8
F4

F8
F7

F8
F3

F8
F4

F8
F6

F8

F9
F7

F9
F9

F9
F8

F9
F7

F9
F3

F9

11/29/13 5:20 PM

Page 3 of 5

The Faceletlevel 11/29/13 5:20 PM

F3 F6 F9 F2 F5 F8 F1 F4 F7

F1 F2 F3 F4 F5 F6 F7 F8 F9
F7 F4 F1 F8 F5 F2 F9 F6 F3

F1 F2 F3 F4 F5 F6 F7 F8 F9
F1 F2 F3 F4 F5 F6 F7 F8 F9

This last permutation does nothing at all, so when we multiply a permutation with its inverse, we
get the identity permutation I. In fact, in this example the second permutation is the representant of
F', so we have F*F' = |, which is quite obvious.

You can check, that also F™*F = |, so in this special case, the multiplication is commutative.

In the file CubeDefs.htm you can see the full definition of the basic moves. For example

F:=(U1,U2,U3,U4,U5,U6,R1,R4,R7,D3,R2,R3,D2,R5,R6,D01,R8,R9,F3,F6,F9,F2,F5,F8,F1,F4,F7,
L3,L6,L9,D4,D05,06,07,08,D9,L1,L2,U9,L4,L5,U8,L7,L.8,U7,B1,B2,83,B4,B85,86,B87,88,B9),

written in the short form without a table.

Not only the moves can be viewed as a permutations, every scrambled cubed can be written as a

permutation.

Because U1-R3, U2->L2, U3-D3, U4->U8,... this cube has the representation (R3,L2,D3,U8,...).

If you solve this cube, you in fact will try to find the inverse permutation of this cube composed as
a product of the permutations corresponding to the elementary moves U,U2,U'\R,R2,R'..... Recall
that the product of a permutation with the inverse gives the identity permutation, and this is the
clean cube. The solving algorithm of Cube Explorer tries to find short products for this inverse. For
the example in the picture above it finds in a few seconds

http://kociemba.org/math/faceletlevel.htm Page 4 of 5

http://kociemba.org/math/CubeDefs.htm#faceturns

The Faceletlevel 11/29/13 5:20 PM

R2*L*U2*L2*D*R2*U2*L""D2*R™*U*B*R"*F2*L2*B2*L2*B2

But representing permutations on the facelet level is not effective for a fast computation. There are
two more levels to cope.

http://kociemba.org/math/faceletlevel.htm Page 5 of 5

The Cubie Level 11/29/13 5:20 PM

The Cubie Level

On the cubie level, the objects we permute are not the facelets, but the 12 edges and the 8

corners.
B
e
€5
vr}‘
474
L oy F
Pl
o
e e

In the picture above, the URF-corner, ther DFR-corner, the FL-edge and the UL-edge are marked.
The corners are named URF, UFL, ULB, UBR, DFR, DLF, DBL and DRB. The edges are named
UR, UF, UL, UB, DR ,DF, DL, DB, FR, FL, BL and BR.

On the cubie level it is not possible to represent a move or a scrambled cube by a simple
permutation, because the corners can be twisted and the edges can be flipped.

http://kociemba.org/math/cubielevel.htm Page 1 of 4

The Cubie Level 11/29/13 5:20 PM

Here the cubies are in their home-positions, but the orientations have changed. The UFL-corner ist
twisted clockwise, the UBR-corner is twisted anti-clockwise and the DF-edge and the FR-edge are
flipped.

If the corners or edges are not in their home positions, there are many ways to define the
orientations of the cubies. But for the Two-Phase-Algorithm, the following definiton is necessary.

The marked facelets on the clean cube are the reference for the orientation.

In the picture, the corner Gat the place URF is twisted clockwise relative to the reference
facelet on the clean cube, also the corner at the place DLF. The corners at the places UFL and
DFR are are twisted anti-clockwise. The edges sitting in the UF, DF, FL and FR positions are
flipped.

http://kociemba.org/math/cubielevel.htm Page 2 of 4

The Cubie Level 11/29/13 5:20 PM

The F-move

We use the "is replaced by" representation to write the permutations on the Cubie Level. In the
above example: URF is replaced by UFL(URF«UFL), UFL«-DLF, ULB «-ULB, UBR«-UBR,
DFR«-URF, DLF«DFR, DBL «-DBL, DRB«-DRB. We write

URF UFL ULB UBR DFR DLF DBL DRB
UFL DLF ULB UBR URF DFR DBL DRB

in this case for the permutation of the corners.
But we have also to keep track of the changes of the orientations, and so we write

F =

URF UFL ULB UBR DFR DLF DBL DRB
c:UFL;0:1 c:DLF;0:2 c:ULB;0:0 c:UBR;0:0 c:URF;0:2 c:DFR;0:1 ¢:DBL;0:0 c:DRB,0:0

We use "0" if the twist does not change, "1" for a clockwise twist and "2" for a anti-clockwise twist.
In this way we can add orientations in a simple way. If we do for example two anti-clockwise twist,
the resulting twist is 2+2=4, and because 4 = 1 mod 3 the result is a clockwise twist. Take a look at
CubeDefs.htm for the definition of the basic moves. The permutation of the edges is defined
similar, with "1" for the orientation of a flipped edge and "0" for an unflipped edge.

We also need a notation to describe a permutation without using a table.
For the F-move above we write for example

F(URF).c = UFL

F(URF).0 =1
F(UFL).c = DLF
F(UFL).o=2
etc.

We use another move

R =

URF UFL ULB UBR DFR DLF DBL DRB
c:DFR;0:2 c:UFL;0:0 c:ULB;0:0 c:URF;0:1 ¢c:DRB;0:1 c:DLF;0:0 ¢:DBL;0:0 c:UBR,0:2

to show how to define the product F*R of these two permutations including the orientations.

http://kociemba.org/math/cubielevel.htm Page 3 of 4

http://kociemba.org/math/faceletlevel.htm#representations
http://kociemba.org/math/CubeDefs.htm#cornfaceturns

The Cubie Level 11/29/13 5:20 PM

F*R applied to the UFL-corner

F(URF).c = UFL and F(URF).o = 1 in the table above tells us that the corner at position URF is
replaced by the corner at position UFL and that the orientation of the corner which moves to the
position URF is increased by 1 when performing a F-move.

R(UBR).c = URF and R(UBR).o= 1 tells us, that the corner at position UBR is replaced by the
corner at position URF and the orientation increases by 1 when performing a R-move.

So when performing F*R we have URF«UFL by the F-move and then UBR«URF by the R-move,
which in the result is UBR«-UFL. So as result we have the (F*R)(UBR).c = UFL. This means that
(F*R)(UBR).c = F(R(UBR).c).c.

The behavior of the orientation is more difficult to understand. F tells us thar F(URF).0o=1 when
URF<«UFL. This means, the orientation of the corner which moves from position UFL to position
URF increases by 1. This orientation adds to the change of the orientation of the corner which
moves from the URF to the UBR position (UBR«URF) by the following R-move. So we have
F(URF).0+R(UBR).o for the resulting orientation change at position UBR, and because URF=
R(UBR).c we have (F*R)(UBR).o=F(R(UBR).c).0+R(UBR).0.

In general, for two permutations A and B and for any corner position x we have
(A*B)(x).c=A(B(x).c).c

and

(A*B)(x).0=A(B(x).c).0+B(x).0

The same principle holds for the edge permutations. See CubeDefs.htm for the implementation of
the multiplication routines.

If we want also want to include the case of reflections, which we need if we apply symmetries of
the cube, thing are a bit more complicated with the orientations of the corners. Instead of adding
modulo 3 in the second equation above, which can be interpreted as a group operation in the

cyclic group C3, we then work in the dihedral group D3. We describe the three extra elements in

this group with the numbers 3, 4, and 5.

http://kociemba.org/math/cubielevel.htm Page 4 of 4

http://kociemba.org/math/CubeDefs.htm#cornmult

The Coordinate Level 11/29/13 5:20 PM

The Coordinate Level

On the coordinate level we describe the permutations and the orientations of the corners and
edges by natural numbers. This level of abstraction is especially suited to implement a fast
algorithm to solve the cube.

The definition of the corner orientation coordinate

If we apply for example the move R to a clean cube we get

URF UFL ULB UBR DFR DLF DBL DRB
c:DFR;0:2 c:UFL;0:0 c:ULB;0:0 c:URF;0:1 c:DRB;0:1 c:DLF;0:0 ¢:DBL;0:0 c:UBR,0:2

The orientation of the 8 corners are described by a number from 0 to 2186 (37 - 1).

In cubicube.pas you find the following definition

function CubieCube.CornOriCoord:Word;
var co: Corner; s: Word;

begin
s:=0;
for co:= URF to Pred(DRB) do s:= 3*s + PCorn*[c0].0;
Result:=s;

end,;

In the example above this functions computes
2*3%6 + 0*3"5 + 0*3"4 + 1*373 +1*322 + 0*3* + 0*370 = 1494
This is just the number 2001100 in a ternary number system.

To make this easy method work we must write the permutation in the in the is replaced by
representation. It will not work in the is carried to representation!

We ignore the orientation of the DRB-corner, because this orientation is determined by the
orientations of the other seven corners: The sum of all orientations must be divisible by three.

The definition of the edge orientation coordinate

e T T L L e

http://kociemba.org/math/coordlevel.htm Page 1 of 4

The Coordinate Level 11/29/13 5:20 PM
11e eayge orierniduori cooraindle Is aelirea i dri didiogous wdy.
The orientation of the 12 edges is described by a number from 0 to 2047 (2*11 - 1).
In cubicube.pas you find the following definition

function CubieCube.EdgeOriCoord:Word;
var ed: Edge; s: Word;

begin
s:=0;
for ed:= UR to Pred(BR) do s:= 2*s + PEdge”[ed].o;
Result:=s;

end,;

We use the binary number system instead of the ternary number system here. We ignore the
orientation of the BR-edge because it is determined by the orientations of the other 11 edges. The
sum of all orientations must be even.

The definition of the corner permutation coordinate
The corner permutation coordinate is given by a number from 0 to 40319 (8! - 1).

In this example, we use the permutation of the R-move again, but we ignore the orientations now.

URF UFL ULB UBR DFR DLF DBL DRB
c:DFR c:UFL c:ULB c:URF c:DRB c:DLF c:DBL c:UBR
1 1 3 0 1 1 4

We define a natural order on the corners by URF<UFL<ULB<UBR<DFR<DLF<DBL<DRB.

The number in the third row - below a corner XXX in the second row - gives the number of all
corners left of XXX, whose orders are higher than the order of XXX.

Above the entry 4 we have for example the corner UBR.
From the 7 corners left of UBR, 4 corners have a higher order - DFR, DLF, DBL, DRB.

Above the entry 1 we have for example the corner DLF.
From the 5 corners left of DLF, only 1 corner has a higher order - DRB.

We build the permutation coordinate with the numbers of the third row.
111+ 1*21 + 3*3! + 0*4! + 1*5! + 1*6! + 4*7! = 21021

So we use a system with variable base here.

The following function from cubicube.pas does the job.

function CubieCube.CornPermCoord: Word;

var i,j: Corner; x,s: Integer;

begin

x:=0;

http://kociemba.org/math/coordlevel.htm Page 2 of 4

The Coordinate Level 11/29/13 5:20 PM

for i:= DRB downto Succ(URF) do
begin
s:=0;
for j:= Pred(i) downto URF do
begin
if PCorn”[jl.c>PCorn”[i].c then Inc(s);
end,
x:= (x+s)*Ord(i);
end;
Result:=x;
end;

The definition of the edge permutation coordinate
The edge permutation coordinate is described in an analogous way by a number from 0 to 12! - 1.
We use the following function from cubicube.pas:

function CubieCube.EdgePermCoord: Integer;
var i,j: Edge; x,s: Integer;
begin
x:=0;
for i:= BR downto Succ(UR) do
begin
s:=0;
for j:= Pred(i) downto UR do
begin
if PEdge”[j].e>PEdge”[i].e then Inc(s);
end;
X:= (x+s)*Ord(i);
end;
Result:=x;
end

Now we are able to describe each cube with a tuple (x1,x2,x3,x4) and
0<=x1<3"7, 0<=x2<2™M1, 0<=x3<8!, 0<=x4<12!

Only half of these cubes are really possible to generate because all achievable permutations are
even and so we have only 12! * 8! /2 permutations (ignoring the orientations).

The number of different cubes is therefore given by

3A7 *2M1 7 81 %121 /2 = 43.252.003.274.489.856.000

http://kociemba.org/math/coordlevel.htm Page 3 of 4

The Coordinate Level 11/29/13 5:20 PM

I here are some other coordinates we use for the |wo-Phase-Algorithm which we introduce later.

http://kociemba.org/math/coordlevel.htm Page 4 of 4

Equivalent Cubes and Symmetry 11/29/13 5:20 PM

Equivalent Cubes and Symmetry

Look at the two cubes above. They look different, but basically they are the same. If you turn the
whole cube in the left picture 90 degrees around an axis through the U-center and D-center cubies,
you get

_:H this cube, and if you recolor the facelets again so that the color of the F-
face is red again etc. you get the cube in the right picture. We call these
two cubes equivalent.

Because equivalent cubes have the same structure, the number of moves necessary to solve them
is the same.

Defining equivalent cubes with the aid of recoloring of facelets is not really what we want, because
we move back to the facelet level. We prefer to define the equivalence on the cubie level with
permutations. With S_U4 we denote the 90 degrees turn through the U-center and D-center cubies

of the whole cube. Lets denote the permutation which defines the left cube above with A and the
permutation for the right cube above with B.

Then we have

A AT A&y A A

http://kociemba.org/math/symmetries.htm Page 1 of 2

Equivalent Cubes and Symmetry 11/29/13 5:20 PM

S U4

So we have B='S_U4"1*A*S_U4 in this example. In general, two cube permutations A and B are
equivalent, if there is a symmetry S of the cube with

B =STA*S

For each cube there are up to 48 equivalent cubes, because the cube has 48 symmetries including
reflections. In Cube Explorer, these 48 symmetries are generated by four "basic" symmetries:

S_URF3, a 120 degree turn of the cube around an axis through the URF-corner and DBL-corner,
S _F2, a 180 degree turn of the cube around an axis through the F-center and B-center,

S_U4, a 90 degree turn of the cube around an axis through the U-center and the D-center
S_LR2, a reflection at the RL-slice plane.

These basic symmetries are permutations of the corners and permutations of the edges and are
described in cubedefs.htm.

Any of the 48 symmetries is uniquely generated by the product
(S_URF3)X1 * (S_F2)X2 * (S_U4)3* (S_LR2y“

with x1 from 0..2, x2 from 0..1, x3 from 0..3 and x4 from 0..1. This tuple (x1,x2,x3,x4) is mapped to
a natural number from 0..47 by

16*x1 + 8*x2 + 2*x3 + x4

In this way each of the symmetries has an associated index from 0..47. With S(i) we denote the
symmetry which belongs to the index i.

Two cubes with the permutations A and B are equivalent if and only if there is an i with
S(i)1*A*S(i) = B

All cubes which are equivalent, belong to the same equivalence class.

In Cube Explorer the S(i) are implemented in the arrays CornSym and EdgeSym in the unit
symmetries.pas

http://kociemba.org/math/symmetries.htm Page 2 of 2

http://kociemba.org/math/CubeDefs.htm#cornsym
http://kociemba.org/math/CubeDefs.htm#edgesym

Cosets

11/29/13 5:21 PM

A mathematical view of Coordinates: Cosets

If you have a group G and a subgroup H, then for each g from G the set {a*g | a from H} is called a

right coset of H.

Each scrambled cube can be seen as a permutation with attached orientations. All these

permutations define the group G.

Every coordinate-value used in Cube Explorer can be mapped onto a right coset, where the

subgroup H mentioned above is defined by the type of the coordinate.

The following table describes the subgroups H, which correspond to the various types of

coordinates used in Cube Explorer.

subgroup of G coset coordinate

corner orientations
coordinate
range 0..2186

edge orientation coordinate
range 0..2047

all permutations which leave the four UD- UDSlIice coordinate
slice edges in their slice range 0..493

all permutations with edge orientations = 0
and which leave the four UD-slice edges
in their slice.

all permutations with corner orientations =
0

all permutations with edge orientations = 0

FlipUDSlice coordinate
range 0..494*2048 - 1

: . . corner permutation
all permutations which leave the corners in :
coordinate

their place with arbitrary twist. range 0..40319

all permutations which leave the 8 edges phase 2 edge permutation
of the U-face and D-face in their place with coordinate
arbitrary flip range 0..40319

all permutations which leave the four UD- UDSliceSorted coordinate
slice edges in their place with arbitrary flip range 0..11879

used in

phase 1, optimal
solvers

phase 1, optimal
solvers

phase 1, optimal
solvers

phase 1, standard
optimal solver

phase 2, optimal
solvers

phase 2

phase 2, optimal
solvers

Some of the above coordinates are "reduced by symmetries" in a second step before actually

being used. We will discuss this in the next chapter.

Take for example the subgroup CO which defines the corner orientation coordinate

CO0 = { g from G with g(x).o = 0 for all corners x}

http://kociemba.org/math/cosets.htm

Page 1 of 2

Cosets 11/29/13 5:21 PM

In this case the right cosets are defined by
CO0*g = {a*g | a from CO}

For each element a from CO and an element g from G and any corner x we have regarding the
definition of the multiplication

(a*g)(x).0 = a(g(x).c).o + g(x).0 = 0 + g(x).0 = g(x).0

So all elements of the coset CO*g have the same corner orientations (defined by the permutation
g) and all elements of CO*g have the same corner orientation coordinate. And if on the other hand
two permutations have the same corner orientation coordinate, they are in the same coset (we
omit the proof here). So there is a one to one mapping between the corner orientation coordinate
and the cosets defined by CO.

http://kociemba.org/math/cosets.htm Page 2 of 2

http://kociemba.org/math/cubielevel.htm#formula1
http://kociemba.org/math/coordlevel.htm#cornoridef

Coordinates and Symmetry 11/29/13 5:21 PM

Coordinates and Symmetry

Cordinates represent cosets, each coset usually consists of many permutations.

If you move the whole cube and recolor it or you do a conjugation with a symmetry S(i) as
explained two chapters ago , the coordinates usually change.

You must be careful if you want to map a coordinate by a symmetry conjugation to another
coordinate. If you have two different permutations P and Q in a coset, S(i) *P*S(i) and S(i)

1*Q*S(i) always have to be in the same coset, else you cannot do this mapping nor can you define
equivalent cosets.

This restricts the symmetries which are appliable here. It is not difficult to show that exactly those
symmetries S(i) are appliable, for which the subgroup H which defines the cosets has the property

S(@iy ™H*S(i) = H.

The following table shows, which symmetries are appliable to which coordinates and where this is

used.
subgroup
full symmetry generated by
coordinate group with 48 S F2,S_U4 and used in
elements S_LR2 with 16
elements
corner orientation (twist) no yes phase 1, optimal
solvers
edge orientation (flip) no* no* e
UDSlice no yes s
phase 1, optimal
FlipuDSlice no yes solver, 64430
equivalence classes
corner permutation yes** yes pha_se 2, 2768
equivalence classes
phase 2 edge permutation no yes phase 2
huge optimal solver,
UDSliceSorted coordinate no yes 788 equivalence
classes

L T T T L R T R Y T Y a1

http://kociemba.org/math/symcord.htm Page 1 of 2

http://kociemba.org/math/symmetries.htm

Coordinates and Symmetry 11/29/13 5:21 PM

ILIS POSSIDIE WO glve dliouier aelniuorn 101 uie eage-orierniduorls, so uidt uie ui syrimmeuy group
can be used with the edge orientation coordinate. But we prefer the usual definition which is better
suited for the two-phase algorithm.

**Not used in Cube Explorer

For the FlipUDSlice coordinate, the corner permutation coordinate and the UDSliceSorted
coordinate, the number of equivalence classes is given in the table.

Take for example theFlipUDSlice coordinate. The range of this coordinate x is 0..495*2048-1. But
by symmetry comjugation these 1.013.760 coordinates are "reduced" to 64430 equivalence
classes.

Up to 16 coordinates belong to each equivalence class - 16 and not 48 because we only use
symmetries which preserve the UD-axis. For each equivalence class we store the smallest
coordinate as the representant of this class in an integer array of size 64430. In general we call
this array the ClassIindexToRepresentantArray.

The old integer coordinate x is then substituted by a new coordinate 16*y + i, where y is the index
of the equivalence class it belongs to (0..64429) and i is the index of a symmetry (0..15) which
transforms the coordinate of the representant to x. To distinguish the old and new coordinate in
the text, we will call the old coodinate a raw-coordinate and the new coordinate a sym-coordinate
in the following text.

This sym-coordinate has 64430*16 = 1.030.880 different values, which is more than
495*2048=1.013.760. The reason is, that for some cubes with symmetries there belong less than
16 original coordinates to one equivalence class and the replacement by the sym-coordinate is not
unique because 16*y + i1 and 16*y + i2 describe the same raw-coordinate x for some i1 and i2..

http://kociemba.org/math/symcord.htm Page 2 of 2

The Two-Phase-Algorithm 11/29/13 5:21 PM

The Two-Phase Algorithm Coordinates

If you turn the faces of a solved cube and do not use the moves R, R, L, L', F, F', B and B' you will
only generate a subset of all possible cubes. This subset is denoted by G1 = <U,D,R2,L2,F2,B2>.

A typical representant of G1 looks like this:

In this subset, the orientations of all corners and all edges are 0. And the four edges in the UD-
slice (between the U-face and D-face) stay isolated in that slice.

On the other hand, if the orientations of all corners and all edges is 0, and the four edges of the
UD-slice are in their slice, we have an element of G1.

The Two-Phase Algorithm solves the Cube in to steps.

In phase 1, the algorithm looks for maneuvers which will transform a scrambled cube to G1. That
is, the orientations of corners and edges have to be constrained and the edges of the UD-slice
have to be transferred into that slice. In phase 2 we restore the cube.

There are many different possibilites for maneuvers in phase 1. The algorithm tries different phase
1 maneuvers to find a most possible short overall solution.

In phase 1, any cube is described with three coordinates:

—_— . PR . i s~ A~aAAN a0 . . PR . . 1A AA a=— T NP

http://kociemba.org/math/twophase.htm Page 1 of 4

http://kociemba.org/math/coordlevel.htm#cornoridef
http://kociemba.org/math/coordlevel.htm#edgeoridef
http://kociemba.org/math/twophase.htm#udslicedef

The Two-Phase-Algorithm 11/29/13 5:21 PM

1 Ne corner orientatlon coorainaie(u..Z’1s5b), tne eage orientauon coorainate (U..Zu4 /) ana uuslice
coordinate

The UDSlice coordinate is number from 0 to 494 (12*11*10*9/4! - 1) which is determined by the
positions of the 4 UDSlice edges. The order of the 4 UDSlice edges within the positions is ignored.

We take the F-move as an example:

The F-move UDSlice edges Ignoring the order

The following function from cubicube.pas implements the computation of this coordinate. The
explanation how this works is not obvious and is explained in more detail here. C(n,k) is the
binomial coefficient (n choose k).

function CubieCube.UDSliceCoord;
var s: Word; k,n: Integer; occupied: array[0..11] of boolean; ed: Edge;
begin
for n:= 0 to 11 do occupied[n]:=false;
for ed:=UR to BR do if PEdge”[ed].e >= FR then occupied[Word(ed)]:=true;

s:=0; k:=3; n:=11;
while k>=0 do
begin

if occupied[n] then Dec(k)
else s:= s + C(n,k);
Dec(n);
end;
Result:=s;
end;

So each cube relevant for phase 1 is described by a coordinate triple (x1,x2,x3), and the triple is
(0,0,0) if and only if we have a cube from G1. The problem space of phase 1 has

2187*2048%495 = 2.217.093.120

different states.

In phase 2, any cube is also described with three coordinates:

The corner permutation coordinate (0..40319), the phase 2 edge permutation coordinate
(0..40319), and the phase2 UDSlice coordinate (0..23).

http://kociemba.org/math/twophase.htm Page 2 of 4

http://kociemba.org/math/coordlevel.htm#cornoridef
http://kociemba.org/math/coordlevel.htm#edgeoridef
http://kociemba.org/math/twophase.htm#udslicedef
http://kociemba.org/math/UDSliceCoord.htm
http://kociemba.org/math/coordlevel.htm#cornpermdef
http://kociemba.org/math/twophase.htm#phase2edge
http://kociemba.org/math/twophase.htm#phase2udslice

The Two-Phase-Algorithm 11/29/13 5:21 PM

The phase 2 triple (0,0,0) belongs to a pristine cube.

The phase 2 edge permutation coordinate is similar to the edge coordinate given in the
description of the coordinate level. It is valid only in phase 2.

We have 8! = 40320 possibilities to permute the 8 edges of the U and D face (remember that we
only allow 180 degree turns for all faces R, L, F and B).

function CubieCube.Phase2EdgePermCoord: Word;
var i,j: Edge; x,s: Integer;

begin
x:=0;
for i:= DB downto Succ(UR) do
begin
s:=0;
for j:= Pred(i) downto UR do
begin
if PEdge’[j].e>PEdge*[i].e then Inc(s);
end;
x:= (x+s)*Ord(i);
end;
Result:=x;
end;

The phase 2 UDSlice coordinate should have a range from 0..23 because it represents the 4!
permutations of the UDSlice edges in their slice. But we use an extension of the UDSlice
coordinate instead, which is used in the huge optimal solver anyway and where we also regard the
order of the four edges. This "sorted" coordinate has a range from 0 to 11879=12*11*10%9-1.
But in phase 2 this coordinate indeed only takes values from 0 to 23.

This is the implementation from cubicube.pas:
function CubieCube.UDSliceSortedCoord: Word;
var j,k,s,x: Integer; i,e: Edge; arr: array[0..3] of Edge;

begin
j:=0;
fori:= UR to BR do
begin
e:=PEdge’\[i].e;
if (e=FR) or (e=FL) or (e=BL) or (e=BR) then begin arr{j]:= e; Inc(j); end;
end;

x:=0;
for j:= 3 downto 1 do
begin
s:=0;
for k:= j-1 downto 0 do
begin
if arr[k]>arr(j] then Inc(s);
end;
X:= (x+s)";

anA-

http://kociemba.org/math/twophase.htm Page 3 of 4

http://kociemba.org/math/coordlevel.htm#edgeoridef
http://kociemba.org/math/twophase.htm#udslicedef

The Two-Phase-Algorithm 11/29/13 5:21 PM

A2 R AV

Result:= UDSliceCoord*24 + x;
end;

The problem space of phase 2 has
40320%40320*24/2 = 19.508.428.800

different states.

http://kociemba.org/math/twophase.htm Page 4 of 4

The Move Tables 11/29/13 5:21 PM

The Move Tables

If you apply one of the 18 possible faceturns (a "move") to the cube, the permutation of the corners
and edges change. On the coordinate level, a move maps a coordinate to another coordinate.

This mapping is possible, because we can show that if we apply a move M onto two different
permutations a and b with the same coordinate x, both results have the same coordinate x'. If a
and b have the same coordinate x, and H is the subgroup defining the cosets for this coordinate,
there exist a permutation g from the cube group G so that a and b are elements of H*g (remember
that we use right cosets). Then a*M and b*M are of course elements from [H*g]*M = H*[g*M] and
hence are in the same coset and have the same coordinate x'.

Move tables are twodimensional arrays which describe how this mapping is done. We distinguish
between move tables for "simple" raw-coordinates and movetables for sym-coordinates, which are
reduced by symmetries.

Move tables for raw-coordinates

All move tables for raw-coordinates have the same structure. Let us take for example the move
table for the corner orientation coordinate:

TwistMove: array[0..2187-1,Ux1..Bx3] of Word;

If you apply for example the move R2, TwistMove[oldCoordinate,Rx2] gives the new coordinate.
This is done pretty fast compared with doing a permutation on the cubie level or the on the facelet
level.

Here is the documented code from CordCube.pas to generate this move table:

procedure CreateTwistMoveTable;
var c: CubieCube; i k: Integer; j: TurnAxis;
begin
c:= CubieCube.Create;//create a cube c on the cubie level
for i:=0 to 2187-1 do
begin
c.InvCornOriCoord(i);//generate a permutation with corner orientation i

forj:=Uto B do
begin
for k:= 0 to 3 do //k=3 restores the original state
begin
c.Move(j);//apply all 18 face turns on ¢
if k<>3 then TwistMoveli.Move(3*Ord(i)+k):=c.CornOriCoord://save result in the arrav

http://kociemba.org/math/movetables.htm Page 1 of 4

The Move Tables 11/29/13 5:21 PM

end;
end;
end;
c.Free;
end;

Move tables for sym-coordinates

If we reduce a coordinate by symmetries, we only generate a move table for the representants of
the equivalence classes. Let R(j) be a permutation belonging to the representant of the
equivalence class with index j.

When we apply a move M on this representant, the result will be in another equivalence class Kk,

so that there is a symmetry S(i) with R(j)*M = S(i) "*R(k)*S(i). Then the resulting movetable entry is
the corresponding sym-coordinate, that is MoveTable[j,M]:= 16"k + i .

Here is an example for the FlipUDSlice move table from cordcube.pas (all unimportant parts
removed):

procedure CreateFlipUDSliceMoveTable;
var c: CubieCube; i,k,n: Integer; j: TurnAxis;
begin
SetLength(FlipSliceMove,64430,18); /18 different faceturns
c:= CubieCube.Create;
for i:=0 to 64430-1 do //iterate over all equivalence classes
begin
n:= FlipUDSliceToRawFlipUDSlice[i]; /get the raw-coordinate of the representant
c.InvUDSliceCoord(n div 2048); //and generate a permutation which has this FlipUDslice
coordinate
c.InvEdgeOriCoord(n mod 2048);
forj:=Uto B do
begin
fork:=0to 3 do
begin
c.Move(j); //apply all 18 faceturns
if k<>3 then FlipSliceMove[i,3*Ord(j)+k]:= c.FlipUDSliceCoord; //the sym-coordinate
end;
end,;
end;
end,;

The procedure to find the sym-coordinate for a given permutation P is not really difficult but a bit
more complicated than the computation of the raw-coordinates. We only need this procedure in

tha initializatinn nhaca whara wa hava tn calriilata tha ranrdinatace nf tha ri1tha wa want tn enlhva

http://kociemba.org/math/movetables.htm Page 2 of 4

The Move Tables 11/29/13 5:21 PM

VIS L LA AL U IS T I T TT A LIMA Y W L WMAIUMIMALL LI W M IMALS S W LI UMM TR YT LALIL L v e

For 0<=i<16 we apply S(i)*P*S(i)"! and compute the raw-coordinate until we find the raw-
coordinate in the ClassindexToRepresentantArray at some position k. Let us denote this
coordinate with R(k).

S(i)*P*S(i)! = R(k) is equivalent to S(i) "™*R(k)*S(i) = P, and this means P has the sym-coordinate
167k + i.

Look at the function CubieCube.FlipUDSliceCoord in cubicube.pas for an example.

Applying a move also is more complicated for sym-coordinates compared to raw-coordinates,
because we only have built a movetable for the representants of the equivalence classes. But the
advantage of using sym-coordinates - reducing the big tables by a factor of about 16 - is much
higher than the disadvantage due to the increased complexity.

If we have the sym-coordinate x, we can extract from this coordinate the index j of the equivalence

class and the index i of the symmetry. For a move M we have, using the associativity of the
permutation group and denoting the representant of the equivalence class with R(j):

[S(i)*RG) *SMI'M = [S(i) *RG)*SOHI'M[S()*S(i)] = [S(i) *ROIS()*M*S (i) '1*S (i)
[S(i)*M*S(i) 1] is the conjugation of a move by a symmetry which is another move. In
symmetry.pas the array SymMove[Symldx,Move] is initialized, so that SymMove[i,M] gives the
desired result. Let us denote the result by M4

So we have to compute

[SG) ™ RG)I* M4*S(i) = S() ™ [RG)* M41*S(i)

The sym-coordinate y for [R(j)* M4] can be read off from MoveTable[j, M4]. From y we then extract
the class index j4 and the symmetry index i4. That means [R(j)*M4] = S(i1)'1*R(j1)*S(i1)-

So we have
S IRGY M4I*S(i) = S() ™1 S(i) ™*RG4)*S(i)I*S(i) = [S()*S(iq) ' T*RG1)*[S(i1)*S(0)]
and because [S(i)1*S(ii1)"1 = [S(i4)*S(i)]! we can write this as

[S(i1)* SO *RG4) IS i1*S(0)]-

[S(i4)*S(i)] is the product of two symmetries, which is another symmetry S(iy). The array

SymMult[Symldx,Symldx] - created in symmetries.pas - does this computation. Let us denote
SymMult[i4,i] with i. So our result is

S(i2)'1*R(j1)*S(i») and the corresponding sym-coordinate is 16*j4+ i.

So in comparison with the movetables for raw-coordinates where we only need one table-lookup
we now need three table-lookups in the tables SymMove, MoveTable and SymMult.

http://kociemba.org/math/movetables.htm Page 3 of 4

The Move Tables 11/29/13 5:21 PM

http://kociemba.org/math/movetables.htm Page 4 of 4

Pruning Tables 11/29/13 5:22 PM

Pruning Tables

The speed of the Two-Phase-Algorithm and the Optimals Solvers depend on the ability to give a
lower bound for the number of moves it takes to bring the cube back to a goal state from a given
state because it allows tree pruning during the search. The goal state is a certain subgroup G1 in
case of the first phase of the Two-Phase-Algorithm. The goal states for the Optimal Solvers are
described on the page Optimal Solvers.

We base the pruning tables on coordinates. Remember that a coordinate or also a tuple of several
coordinates represent cosets corresponing to some subgroup H (if we use a tuple of coordinates,
the corresponding subgroup H is the intersection of the subgroups defining the single
coordinates). A coordinate itself or an index computed from two or three coordinates define the
position in the pruning table. In this position we store the number of moves which are necessary to
bring the cube back to the subgroup H.

Because the goal state is always included in H (phase 2, optimal solvers) or is identical with H
(phase 1), the number of moves stored in the pruning table is always a lower bound for the
number of moves to bring the cube back to the goal state. This is essential to make the algorithm
work.

We need pruning tables for phase 1 and phase 2 of the Two-Phase Algorithm and for the huge
optimal solver. The pruning table for the standard optimal solver is identical to the phase1 pruning
table.

In all three cases, the position in the pruning table is computed from a sym-coordinate and one or
two raw-coordinates.

Pruning . . Number of Maximal
Table Sym-coordinate Raw-coordinate(s) 0 Fntries pruning depth
Fh%ﬁr%ce Corner Twist x =
Phase 1 X UDTwist 140,908,410 12
equivalence (2187 cases)
classes)
Corner
Permutation Edge Permutation x
Phase2 (2768 equivalence ?40320 ba565) 111,605,760 18
cases)
. Edge Flip x1
. UDSliceSorted
Huge Optimal | 70070 ivalence (2048Cases) 4 599 433 088 13
Solver Corner Twist x2

cases) (2187 cases)

http://kociemba.org/math/pruning.htm Page 1 of 3

http://kociemba.org/math/twophase.htm#G1
http://kociemba.org/math/optimal.htm
http://kociemba.org/math/symcord.htm#symcoord

Pruning Tables 11/29/13 5:22 PM

If you are interested in the exact distibution of the pruning values have a look at this table

Let the FlipUDSlice sym-coordinate be for example correspond to the pair (y,i), where y is the
index of the equivalence class and i is the index of the corresponding symmetry and let the corner
twist be x. Let P be a permutation of the cube belonging to these indices. Then by conjugation

S(i)*P*S(i)! we get a cube which has the same distance from the goal state and which has the
FlipUDSlice sym-coordinate (y,0) and the corner twist x'. Then the position in the pruning table is
computed by 2187*y + x'.

This principle holds for the computation of the indices in all pruning tables: Extract the index i
(0<=i<16) of the symmetry out of the sym-coordinate and transform the cube by conjugation with
S(i) to an equivalent cube with the same equivalence class index y but the symmetry index 0.
Transform the raw-coordinate x (or x1 and x2 in case of the Huge Optimal Solver) to x' (x1',x2").

The index in the pruning table in phase 1 is then computed by 2187*y + X', in phase 2 by 2768*x' +
y (hmmm, why did | take not 40320*y +x' ?) and in the huge solver (2048*y+x1')*2187+x2".

The transformation of the raw indices is done by tables (see sourcecode, CordCube.pas)

TwistConjugate: array[0..2187-1,0..15] of Word;
FlipConjugate: array of array of array {[0..2048-1,0..15,0..788-1]}of Word;
Edge8PosConjugate: array[0..40320-1,0..15] of Word;

A you can see, the conjugation for the edge flip which is used in the huge solver pruning table is a
bit more complicated. The reason is, that as mentioned here the subgroup which defines the flip
coordinate cosets is not compatible with the 16 symmetries. But if you add the information of the
UDSliceSorted equivalence class, the transformation is possible.

To reduce memory size, we actually do not store the number of moves but only the number of
moves modulo 3. This is possible because each faceturn changes the number of moves only by -
1, 0 or 1. So if you apply a faceturn you are able to keep track of the number of moves, if you
know the number of moves to solve the cube for the initial state.

This number for the initial state also can be reconstructed with the table mod 3: From the initial
state try which one of the 18 faceturns decreases the number modulo 3 (there must be a faceturn

with this property, or you already are in the goal state). Repeat this until you have reached the
goal state and count the number of moves you needed to do so (procedures GetPrun, GetPrunBig
and function GetPrunPhase2 in CordCube.pas)

During table generation we use 2 bits for each entry because we need a fourth state to mark an
entry as empty. Afterwards we compress the table storing 5 entries in one byte, using only 1.6 bits
for each entry. We do the compression not linear like (0,1,2,3,4),(5,6,7,8,9),(10,11,12,13,14)...but
in the way (0,1,2,3,x), (4,5,6,7,x+1),(8,9,10,11,x+2),....where x is about 4/5 of the total number of
entries. In this way we do not need a (div 5) and (mod 5) arithmetic but a much faster (div 4) and
(mod 4) arithmetic.

http://kociemba.org/math/pruning.htm Page 2 of 3

http://kociemba.org/math/distribution.htm
http://kociemba.org/math/symcord.htm#symtable

Pruning Tables 11/29/13 5:22 PM

We generate the table in a breadth-first "forward-search" manner. We store depth 0 at the position
of the goal state and apply all 18 moves to this state. At the corresponding positions we store
depth 1. In the next pass we apply the 18 moves to all states corresponding to those positions in
the pruning table which have an entry 1. We write 2 at the resulting position if it is marked as
empty etc...

If you take a look for example at CreateFlipUDSlicePruningTable in CordCube.pas you see, that
the code is not as straightforward as described above. Because we use a sym-coordinate
(FlipUDSlice) together with a raw-coordinate (UDTwist) to compute the index in the pruning table,
we will built an incorrect table if we do not proceed very carefully.

The problem is a permutations A, where the sym-coordinate is not unique because the
permutation has itself some symmetries. Let (y,i1) and (y,i2) correspond to two classindex-
symmetryindex pairs of the FlipUDSlice coordinate which belong to the same FlipUDSlice raw-
coordinate. Let the UD-Twist coordinate of the permutation A be x. The index of the pruning table

is computed by 2187*y + x', where x ' is the UDTwist coordinate of the permutation S(i1)*A*S(i1)!

respective S(i2)*A*S(i2)! . Because these 2 permutations usually have different UDTwist
coordinates, there is more than one position in the pruning table we have to fill in this case. So we
must carefully analyze the symmetries of the FlipUDSlice coordinate.

If there are not many empty entries left in the pruning table, we flip to "backward search". We
apply the 18 moves to all permutations which belong to empty entries and look if the result is a
permutation which has a entry corresponding to the depth d of the last pass. In this case we fill the
entry with d+1. In this way we save a considerable amount of time when generating the tables.

http://kociemba.org/math/pruning.htm Page 3 of 3

http://kociemba.org/math/symcord.htm#symcoord

Two-Phase Algorithm Details 11/29/13 5:22 PM

Two-Phase Algorithm Details

| developed the Two-Phase Algorithm in 1991 and 1992. It was inspired by the the Thistlethwaite
algorithm to solve the cube. His method involves working through the following sequence of
subgroups:

HO = <L,R,F,B,U2,D2>, H1 = <L,R,F2,B2U2,D2>, H2 = <L2,R2,F2,B2,U2,D2> to find a solution.
He used static tables for the maneuvers and the algorithm requires at most 52 moves.

Reducing the number of intermediate subgroups would give shorter solutions and | decided to use
only one subgroup G1 = <U,D,R2,L2,F2,B2> which is equivalent to Thistlethwaite's H1. But it was
clear, that in this case static tables for the maneuvers were impossible because of the size of the
subgroup. So these maneuvers had to be computed dynamically during the solving procedure.
With the hardware | used (8 MHZ Atari ST with 1 MB of RAM) this was far from trivial because
there are about 2217 million different positions in phase 1 (getting into G1) and about 19508
million positions in phase 2 (getting the cube solved in G1).

After a long struggle | finally found the ingredients which made the maneuver search work:

e Mapping permutations and orientations to natural numbers and implementing moves as
table-lookups for these numbers.

e Computing from these numbers some indices for tables which hold information about the
distance to the goal state.

Phase 1 needs at most 12 moves (see distribution) and phase 2 needs at most 18 moves (Michael
Reid showed this in 1995, do not see distribution because the phase 2 pruning table only holds
1/24 of all possible phase 2 positions). So the first solution generated by the Two-Phase Algorithm
will always have at most 30 moves. The idea to combine suboptimal solutions of phase 1 with
optimal solutions of phase 2 to get shorter overall solutions was quite obvious then, but | was
surprised how short the overall solutions are - usually within seconds 22 moves or less on the
Atari ST and 20 moves or less in the current implementation and a year 2000 PC.

| did not use symmetry reductions in this first version of the Two-Phase Algorithm. The idea for
symmetry reduction came from Mike Reid who used it in 1997 to hold a complete phase 1 pruning
table in memory then in his one-phase optimal solver.

In the current implementation (Cube Explorer 2) symmetry reduction also is used.

In phase 1 we use two coordinates: The FlipUDSlice coordinate (a sym-coordinate with 64430
different classes which combines the edge orientation coordinate and the UDSlice coordinate) and
the corner orientation coordinate.

When computing the index for the pruning table, both coordinates are used. This means, that we
have an entrv for each possible phase 1 position.

http://kociemba.org/math/imptwophase.htm Page 1 of 3

http://kociemba.org/math/distribution.htm
http://kociemba.org/math/distribution.htm
http://kociemba.org/math/symcord.htm#symcoord
http://kociemba.org/math/coordlevel.htm#edgeoridef
http://kociemba.org/math/twophase.htm#udslicedef
http://kociemba.org/math/coordlevel.htm#cornoridef

Two-Phase Algorithm Details 11/29/13 5:22 PM

In phase 2 we have the problem of initializing the three phase 2 coordinates corner permutation,
phase 2 UDSlice and phase 2 edge permutation.

Because the phase 2 UDSlice and phase 2 edge permutation coordinates are not defined in
phase 1, we would have to go back to the cubie level to apply our phase 1 solution to the cube
before computing the phase 2 coordinates.

So we use three helper-coordinates which are also defined in phase 1 (UDSliceSorted,
RLSliceSorted and FBSliceSorted), each describing the exact positions of the 4 edges of a slice.
Helper-coordinate div 24 gives the positional part, helper-coordinate mod 24 describes the
possible permutations of the 4 edges within the position.

In phase 2 the phase 2 UDSlice coordinate is identical to the UDSliceSorted coordinate, so we to
do not need to do any computation at all.

The phase 2 edge permutation coordinate can be extracted from the RLSliceSorted and and
FBSliceSorted coordinates with help of the table GetEdge8Perm of size 11880*24.
GetEdge8Perm[RLSliceSorted,FBSliceSorted mod 24] gives the coordinate. We may use
FBSliceSorted mod 24 here, because the positional part information of the FB slice cubies is
redundant.

The corner permutation coordinate is already defined in phase 1. We use a raw-coordinate
(0..40329) in the movetable. Before building the index in the pruning table (together with the
phase 2 edge permutation coordinate), it is mapped to a sym-coordinate with 2768 classes.

As already mentioned above, the algorithm does not stop when a first solution is found but
continues to search for shorter solutions by carrying out phase 2 from suboptimal solutions of
phase 1.

For example, if the first solution has 10 moves in phase 1 followed by 12 moves in phase 2, the
second solution could have 11 moves in phase 1 and only 5 moves in phase 2. The length of the
phase 1 maneuvers increases and the length of the phase 2 maneuvers decreases.

Usually the phase 2 length drops very soon (typically below 9). The performance of the algorithm
increases considerably if we do not initialize all three coordinates when entering phase 2 but only
the corner permutation coordinate. A small pruning table only for this coordinate shows im most
cases, that even the corner permutation coordinate cannot be restored within this small number of
moves.

So we can jump back immediately to find the next subobtimal phase 1 solution .

Another way to considerably increase the performance is to throw away certain phase 1
suboptimal solutions. If the maneuver M defines a phase 1 solution, then for example M R2 or M U
F2 of course are also suboptimal phase 1 solutions, because R2, F2 and U are phase 2 moves.
But these solutions are irrelevant, because phase 2 applied to M R2 will never give a shorter
overall solution than phase 2 applied to M.

In the current implementation we throw away any phase 1 suboptimal solution maneuver, if some
submaneuver beginning with the first move already is a phase 1 solution. We might loose some

solutions doing like this, put in practice this is irrelevant except for the fact, that the algorithm now
is not suited any more to prove a certain maneuver to be optimal. But this is done better by using

http://kociemba.org/math/imptwophase.htm Page 2 of 3

http://kociemba.org/math/coordlevel.htm#cornpermdef
http://kociemba.org/math/twophase.htm#phase2udslice
http://kociemba.org/math/twophase.htm#phase2edge
http://kociemba.org/math/twophase.htm#phase2udslice
http://kociemba.org/math/twophase.htm#phase2edge
http://kociemba.org/math/coordlevel.htm#cornpermdef

Two-Phase Algorithm Details 11/29/13 5:22 PM

the optimal solver anyway.

Take for example the cube C generated by RL U2 RL . F (6 moves). The algorithm will not find
the solution F' . L' R' U2 L' R' because applying F' to C brings the cube into the subgroup G1 and
is therefore is a phase 1 solution. Any suboptimal phase 1 solution starting with F' will be
discarded.

http://kociemba.org/math/imptwophase.htm Page 3 of 3

The Optimal Solvers 11/29/13 5:22 PM

The Optimal Solvers

An optimal solver never needs more moves to restore a scrambled cube than the number of
moves used to scramble the cube.

The standard optimal solver implemented in Cube Explorer uses Mike Reid's method from 1997.
We do a triple phase 1 search in parallel in three different directions. That means that our goal
state is the intersection of the groups <U,D,R2,L2,F2,B2>, <U2,D2,R,L,F2,B2> and
<U2,D2,R2,L2,F,B>. By the way, this intersection is not the group <U2,D2,R2,L2,F2,B2> but a
group six times larger.

Because the phase 1 pruning table has an entry for each possible position, phase 1 solutions are
generated very fast. So we just produce triple phase 1 suboptimal solutions and throw them away
until the cube is solved (the solved cube is a phase 1 solution).

Using the pruning table in parallel in three different directions is a nice thing because it
substantially improves the tree-pruning quality. If p1, p2 and p3 are the pruning values in the three
different directions, we can use max(p1,p2,p3) as the effective pruning value in our search.

A look at the distribution of the pruning values in phase 1 shows that the probability to have the
pruning value 10 in each direction is relatively high. The following idea (suggested by Michiel de
Bondt) improves the performance of the algorithm by about 35%:

If we apply an arbitrary move to a cube from the goal state, the resulting cube stays at least in one
of the three subgroups mentioned above. This implicates, that at least one of the three pruning
values stays 0. So if we do for example 10 moves from the goal state, at least one of the pruning
values is 9 or less. If on the other hand all three pruning values are 10, we know that we can use
11 as the effective pruning value. In general: if all three pruning values are n, we can use n+1 as
the effective pruning value.

My huge optimal solver works the same way as the standard optimal solver does. The only
difference ist that it uses the UDSliceSorted coordinate instead of the UDSlice coordinate to build
the pruning table. The goal state is a subgroup of the group which defines the goal state for the
standard optimal solver, because all 12 edges are in place now. The pruning table is about 24
times bigger and the average pruning value is higher, as documented in the distribution of the
pruning table. It runs about 5 times faster than the standard optimal solver.

http://kociemba.org/math/optimal.htm Page 1 of 1

http://kociemba.org/math/distribution.htm
http://kociemba.org/math/distribution.htm

Symmetric Patterns 11/29/13 5:22 PM

Symmetric Patterns

With the Symmetry Editor of Cube Explorer you can search for symmetric cube patterns. We will
give some explanation concerning the mathematics of such symmetries here.

A cube has 48 symmetries which build the symmetry group M with 48 elements. A cube symmetry
is a geometric transformation, which maps the cube onto itself. If the cube has a pattern, this
pattern usually will not map onto itself too.

But take for example this cube. If you do 1/4 rotation about
the UD-axis, the result is...

this cube. And if you recolor the facelets again by
exchanging yellow with red, red with white, white with
orange and orange with yellow you get...

the first cube again. We call this pattern symmetric with
respect to the 1/4 rotation about the UD-axis.

Here is a table of the possible 48 symmetries of the cube

@ @ @ @ @ @ 1/2 rotation around an edge 6 elements
@ GB @ @ @ @ Reflection through a plane 6 elements

@ @ @ 1/2 rotation around a face 3 elements
@ @ @ Reflection through a plane 3 elements

l<;.:>l l<:>l f<->l AIA vAtAtian AvAartiinAd A fAnA N s D AlAarmaAanta

http://kociemba.org/math/symmetric.htm Page 1 of 2

Symmetric Patterns 11/29/13 5:22 PM

kl) klﬂ w /<t 1vwauvilil aivuliu a 1iauvuc L AV TITIIHITIHIW
@ @ @ 1/4 rotation + reflection through the 2 x 3 elements
center
@ @ Eﬁ @ 1/3 rotation around an edge 2 x 4 elements
@ Reflection though the center 1 element
ED @ @ @ + @ 1/3 rotation + reflection through the 2 x 4 elements
center
Identitiy: do nothing 1 element

There are patterns which only have one of the above symmetries (except the identity), but there
also are patterns which have several symmetries. A pattern could be for example symmetric with

respect to all three reflections through a plane @ fﬁj . This automatically implies the
symmetries @ @ @ and @ . The resulting symmetry type in this example is . An

example for a pattern, which has this symmetry is . Altogether there are 33

basically different symmetry types which correspond to certain subgroups of the symmetry group
M.

Look at this table to get more information about the 33 symmetry types and cube patterns with
these symmetries.

http://kociemba.org/math/symmetric.htm Page 2 of 2

http://kociemba.org/symmetric2.htm

