Rubik's Cube - The Ultimate Solution

All these puzzles with just two little algorithms??? Absolutely!

4×4×6 Cuboid

The $\mathbf{4 x} \mathbf{4 x} \mathbf{6}$ Cuboid is a cuboid which can be thought of as a $4 \times 4 \times 4$ Rubik's Revenge with an extra layer on top and bottom. The ultimate solution takes care of this cube in much the same way as the Rubik's Revenge. The basic idea is to first solve the inner $4 \times 4 \times 4$ and then complete the outer layers.

Everything from here on in is from me, since this cube was not invented when the original site was made. It's assumed you can solve a $3 \times 3 \times 3$ rubiks cube using the ultimate solution, as well as a $4 \times 4 \times 4$ and a $3 \times 3 \times 4$ cuboid.

The Basic Plot

1. Solve centers
2. Pair edges of inner $4 \times 4 \times 4$
3. Place edges of inner $4 \times 4 \times 4$
4. Place corners of inner $4 \times 4 \times 4$
5. Pair outer edges
6. Place outer edges
7. Place outer corners

Step 1: Solve Centers

This is done in the same way as the Rubik's Revenge, in that there is no fixed center piece. The only complicating part is that the puzzle is not in cuboid shape, so it may not be immediately obvious which are the center pieces.

Step 2: Pair Edges of Inner $4 \times 4 \times 4$
All centers are now in place and it's time to concentrate on solving the inner $4 \times 4 \times 4$. You can see this inner $4 \times 4 \times 4$ if you ignore the outer top and bottom faces. There are two types of edge pieces.

The first type is an edge piece which has two stickers on it. These edge pieces make up the middle layer.

The second type is an edge piece which has an outer edge piece attached to it. This type has only one sticker colour on it.

Use the edge piece series as follows

1. Find two edge pieces needing to be matched
2. Bring them together (centers will be disturbed)
3. Use an edge piece series to move the matched edge pair onto a different face. Make sure that edge pair 3 is not already a matched pair.
4. Return the centers

It's simple, as this video will show.

Step 3: Place Edges of Inner $4 \times 4 \times 4$

Now treat each edge pair as a single edge piece. Turn only the outer faces. Position the edge pairs exactly as you would for the $3 \times 3 \times 3$ Rubik's cube.

Help! My Last Edge Pair Is Placed But Inverted?!?

This will happen some of the time. The fix is as follows:

1. Hold the puzzle with the 4×4 faces at top and bottom.
2. Turn the bottom 3 slices (bottom half of puzzle) one turn in either direction.
3. Re-solve the centers.
4. Re-pair the edges.
5. Re-place the edges.

The process is very simple. This video will make it clear.

$4 \times 4 \times 5 \text { (Ayi's) }$
4X4X6
$5 \times 5 \times 4$ (Ayi's)
$5 \times 5 \times 5$
$5 \times 5 \times 5$ Supercube
$6 \times 6 \times 6$ V-Cube
7x7x7 V-Cube
Corner Turning Octahedron
Crazy $3 \times 3 \times 2$
Crazy $3 \times 3 \times 3$ Earth - CC Last
Crazy $3 \times 3 \times 3$ Earth - Reduction
Crazy $3 \times 3 \times 3$ Jupiter - CC Last
Crazy $3 \times 3 \times 3$ Jupiter - Reduction
Crazy $3 \times 3 \times 3$ Mars - CC Last
Crazy $3 \times 3 \times 3$ Mercury - CC Last
Crazy $3 \times 3 \times 3$ Mercury - Reduction
Crazy $3 \times 3 \times 3$ Neptune - CC Last
Crazy $3 \times 3 \times 3$ Saturn - CC Last
Crazy $3 \times 3 \times 3$ Uranus - CC Last
Crazy $3 \times 3 \times 3$ Uranus - Reduction
Crazy $3 \times 3 \times 3$ Venus - CC Last
Crazy $3 \times 3 \times 3$ Venus - Reduction
Crazy $4 \times 4 \times 4$ II
Crazy Earth Tetrahedron
Crazy Jupiter Tetrahedron
Crazy Mars Tetrahedron
Crazy Mercury Tetrahedron
Crazy Neptune Tetrahedron
Crazy Saturn Tetrahedron
Crazy Tetrahedron Standard
Crazy Venus Tetrahedron
Dayan Gem IV
Dayan Jewel
Face Turning Octahedron
Face Turning Starminx
Fisher Cube
Latch Cube
Master Skewb
Megaminx - Edges First
Megaminx - Layer By Layer
Pentahedron 3 Layer
Pentahedron 5 Layer Standard
Pentahedron Crazy Jupiter
Pentahedron Crazy Uranus
Professor Pyraminx
Pyraminx Crystal
Rex Cube
Skewb Ultimate
Tetra Pyramid
Witeden Super $3 \times 3 \times 3$
Witeden Super $3 \times 3 \times 4$
Witeden Super $3 \times 3 \times 5$
COMING SOON!
Pentahedron 5 Layer
Pentahedron Crazy Earth

$4 \times 4 \times 5$ (Ayi's)
4X4X6
$5 \times 5 \times 4$ (Ayi's)
$5 \times 5 \times 5$
$5 \times 5 \times 5$ Supercube
$6 \times 6 \times 6$ V-Cube
7x7x7 V-Cube
Crazy $3 \times 3 \times 3$ Earth - CC Last
Crazy $3 \times 3 \times 3$ Earth - Reduction
Crazy $3 \times 3 \times 3$ Jupiter - Reduction
Crazy $3 \times 3 \times 3$ Mars - CC Last
Crazy $3 \times 3 \times 3$ Mercury - CC Last
Crazy $3 \times 3 \times 3$ Mercury - Reduction
Crazy $3 \times 3 \times 3$ Neptune - CC Last
Crazy $3 \times 3 \times 3$ Saturn - CC Last
Crazy $3 \times 3 \times 3$ Uranus - CC Last
Crazy $3 \times 3 \times 3$ Uranus - Reduction
Crazy $3 \times 3 \times 3$ Venus - CC Last
Crazy $3 \times 3 \times 3$ Venus - Reduction
Crazy 4x4x4 II
Crazy Jupiter Tetrahedron
Crazy Mars Tetrahedron
Crazy Mercury Tetrahedron
Crazy Neptune Tetrahedron
Crazy Saturn Tetrahedron
Crazy Tetrahedron Standard
Crazy Venus Tetrahedron
Dayan Gem IV
Dayan Jewel
Face Turning Octahedron
Face Turning Starminx
Fisher Cube
Megaminx - Edges First
Megaminx - Layer By Layer
Pentahedron 3 Layer
Pentahedron 5 Layer Standard
Pentahedron Crazy Jupiter
Pentahedron Crazy Uranus
Professor Pyraminx
Pyraminx Crystal
Rex Cube
Skewb Ultimate
Tetra Pyramid
Witeden Super $3 \times 3 \times 3$
Witeden Super $3 \times 3 \times 4$
COMING SOON!
Pentahedron Crazy Earth

And now let's see it on the scrambled puzzle.

Help! I Need To Swap The Last Two Inner Corners?!?

This will happen some of the time. The fix is as follows:

1. Hold the puzzle with the 4×4 faces at top and bottom.
2. Turn the bottom 2 slices one turn in either direction.
3. Re-pair the edges.
4. Re-place the edges.
5. Re-place the inner corners.

This fix will mean that instead of having to swap two corners, we will have three corners to cycle at the end. The process is very simple. This video will make it clear.

Step 5: Pair Outer Edges

At this point the puzzle has returned to cuboid shape. We now hold the puzzle so that the 4×4 faces are at left and right. We pair the outer edges in effectively the same way that we pair the inner edges.

Use the edge piece series as follows

1. Find two edge pieces needing to be matched
2. Bring them together (centers will be disturbed)
3. Use an edge piece series to move the matched edge pair onto a different face. Make sure that edge pair 3 is not already a matched pair.
4. Return the centers

It's simple, as this video will show.

Step 6: Place Outer Edges
This step is the simplest step of the solve. We hold the puzzle with the 4×4 faces at top and bottom, and use edge piece series to move outer edge pairs into position. Even if we find there are two outer edge pairs to swap at the end, this is easily fixed by turning the upper face one turn and then using edge piece series to finish placing the edge pairs.

Step 7: Place Outer Corners

The final stage of the solve is to place the outer corners. We do this just as we would for a $3 \times 3 \times 4$ cuboid. Use the corner piece series where we turn the left and right faces 180° instead of 90°.

This video will show the corner piece series on a solved puzzle .

Now let's see it in action on the scrambled puzzle.

Help! I Need To Swap The Last Two Outer Corners?!?

This will happen some of the time. The fix is as follows:

1. Hold the puzzle with the $\mathbf{4 \times 4}$ faces at left and right.
2. Turn the bottom 2 slices 180°.
3. Re-place the centers.
4. Re-pair the outer edges.
5. Re-place the outer edges.
6. Re-place the outer corners.

This fix will mean that instead of having to swap two outer corners, we will have three outer corners to cycle at the end. The process is very simple. This video will make it clear.

And that's it. Your $4 \times 4 \times 6$ is now solved. I trust this site has been helpful. If you have any questions or want some clarifications, please use the comments to do so.

Posted by chareaves at Friday, April 27, $2012 \quad \square$
Labels: $4 \times 4 \times 6,4 \times 4 \times 6$ solution, rubiks, solve the $4 \times 4 \times 6$, the ultimate solution to rubik's cube, Tomz $4 \times 4 \times 6$, Tomz $4 \times 4 \times 6$ solution, twisty puzzles, ultimate, ultimate solution

3 comments:

Kevin Apr 27, 2012 01:18 PM

My goodness! You are a genius! It is absolutely amazing that you can apply these techniques to such a complex cuboid. I will probably not use this as my primary technique but it will be fun to try this method as a secondary approach!

Kevin
PuzzleMad
Reply
Replies
chareaves Apr 27, 2012 03:44 PM
So what will your primary technique be? I'm curious!

Kevin Apr 28, 2012 08:38 AM
The way I had thought it out was to solve the 2×2 centres as you have and then I would pair the edges BUT instead of pairing the edges like you, I would pair the extended edges together and the non-extended edges whilst ignoring the layer in.
My next step would be to solve it as a 4×4 which would return it to a cuboid state (I only want to ensure that the centre 2 rows are fully solved - the top and bottom 2 layers don't matter) - you could use your system to do it as it is just a normal 4×4 solve. I have an algorithm that is quite easy to remember for the single edge flip parity issue.
My next step would be to complete the centres (4×2 areas) by flipping end to end to match up and then turning out before remaking the broken edges again.
After this I would use my standard cuboid algorithms to solve the rest (I start at the middle and work out) this is just as I solved the $3 \times 3 \times 9$.

BUT this is all hypothetical as my $4 \times 4 \times 6$ is caught in the post somewhere

- I have been waiting over 2 weeks with no sign as yet!!!

Kevin
PuzzleMad

Reply

Comment as: Select profile... \uparrow
Publish Preview

Links to this post
Create a Link

Newer Post
Home
Older Post
Subscribe to: Post Comments (Atom)

