

I got a 5×5 cube recently, and learned how to do it by only learning a few algorithms.

In order for you to be able to finish the cube, you will need to be able to solve a 3×3 cube, but being able to solve a 4×4 cube would also enhance your abilities for it, since the algorithms can be used on both.

If anything is unclear, just ask and I can clarify it for you Please note:

1. This is a LONG INSTRUCTABLE. It will take time and effort to get through this cube, and you need to have some free time to solve your cube.
2. I am Canadian, so deal with the u in colour.
3. I am assuming you have a 5×5 cube. If you do not, they cost up to $\$ 40$ CAD, so be prepared to spend a little bit of money on it.

Step 1: My Collection/experience

I started cubing over the summer of 2007. I got a dollar store "magic" cube, which was a cheap Rubik's cube. It came with instructions, which I memorized, and have now fine tuned so I can solve my cube with a 12 cube average of 51 seconds.

I can solve all the puzzles you see here, no instructions.
I found out how to do this by watching a long youtube video tutorial about how to solve this, and read some text instructions. I have 25×5 cubes, a few 3×3 cubes, and the 4×4 cube.

Step 2: My Solve

This is a video of me solving the cube using my solution. I have only been solving this since christmas, so a couple weeks and I dropped my time by about 20 minutes. I took a long time to solve it the first few times, because I was still learning algorithms. Now, my time is below 10 minutes.
By the way, that cube is not the one I am using in my instructions, its the Rubik's one.

Click to use Flash

Step 3: Getting Started

Ok, so the first step is to get your cube mixed up (I assume you have already done so, which is why you are reading this in the first place)

Step 4: Notation

In the image below, you will see the notation I will be using. It is standard 5×5 notation, as far as I know. If just the letter is there, turn the face denoted clockwise, if you are looking at that side
' means counter clockwise.

I always solve my cube white centers first, then yellow, and the rest vary. It might help to follow how I am solving it if you start on white, then go to yellow, and work with my sides.

Step 5: Getting a 2x1 Block on the Side of Your Choice

This is a rather simple step, just rotate any of the lower case letters (l,r ,f , b) until there is a 2×1 cube

Step 6: Make a 2x2 Block

Now, make another 1×2 block, and make it match up with the other one, leaving you a 2×2 block on the face you chose (white for me).

Step 7: Finishing the First Center

Create yet another 2×1 block, joining it to make a 2×3 block.

Make a 1×3 block with the remaining white pieces, but don't mess up the white 2×3 block in the process!

Try to use the side that has no white blocks on the 2×3 block, and form that 1×3, and insert it.

Step 8: Working on the Opposite Center

Now, flip your cube over. Make a 2×1 section. If you needed to rotate any faces, make sure you turn the piece out of the way, so that when you turn it back, the piece stays there. Make the 2×3 center on the yellow side using this method, and you are ready to move on.

Step 9: Finishing the Center.

Make a 1×3 block of yellow, keeping the 2×3 and white center intact.

If you have the sides like they are in the first picture, then do the following:
Dd' Uu L2 Dd Uu'
It should now be a 1×3 block

Now, align it as in the second picture, and do the following algorithm:

LI' U2 LI

This completes the second center.

Step 10: The Third Center!

Find a colour that has a 1×2 or $2 x 2$ block already assembled. This will be the next center you solve. In my case, it is orange.

Create a 2×1 block on a different side, and join it to the other one, that should have the center connected to it. It's just like solving the first center, just it's a bit easier to find the pieces. I forgot to take pictures, but I have put in the photos from steps 5-7 in, so you know it's the same thing.

HINT:

You won't mess up the completed centers if you hold the cube so that the white center is in your right hand, and the yellow center is in your left.

Step 11: The Fourth Center!

Pick a center adjacent to the one you just solved. If one is more solved than the other, then choose it. Green happened to be mostly solved, as can be seen in the pictures, so I chose that side.

Now, solve it like the second center, and then you have completed 4 of the 6 centers!

If you have a stray piece on your cube like in the picture, then do the algorithm used for putting the 3×1 section into the center, but make sure no greens go in!

Step 12: The Final Two Centers!

Show All 8 Items

Now, there should be only two different colours on the unsolved sides.

Using the algorithm for moving those pieces around(LI' U2 LI), get as many of the colour on its respective side. In my case, I am getting as many blues on the blue side, and reds on the red side as humanly possible. The inverse also works, and on the right side. Possible algorithms are:
LI U2 LI'
LI' U2 LI
Rr U2 Rr'
Rr' U2 Rr

If you have a case like in the second photo, you need to get the red center on the red side, and the blue center on the blue side. Then, align them as shown in the picture, and perform this set of moves:
r U' M U r' U' M'
(M is the middle, rotate it in the same direction as R)

You may need to repeat this multiple times to solve both parts, but after they are solved, we move on the the most time consuming part of the cube: Pairing

Step 13: Pairing

How to Solve a 5x5 Rubik's Professor Cube by
Does Not Compute (/member/Does+Not+Compute/) in puzzles (/play/puzzles/)

Download	:\#: (/id/How-to-solve-a-5x5-Rubiks-Professor-cube/)	15 Steps	-				
		+ Collection		1 Made it!	- Favoritagerisement Share ${ }^{\text {- }}$	\\|	

Show All 7 Items

Yes, this is a painfully time consuming step. I know

Find 2 edges that have the same colours on them, and arrange them like in the picture. I turned the layer with the edge on it so that it is one photo instead of 2

Now, to pair these edges, we find an unmatched pair in the top face. Rotate the cube as much as you like, you barely have to worry about messing up the centers anymore. For the following case, you need to perform the following (It's all logic, I'm just giving you algorithms to make it easier.):
(Uu) L' U L (Uu)'
The U can be replaced with U 2 or U ' as well

The logic method:
Move the cubie into position, swap it with an unpaired edge, and return the centers to the completed state.

Moving on:
Make sure that all the center edges are facing the same way as the outer edge pieces
This will work until you have 2 edges that are not solved.

Step 14: Parity Errors

Sometimes, the cube does not always finish to be like a 3×3. If you have your cube looking like a 3×3, then move on to the next step for now. Otherwise, look at the pictures and determine which parity error to solve. For the example in the first picture, hold the cube so that the 2 sdes you are switching are on the right hand side. Then, use this algorithm (This is one of the ones I had to learn to solve this):
(LI)' U2 (LI)' U2 F2 (LI)' F2 (Rr) U2 (Rr)' U2 (LI)2

This can also be used in solving the 4×4.

Just arrange the cubies so that they are in that manner, and you can get it to have sections like a 3×3, and solve it. You may need to repeat that algorithm a few times.

Step 15: Done!

Now, solve the cube like a 3×3. I use the beginner method, but you can use whatever method you like.

If you have any questions, problems, comments, or critiques, post them as a comment below.

Also, if you need more photos, I will make some more. I don't know that they
will be exactly the same, but the photos I took were very minimal. If you need help solving it like a 3×3, I am working on an instructable for that next. (Don't worry, I have a newer cube than the one in the photos)

Comments

\square

KatarzynaG5 (/member/KatarzynaG5/)

Help, I have a parity case for centers on a $6 x 6$.
(https://cdn.instructables.com/FPA/BPKT/J86HS9U2/FPABPKTJ86HS9U2.LARGE.jpg)

KatarzynaG5 (/member/KatarzynaG5/) • KatarzynaG5 (/member/KatarzynaG5/)
I realized I can actually solve that by 4×4 edge pairing 2017-10-05 Reply reducing it to 5×5 centers! Yay!

KatarzynaG5 (/member/KatarzynaG5/) • KatarzynaG5 (/member/KatarzynaG5/)
And also a modified version of this for 7×7 !

Chicken2209 (/member/Chicken2209/)

Why do people consider that a parody?
that makes me mad
=0
oh noes! more and more people are learning to solve the other cubes
im running out of things to brag about
but I still got my 7, :P

KatarzynaG5 (/member/KatarzynaG5/) • Chicken2209 (/member/Chicken2209/)
it's spelled parity
2017-10-01 Reply

Does Not Compute (/member/Does+Not+Compute/) • Chicken2209
(/member/Chicken2209/) 2009-01-04 Reply
umm about that... i could make a tutorial about how to do the 7 or 6 , except that i hate doing tutorials for cubes I don't personally own. My first solve of the 7×7 was about 42 minutes, done today. If/When I get my cube, then I could make the tutorial xP But then again, its the same thing as 5×5, just more layers, more concerns, etc. The speedcubing corner swap is a good one for 7×7 though. Attached is a screen shot after my first 7×7 solve.
(https://cdn.instructables.com/F2X/47SV/FPIUQUF1/F2X47SVFPIUQUF1.LARGE.jpg)

Ikotoo (/member/Ikotoo/)
2009-01-14
Reply
I modified the algorithms for a $3^{*} 3^{*} 3$ Rubiks cube to work for my $5^{*} 5 * 5$, and it worked well, I am able to solve it. I found the $5^{*} 5^{*} 5$ easier then the $4^{*} 4^{*} 4$. Great Tutorial, you cover everything.

KatarzynaG5 (/member/KatarzynaG5/) • Ikotoo (/member/lkotoo/)
I think in 5×5 you don't have to deal with parity (in the method I 2017-10-01 use), but in other hand there are more centers and edges to pair.

Does Not Compute (/member/Does+Not+Compute/) • Ikotoo (/member/Ikotoo/)
I also find the 5×5 easier than the 4×4, but then again, 2009-01-14 Reply my 4×4 pops, and I solve it differently because I hate that one parity problem where the cross just doesn't work. I solve one side, the other side, then everything in between. I find it faster than doing it the other
way, but the biggest thing you could run in to is a whole 2×2 center being in the wrong place.

Ikotoo (/member/Ikotoo/) • Does Not Compute (/member/Does+Not+Compute/)
Yeah, parity with the $4 * 4^{*} 4$ is much more difficult. it
2009-01-19 Reply took me about two days to find a way to get out of it while it took me and hour or so with the $5^{*} 5^{*} 5$. Your way of solving the $4^{*} 4^{*} 4$ is really cool, I will have to try it some time.

nurdturd (/member/nurdturd/)

2011-04-09
Reply
I ran into a weird parody where one edge has all of the right colors on it but one is oriented the wrong way. Got any algorithms?

KatarzynaG5 (/member/KatarzynaG5/) • nurdturd (/member/nurdturd/)	Reply
it's spelled P, A, R, I, T, Y	2017-10-01

mashedpotato13 (/member/mashedpotato13/) • nurdturd (/member/nurdturd/)
RR2 B2 U2 LL U2 RR' U2 RR U2 F2 RR F2 LL' B2
2011-06-25 Reply RR2

Or what he used on step 14. (The one above is longer, but somewhat easier to memorize.)

B3tray3dQU (/member/B3tray3dQU/)

2011-09-04 Reply
Im at a parody that on the last step where you make the cross on the top layer, I have every side except 1 , I know there is an algorithm for my 4×4 but forgot it, and not sure how to do it on the 5×5. Help please? And also I have 2 corners correct on the top layer to start with, so I know there is an algorithm for the switching of 2 corners but can't find it in my manuals or on the internet. Can you please help me with this?

KatarzynaG5 (/member/KatarzynaG5/) • B3tray3dQU (/member/B3tray3dQU/)
it's called parity, not parody
2017-10-01 Reply

JaxonTM (/member/JaxonTM/) • B3tray3dQU (/member/B3tray3dQU/)
The parody Algorithm: 2Rr, 2B, 2U, LI, 2U, Rr', 2U, Rr, 2U, 2F, Rr, 2F, LI', 2B, 2Rr.
this may result in and edge swap (the opposite edges are swapped) put them in the TB and TF edges, and perform; $2 \mathrm{Uu}, 2 \mathrm{LI}, 2 \mathrm{~L}, 2 \mathrm{I}, 2 \mathrm{~L}, 2 \mathrm{LI}, 2 \mathrm{Uu}$. that should fix those problems.
the algorithm to swap the two corners: place the two solved corners in
the back of the cube (assuming the top is solved and not permuted)
perform; $R^{\prime}, F, R^{\prime}, 2 B, R, F^{\prime}, R^{\prime}, 2 B, 2 R$. email me at
twpyromaniac@gmail.com if you have any other cubing questions

KatarzynaG5 (/member/KatarzynaG5/)

2017-10-01 Reply
I use a somewhat different method: in both 4×4 and $5 x 5$, I use I' U L' U' I to shift edges, and carefully plan the last 3 so that it perfectly reduces to $3 x 3$. In case of 4×4, I also use OLL and PLL parity algorithms.
(https://cdn.instructables.com/F8M/PYDX/J86HS8QU/F8MPYDXJ86HS8QU.LARGE.jpg)
_icareforyou__ (/member/__icareforyou_h 2017-03-01 Reply
Hi! Can you suggest a move to fix this? Everything is already in place except these two. Thank you! ??
(https://cdn.instructables.com/FYO/G9BX/IZQA47BW/FYOG9BXIZQA47BW.LARGE.jpg)

GabrielG205 (/member/GabrielG205/) • _icareforyou_ (/member/_icareforyou__)
-(Rr)2
$\cdot(\mathrm{B})^{2}$
-(U)2
-(LI)
$\cdot(\mathrm{U}) 2$
$\cdot(\mathrm{Rr})^{\prime}$
$\cdot(\mathrm{U}) 2$
$\cdot(\mathrm{Rr})$
$\cdot(\mathrm{U}) 2$
\bullet •(F)2
$\cdot($ Rr)
\bullet •(F)2
$\cdot\left(\right.$ LI) ${ }^{\prime}$
-(B)2
-(Rr)2

The EverydayC (/member/The+EverydayC/) • _icareforyou_
(/member/_icareforyou__) 2017-03-02 Reply
hey I'm having this problem to its an oll parity do this (RW2 B2 U2 F2 LW' U2 F2 LW' F2 RW U2 RW' U2 LW2) then t gives you another parity that's what I'm trying to find
sheetalp4 (/member/sheetalp4/)
2017-01-24 Reply
After solving the whole cube....i got this parity...how to solve this parity...i found nowhere on the internet.... 3×3 cube don't have this parity....
(https://cdn.instructables.com/F4G/GU8I/IYB28YGF/F4GGU8IIYB28YGF.LARGE.jpg)

Hutchem14 (/member/Hutchem14+/) • sheetalp4 (/member/sheetalp4/) Reply 2017-02-01
It is the yellow edge parity look it up for the four by four it is the same algorithm

Daniel Schade (/member/Daniel+Schade/)

2017-01-29 Reply
I tried for my own with a different strategy...
Can you help me to fix that last row?
Everything else ist already done...
(https://cdn.instructables.com/F84/41B5/IYGFKZE8/F8441B5IYGFKZE8.LARGE.jpg)

Ashchinala2004 (/member/Ashchinala2004/)
2016-12-28
Reply
What about this, I think something happened to my cube
(https://www.instructables.com/static/defaultIMG/file/default.MEDIUM.VIDEO.gif)
ekou2 (/member/ekou2/)
2016-12-28 Reply
I did it! I just needed help solving the centers. I can solve a 4×4. Oh, and I don't need the edges parity. I know how to deal with that one so I won't run into it.:)

MattR123 (/member/MattR123/)

2016-05-05 Reply
can someone give me the alg for this, I can't find it anywhere!!
(https://cdn.instructables.com/FZZ/KBWI/INU1GTPV/FZZKBWIINU1GTPV.LARGE.jpg)

JeffreyS89 (/member/JeffreyS89/) • MattR123 (/member/MattR123/)
Reply
That Mate is not a parity. Its just a simple cross case.
2016-05-16
Holding the L shape with one yellow edge at the backa and one to the left do this algorithm.
$F \cup R U^{\prime} R^{\prime} F^{\prime}$

30200mel (/member/30200mel/) • JeffreyS89 (/member/JeffreyS89)
Reply
2016-12-24
how do u solve the 5×5
ekou2 (/member/ekou2/) • 30200mel (/member/30200mel/) 2016-12-28 Reply
Didn't it just say?

MattR123 (/member/MattR123/) • JeffreyS89 (/member/JeffreyS89/)
Reply
thank you so much! I feel really dumb now! I thought it was like 2016-05-29 the 4×4, and The cross was pre solved!

JeffreyS89 (/member/JeffreyS89/) • MattR123 (/member/MattR123/)
Reply
Curious what cube that is. Is it a Moyu?
2016-05-30
I use the Moyu Bochuang GT. Really nice puzzle. I average under 2:40...
Need more work on my solving.

It is a Yuxin.
2016-05-30

JeffreyS89 (/member/JeffreyS89/) • MattR123 (/member/MattR123/)
Just curious at to what cube that is... Is it a Yuxin? I use a
Moyu Bochuang and average under 2:40... Need more mork lol.

MasterA9 (/member/MasterA9/) • MattR123 (/member/MattR123/)
It is not a parity.Use the cross alg of beginners method and solve it like a normal 3×3

MASTERMIND2368 (/member/MASTERMIND2368+/) • MattR123
(/member/MattR123) 2016-06-07 Reply
you can do F sexy, sexy F' or you can do U2 M' U M U2 M' U M

MASTERMIND2368 (/member/MASTERMIND2368+/) • MattR123
(/member/MattR123/)
2016-06-07 Reply
you can do F sexy, sexy F' or you can do U2 M' U M U2 M' U M

Arcademedes (/member/Arcademedes/)
2016-12-28 Reply
I have a PLL parity does anyone know the algorithm for this

TahmidA2 (/member/TahmidA2/)

2016-09-24 Reply

How can i solve this?
(https://cdn.instructables.com/FRP/BPGE/ITCHANR0/FRPBPGEITCHANR0.LARGE.jpg)
quangt29 (/member/quangt29/) • TahmidA2 (/member/TahmidA2/)

Reply

2016-09-24
With the Green is F (your pic), turn your cube to the left 90 degrees, use (U'u' R F' URF Uu) (Dd R F' U R F D'd')

TahmidA2 (/member/TahmidA2/)
2016-09-24
Reply
Guys i need help

I have a problem with mine,i was matching the edges and i have all my edges matched except 2 centre pieces

King Leonardo (/member/King+Leonardo+/)
2015-06-20 Reply Is there an algorithm for this?
gumble613 (/member/gumble613/) • King Leonardo (/member/King+Leonardo+/)
http://www.alchemistmatt.com/cube/5by5cube.html.
2016-07-19 Reply

They have here all for it.

TMCuber (/member/TMCuber/) D King Leonardo (/member/King+Leonardo+/)
Not any that I know of. You'll have to redo the edges,
2016-06-28 Reply so that's why I don't solve the 5×5 cube. You have to exposition edges A LOT.

TMCuber (/member/TMCuber/) • TMCuber (/member/TMCuber/)

Reply
2016-06-28

Reposition not Exposition

MASTERMIND2368 (/member/MASTERMIND2368+/) > King Leonardo
(/member/King+Leonardo+) 2016-06-07 Reply
If he didn't cover this notation above, a letter that is not capotal means turn the second layer.

I U2 I U2 F2 I F2 r U2 r' U2 I2. Did that help?
swaggyjohncena (/member/swaggyjohncena/) • King Leonardo
(/member/King+Leonardo+/) 2016-04-26 Reply
I have same cube as you, you can take off stickers

Cubers01 (/member/Cubers01/) • King Leonardo (/member/King+Leonardo+/)
Yes there is....
2015-11-30 Reply

TherubiksSolver8219 (/member/TherubiksSolver8219/) • Cubers01
(/member/Cubers01) 2016-02-01 Reply
then what is it?

Langsley757 (/member/Langsley757/)

2016-06-30 Reply
I can't find any alga for 4×4 oll and pll parties.
Plz help.

- More Comments

Find Us

Facebook (http://www.facebook.com/instructables)
Youtube (http://www.youtube.com/user/instructablestv)
Twitter (http://www.twitter.com/instructables)
Pinterest (http://www.pinterest.com/instructables)
Google+ (https://plus.google.com/+instructables)

Abstract

About Us Who We Are (/about/) Advertise (/advertise/) Contact (/about/contact.jsp) Jobs (/community/Positions-available-at-Instructables/) Help (/id/how-to-write-a-great-instructable/)

Resources

For Teachers (/teachers/)
Residency Program (/pier9residency)
Gift Premium Account (/account/give?sourcea=footer)
Forums (/community/?categoryGroup=all\&category=all)
Answers (/tag/type-question/?sort=RECENT)
Sitemap (/sitemap/)

[^0]
[^0]: Terms of Service (http://usa.autodesk.com/adsk/servlet/item?sitelD=123112\&id=21959721) |
 Privacy Statement (http://usa.autodesk.com/adsk/servlet/item?siteID=123112\&id=21292079) |
 Legal Notices \& Trademarks (http://usa.autodesk.com/legal-notices-trademarks/) | Mobile Site (https://www.instructables.com)
 4 (http://usa.autodesk.com/adsk/servlet/pc/index?id=20781545\&sitelD=123112)
 © 2017 Autodesk, Inc

