
a.k.a. L'Ane Rouge, Which Way Out, Psychotease, Escaping Jail,Cao Cao Escape, Klotski
Patented in England by J. H. Fleming 1932, this one is "Which Way Out" by T.C. Timber Brain Twisters circa 1995, in a box made by J. A. Storer 2007.
(maple, tray and 10 pieces, 2×2 is painted red, $3.75 \times 3.5 \times 0.9$ inches; box is resized cigar box with brass hardware, $4.75 \times 4.75 \times 1.75$ inches, lid diagram also shows Simple Traffic Jam, Century, and Super Century)

Hordern's book credits the Red Donkey as the third most sold sliding block puzzle (after the Fifteen puzzle and Dad's Puzzler). It is shown in the 1996 design patent of Mendelsohn and the 200 patent of L. Aryan. The goal is to slide the 2×2 piece (without picking pieces up) to the bottom center so that it can pass out through the opening (we do not charge an extra move for the the 2×2 piece passing through the opening). This puzzle is like Simple Traffic Jam, with the 1 x 2 piece between the 2×2 and 1×1 's. There are a number of starting position variations, the leftmost being the original French L'Ane Rouge:

Copyright J. A. Storer

Aryan's Red Donkey Solution

The September 2000 patent of L. A. Aryan describes the same puzzle as the Red Donkey puzzle. Figure 1 shows the puzzle (the box lid is corrected in a revised Figure 1 at the end of the patent). Some study might be required to determine exactly what is new about this patent. The claims describe a ten piece sliding piece puzzle with a hinged lid. Figure 4 presents a (not minimal) solution of 22 positions that require multiple moves (a total of 99 straight-line moves):

a

4	1	$\frac{8}{20}$	3
2		6	
2		6	
9	7	5	
t			

Which Way Out Solution

Here is the solution idea that came with Which Way Out. Many of these positions represent several moves (a total of 118 moves straight-line moves):

Copyright J. A. Storer

A Shorter Red Donkey Solution

Here is a solution of 90 straight-line moves for Version A; it can be converted to 81 rectilinear moves by combining steps $10 / 11,14 / 15,24 / 25,39 / 40,47 / 48,52 / 53,55 / 56,79 / 80$, and 88/89:

$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	X X 7	6 X X 7	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	6 X X
$6 \times \mathrm{X} 7$	$6 \mathrm{X} \times 7$	6 X X 7	$6 \times \mathrm{X} 7$				
8559	8559	855	$8 \quad 55$	855	855	855	855
8129	8129	8129	8129	829	829	$\begin{array}{lll}3 & 8 & 2\end{array}$	3829
$3 \quad 4$	34	$3 \quad 49$	$3 \quad 49$	$\begin{array}{lllll}3 & 1 & 4 & 9\end{array}$	$\begin{array}{lllll}3 & 1 & 4 & 9\end{array}$	149	149
$6 \times \mathrm{X} 7$							
$6 \times \mathrm{X} 7$	6 X X 7	6 x X 7	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	$6 \mathrm{x} \times 7$	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$
55	55	552	5 5 2	$\begin{array}{lllll}5 & 5 & 4\end{array}$	55442	5454	5542
3829	3829	389	389	389	389	389	89
1 8 4	$\begin{array}{lllll}1 & 8 & 4 & 9\end{array}$	$\begin{array}{lllll}1 & 8 & 4 & 9\end{array}$	$\begin{array}{lllll}1 & 8 & 4\end{array}$	189	189	188	1389
$6 \times \times 7$	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	$6 \times \times 7$	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	$6 \times \times 7$	$6 \times \times 7$
$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	6 X X 7	6 X X 7	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	$6 \times \mathrm{X} 7$	6 X X 7
42	4×2	42	428	4289	4289	4289	4289
5589	5589	5589	$5{ }^{5} 5889$	$5{ }^{5} 589$	5589	$5 \quad 589$	89
1 3 8	1389	1389	139	13	13	13	$5{ }_{5}^{5} 113$
$6 \times \mathrm{X} 7$	6 X X	6 X X	6 X X	46 X X			
$6 \times \mathrm{X} 7$	6 XX	6 X X	6 XX	6 XX			
489	489	489	489	4897	4897	4897	897
289	289	289	289	2897	2897	2897	$\begin{array}{llll}2 & 8 & 9\end{array}$
5513	55513	5513	$\begin{array}{llll}5 & 5 & 1 & 3\end{array}$	55113	551	$\begin{array}{llll}5 & 5 & 1\end{array}$	$5 \quad 513$
46 XX	46 X X	4 X X	4 X X	$4 \times \mathrm{X} 7$			
26 XX	26 XX	2 X X	2 XX	$2 \times \mathrm{X} 7$	2 X X 7	$2 \times \mathrm{x} 7$	$2 \times \mathrm{x} 7$
897	897	8697	8697	869	869	8619	8619
897	$8 \quad 97$	8697	8697	869	869	869	869
$5 \begin{array}{llll}5 & 5 & 1 & 3\end{array}$	$5 \begin{array}{llll}5 & 1 & 3\end{array}$	55193	$\begin{array}{lllll}5 & 5 & 1 & 3\end{array}$	$5 \begin{array}{llll}5 & 5 & 1 & 3\end{array}$	55513	553	553
$4 \times \mathrm{X} 7$		47	24				
$2 \times \mathrm{X} 7$	$2 \mathrm{X} \times 7$	$2 \times \mathrm{x} 7$	$\times \mathrm{X} 7$				
8619	8619	619	19	19	$1 \times \mathrm{X} 9$	$1 \mathrm{X} \times 9$	$1 \mathrm{X} \times 9$
8639	8639	8639	8639	8639	8639	8639	8639
55	55	$8 \quad 55$	8655	8655	8655	8655	8655
247	1247	1247	1247	1247	1247	1247	127
X $\times 7$	$\times \mathrm{X} 7$	$8 \times \mathrm{X} 7$	8 X X 7	$8 \times \mathrm{X} 7$	$8 \times \mathrm{x} 7$		847
$1 \times \mathrm{X} 9$	X X 9	8 X X 9	8 X X 9	8 X X 9	8 X X 9	8 X X 9	$8 \times \mathrm{X} 9$
8639	639	639	$6 \quad 39$	639		$6 \times \mathrm{X} 9$	$6 \times \mathrm{X} 9$
8655	8655	655	$6 \quad 55$	$6 \quad 55$	63555	6355	6355
127	127	1279	1279	1279	179	179	8179
847	847	8479	8479	879	8279	8279	8279
$8 \times \mathrm{X} 9$	$8 \times \mathrm{X} 9$	8 X X	8 X X	84 XX	84 XX	84 XX	4 X X
$6 \times \mathrm{X} 9$	6 X X 9	6 X X	6 X X	6 X X	6 X X	6 X X	6 X X
$\begin{array}{llll}6 & 3 & 5 & 5\end{array}$	63555	$6 \begin{array}{llll}6 & 3 & 5\end{array}$	$6 \begin{array}{llll}6 & 3 & 5 & 5\end{array}$	$\begin{array}{lllll}6 & 3 & 5 & 5\end{array}$	6355	$\begin{array}{lllll}6 & 3 & 5 & 5\end{array}$	$\begin{array}{llll}6 & 3 & 5\end{array}$
$\begin{array}{llll}8 & 1 & 7\end{array}$	8179	$\begin{array}{llll}8 & 1 & 7\end{array}$	8179	817	817	817	817
8279	8279	8279	8279	827	827	827	$8 \quad 27$
64 XX	64 X X	6 X X	6 X X	6 x x 9	$6 \times \mathrm{X} 9$	$6 \times \mathrm{x} 9$	$6 \times \mathrm{X} 9$
6 X X	6 X X	6 X X	6 X X	6 X X 9	6 x X 9	$6 \times \mathrm{X} 9$	$6 \times \mathrm{X} 9$
355	3505	$\begin{array}{lllll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{llll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{lllll}3 & 4 & 5 & 5\end{array}$			
817	6817	6817	6817	687	687	6879	6879
827	6827	6827	687	687	687	6879	6879
$6 \times \mathrm{x} 9$	$\mathrm{X} \times 9$	$\mathrm{X} \times 9$	$\mathrm{X} \times \quad 9$	X X 119	X X 19	X X 1	$\mathrm{X} \times 1$
6 X X 9	X X 9	X X 9	X X 29	X X 29	X X 29	X X 2	$\mathrm{X} \times 2$
$\begin{array}{llll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{llll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{lllll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{llll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{lllll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{lllll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{llll}3 & 4 & 5 & 5\end{array}$	$\begin{array}{llll}3 & 4 & 5 & 5\end{array}$
$\begin{array}{ll}6 & 8 \\ 6 & 7\end{array}$	6879	68879	6879	$\begin{array}{lllll}6 & 8 & 7\end{array}$	68879	6879	6879
6879	6879	6879	6879	6879	6879	6879	6879
X X 12	X X 12	X X 12	X X 12	12	12	12	1255
X X	X X 55	$\mathrm{X} \times 55$	X X				
$\begin{array}{llll}3 & 4 & 5 & 5\end{array}$	34	$3 \quad 4$	34	X X 34	X X 34	X X 34	X X 34
6 8 79	6879	6879					
6879	68879	6879					
1255	1255	1255					
X X 3	x X 3	X $\times 3$					
$\mathrm{X} \times 4$	X X 4	$\times \times 4$					

(one move $=$ sliding one piece any number of units in one direction)

Similarity of Red Donkey Start Variations

The solution presented on the preceding page for Version A (and also the 81 rectilinear moves solution that is presented in Hordern's book - Puzzle C27d) is minimal and reaches exactly the same position at Step 4 as does a minimal 81 rectilinear moves solution (90 straight-line moves) for the Version B and C start positions (and so step 4 onward can be used for all three puzzles):

The Winning Ways book shows the Version D start position. Step 6 of a minimal solution for this variation is exactly the same as Step 4 above, and so this variation has a minimal solution (for both straight-line and rectilinear moves) of 2 moves longer than Versions A, B, and C (pieces 1, 2,3 , 4 must be renamed to $3,1,2,4$):

Version D

Step 0		Step 1			Step 2				Step 3			Step 4					Step 5			Step 6			
	$6 \quad 7$	6	X	X 7	6	X	X			X				X			6	X		6	X		7
6	$\mathrm{x} \times 7$	6	X	x 7	6	X	X	7		X	\times		6	X			6	X			X		7
	X X 9	8			8	5	5	9	8	5	5		8	5			8	5		8			5
8	8559	8	5	59	8				8		3		8				8			8			9
	1234	1	2	34	1	2	3	4	1	2				2	4		1	2			2	4	

Three Other Fun Puzzles Made from the Same Pieces

Simple Traffic Jam
Shafir Games 1981;
minimal solution of 64 rectilinear moves.

Designed by J. H. Conway 1975;
minimal solution of 99 rectilinear moves.

Designed by Gil Dogon 2004;
minimal solution of 138 rectilinear moves.

Other Versions of Red Donkey

Psychotease, copyright 1969.
(cardboard box and 10 wood pieces, $9 \times 11 \times 1.5$ inches)

Other Versions of Red Donkey, Continued

Escaping Jail, copyright University Games Co. 1993, made by Raintree Puzzles. (wood box and 10 wood pieces, $4.4 \times 3.25 \times 1.2$ inches)

Other Versions of Red Donkey, Continued

CAO CAO - ESCAPE
 (015, 015/1, 016)

Adapted from The Classic Chinese Stories Of The Three Kingdoms.
The Battle At Chibi. How Cao Cao who lost the battle make his escape through the encirclement of Guan Yu and his guards.
The biggest block represents Cao Cao and the other nine (9) smaller ones are Guan Yu and his guarn's. Slide Ces Cao (biggest piece) until he is able to go to the lower edge of the board. That means Cao Cao has accomplished his escape.

MINDBANK (Brainstorming IQ Games/Puzzles)

-LASER ENGRAVING SERVICES AVAILABLE -GIFTS \& PREMIUMS for ALL OCCASIONS

MINDBANK \#03-23 Parco Bugis Junction Tel: 339-2228 (Shop)/ 291-3328 (Office) Fcx: 291-8122 Copyright Reserved - LEO-Walls Marketing (S) Pte Ltd, March '95

Cao Cao Escape, LEO Marketing, 1995
(wood box and 10 wood pieces, $3.8 \times 3.125 \times 3 / 4$ inches)

Further reading:

Wikipedia Klotski Page, from: http://en.wikipedia.org/wiki/Klotski
Pegg's Page, from: http://www.maa.org/editorial/mathgames/mathgames_12_13_04.html Baxter's Page, from: http://www.puzzleworld.org/SlidingBlockPuzzles/4x5.htm Aryan Patent, from: www.uspto.gov - patent no. 6,116,600
Armendariz Design Patent, from: www.uspto.gov - patent no. 367,502
Mendelsohn Design Patent, from: www.uspto.gov - patent no. 388,840

