Turnstyle

a.k.a. Tom's Turnstile

Copyright Brainwright, a division of Ceaco, 2016;
U.S. Patent 7,604,234 of Tom Cutrofello, 2009.
(plastic: $2 \times 2.25 \times 5 / 8$ inches;
brass version: $2 \times 2.25 \times 5 / 8$ inches, 6.1 ounces; box is $4 \times 4 \times 2$ inches)
Two discs connected by a gear on the back, that spin together by turning the knob; similar but different from the Top Spin puzzle. Easy to rotate the discs, a bit slow to slide the numbers due to the small size (but it fits nicely into a pocket). The basic moves are:

Shift all pieces one position right (clockwise) or left (counter-clockwise).
Flip the discs to change four consecutive pieces from ABCD to BADC.
It is tempting to argue parity for the number of exchanges in a solution, but since the pieces lie on a cycle and not a line, every piece is both ahead of and behind every other, and it is possible to exchange just two adjacent pieces and leave the rest of the puzzle the same (as shown in the photo above); call that transformation SWAP. Hence, solving is always possible from any permutation (although from any given permutation, faster solutions may be possible):

Phase 1: Consider 12 solved. Then, starting with 11 in the rightmost position, successively move 11 right one position with a shift left followed by a flip, until 11 is next to 12 . Then repeat this for $10,9, \ldots 5$.

Phase 2: The final four can always be rearranged using successive swaps. For example, starting with 4321, $\operatorname{swap}(43)$, $\operatorname{swap}(42)$, $\operatorname{swap}(41)$, $\operatorname{swap}(32)$, $\operatorname{swap}(31)$, $\operatorname{swap}(21)$ results in 1234 (or, using only two swaps do flip, swap(41), flip, swap(32)).

SWAP Sequence

Computer search found this SWAP sequence; \mathbf{R} denotes move right (clockwise), \mathbf{L} denotes move left (counterclockwise), and \mathbf{F} denotes flip, and the letters $0, \mathrm{~A}, \mathrm{~B}$ stand for 10,11,12:

0:1234567890 A B	11-F: 0819 A B 235467	22-F: 8490 A B 235671
1-L: 234567890 A B 1	12-R: 70819 A B 23546	23-R: 18490 A B 23567
2-F: 325467890 A B 1	13-F: 07189 A B 23546	24-R: 718490 A B 2356
3-R: 1325467890 A B	14-R: 607189 A B 2354	25-F: 174890 A B 2356
4-R: B 1325467890 A	15-R: 4607189 A B 235	26-R: 6174890 A B 235
5-F: 1 B 235467890 A	16-F: 6470189 A B 235	27-F: 1647890 A B 235
6-R: A 1 B 235467890	17-L: 470189 A B 2356	28-R: 51647890 A B 23
7-R: 0 A 1 B 23546789	18-F: 741089 A B 2356	29-F: 15467890 A B 23
8-R: 90 A 1 B 2354678	19-L: 41089 A B 23567	30-R: 315467890 A B 2
9-F: 091 A B 2354678	20-F: 14809 A B 23567	31-F: 134567890 A B 2
10-R: 8091 A B 235467	21-L: 4809 A B 235671	32-R: 2134567890 A B

The existence of a SWAP sequence means that all permutations are possible and the solution method proposed on the previous page is well defined. Phase 1 placement of numbers 5 through 12 is straightforward, although it could be shorter for a given permutation. An interesting general question is to improve Phase 2 to fix the final 4 in a way faster than "brute force" use of SWAP. For example, the previous page noted that a final 4 of 4321 can be fixed with 2 flips and two SWAPs, for a total of 66 moves. However, it can be done in only 18 moves:

0:4321567890 A B	7-F: B 423156789 A 0	13-F: 0 A 2 B 41356789
1-R: B 4321567890 A	8-L: 423156789 A 0 B	14-L: A 2 B 413567890
2-R: A B 4321567890	9-F: 241356789 A 0 B	15-L: 2 B 413567890 A
3-R: 0 A B 432156789	10-R: B 241356789 A 0	16-F: B 2143567890 A
4-F: A 04 B 32156789	11-R:0B241356789A	17-L: 2143567890 A B
5-L: 04 B 32156789 A	12-R: A 0 B 241356789	18-F: 1234567890 A B
6-L: 4 B 32156789 A 0		

Computer search for all 24 permutations found that on average about 22.12 moves are needed to fix the final 4 ; here is a table of the lengths found for each permutation:

$1234-0$	$2134-32$	$3124-16$	$4123-27$
$1243-32$	$2143-1$	$3142-32$	$4132-17$
$1324-33$	$2314-16$	$3214-28$	$4213-17$
$1342-16$	$2341-27$	$3241-17$	$4231-32$
$1423-16$	$2413-32$	$3412-17$	$4312-30$
$1432-28$	$2431-17$	$3421-30$	$4321-18$

Reversing The Turnstyle

A natural task for this puzzle is to reverse the the numbers. After doing your best, compare the number of steps used to the sequence below, found by computer search, to convert the reversed sequence back to the original one. Note that this sequence is only 9 steps more than the minimum number of steps for a single SWAP.

Step 0: BA0987654321	Step 14, flip: 16453 A 9 B 0872	Step 28, right: 9807 A B 214635
Step 1, flip:	Step 15, left:	Step 29, flip:
A B 9087654321	6453 A 9 B 08721	8970 A B 214635
Step 2, right:	Step 16, flip:	Step 30, right:
1 A B 908765432	4635 A 9 B 08721	58970 A B 21463
Step 3, flip:	Step 17, left:	Step 31, flip:
A 19 B 08765432	635 A 9 B 087214	$85790 \text { A B } 21463$
Step 4, right:	Step 18, left:	Step 32, right:
2A19B0876543	35 A9B0872146	385790 AB 2146
Step 5, right:	Step 19, left:	Step 33, right:
Step 6, flip:	Step 20, left:	Step 34, flip:
231 A9B087654	A9B087214635	3658790 A B 214
Step 7, right:	Step 21, flip:	Step 35, left:
4231 A 9 B 08765	9 A 0 B 87214635	658790 A B 2143
Step 8, flip:	Step 22, left:	Step 36, flip:
2413 A 9 B 08765	A 0 B 872146359	567890 AB2143
Step 9, right:	Step 23, flip:	Step 37, right:
52413 A 9 B 0876	0 A 8 B 72146359	3567890 A B 214
Step 10, flip:	Step 24, left:	Step 38, right:
25143 A 9 B 0876	A 8B721463590	43567890 A B 21
Step 11, right:	Step 25, flip:	Step 39, right:
625143 A 9 B 087	8 A 7 B 21463590	143567890 A B 2
Step 12, flip:	Step 26, right:	Step 40, right:
261543 A 9 B 087	08 A 7 B 2146359	2143567890 AB
Step 13, left: $61543 \text { A 9 B } 0872$	Step 27, flip: 807 AB2 146359	Step 41, flip: $1234567890 \mathrm{AB}$

Turnstyle Puzzles of Smaller Sizes

One can imagine Turnstyle with a smaller number of pieces, and consider what sizes have the property that any permutation can be reached; i.e., for which a SWAP is possible.
Computer search shows that a SWAP is not possible for sizes less than 8, and also that it is not possible for puzzles of size 9 and 11 .
Here are SWAP sequences for puzzles of sizes 8 and 10 , where \mathbf{R} denotes move right, \mathbf{L} denotes move left, and \mathbf{F} denotes flip, and the letters $0, \mathrm{~A}, \mathrm{~B}$ stand for $10,11,12$.

Puzzle of size 8:

0: 12345678	7-R: 45617382	14-L: 32514678
1-R: 81234567	8-F: 54167382	15-F: 2 3 154678
2-F: 18324567	9-R: 25416738	16-L: 31546782
3-R: 71832456	10-F: 52146738	17-F: 13456782
4-F: 17382456	11-R: 85214673	18-R: 21345678
5-R: 61738245	12-R: 38521467	
6-R: 56173824	13-F: 83251467	

Puzzle of size 10:

0: 1234567890
1-R: 0123456789
2-R: 9012345678
3-R: 8901234567
4-F: 9810234567
5-R: 7981023456
6-F: 9718023456
7-R: 6971802345
8-F: 9617802345

9-R: 5961780234
10-R: 4596178023
11-F: 5469178023
12-L: 4691780235
13-F: 6419780235
14-L: 4197802356
15-F: 1479802356
16-L: 4798023561
17-F: 7489023561

18-R: 1748902356
19-R: 6174890235
20-F: 1647890235
21-R: 5164789023
22-F: 1546789023
23-R: 3154678902
24-F: 1345678902
25-R: 2134567890

Turnstyle Puzzles of Larger Sizes

Define JUMP4 to advance a pair of pieces right past 4 pieces; it can be implemented in 10 moves (the discs are in bold face, $\mathbf{L}=$ shift left, $\mathbf{R}=$ shift right, $\mathbf{F}=$ flip):

123456789101112
L, F: 132546789101112
R, F: 315246789101112
L, F: 351426789101112
L, F: 354162789101112
R, F: 345612789101112
Define JUMP6 by using the first 8 moves of a JUMP4 followed by 8 additional moves to advance a pair of pieces right past 6 pieces:

$$
\begin{aligned}
& 123456789101112 \\
& \text { L, F: } 132546789101112 \\
& \text { R, F: } 315246789101112 \\
& \text { L, F: } 351426789101112 \\
& \text { L, F: } 354162789101112 \\
& \text { L, F: } 354617289101112 \\
& \text { L, F: } 354671829101112 \\
& \text { R, F: } 354768129101112 \\
& \text { R, F: } 345678129101112
\end{aligned}
$$

Now consider a puzzle of size 14. A SWAP can be implemented by the sequence for 10 pieces presented earlier and using JUMP4 sequences to keep the turntable in the "zone" of 10 positions. That is, call the positions initially under the turntable EF, the four positions to the left of the turntable ABCD and the positions to the right of the turntable GHIJ, and use the SWAP sequence for 10 pieces to SWAP the pieces in position EF, with the modification that whenever shift operations cause the turntable to be at positions AB and the next operation is a shift left, then first do a JUMP4 on positions IJ, and whenever shift operations cause the turntable to be at positions IJ and the next operation is a shift right, then first do a reverse JUMP4 on position AB.
Similarly, SWAP for 12 pieces combined with JUMP4 gives SWAP for 16 pieces, and SWAP for 12 pieces combined with JUMP6 gives SWAP for 18 pieces. Doing the jumps in pairs gives swaps for 20, 22, 24 pieces, in triples gives swaps for 26,2830 pieces, and so on, to conclude that SWAP is possible for any even number of pieces of 8 or more.
Of course a shortest solution for a given permutation that may be much more efficient than a sequence of SWAPS.

Given that SWAP is not possible for sizes 9 and 11 but it is for sizes 8,10 , and 12, an interesting question is whether SWAP is not possible for puzzles of odd size.

