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Fig. 1.  Plot of indicator (red) and inhibitor (green) over one period of 
approximately 200 seconds generated by the FKN model. 
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Abstract—We investigate the nonlinear, oscillatory Belousov-
Zhabotinsky (BZ) reaction by constructing a computationally 
efficient Kuromoto-based model to predict its behavior. We treat 
each BZ droplet as a chemical oscillator that is coupled to its 
neighbors through diffusion and generate the coupling function 
used in our model. We then test our model with experimental 
data for a series of one-dimensional 60 micron diameter BZ 
droplets. The RMS error between the measured phases of the 
droplets and our simulation is 0.118 radians. 
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I. INTRODUCTION  

Nonlinear oscillators are found in a variety of biological 
systems including neural networks, circadian clocks, and the 
vascular system [1, 2]. The Belousov-Zhabotinsky (BZ) is one 
such chemical oscillator that can be used as a model for these 
systems. Its nonlinear, oscillatory behavior is attributed to 
autocatalytic oxidation producing an indicator in the absence of 
inhibitor, which is a byproduct of this oxidation. The presence 
of inhibitor stops the oxidation, which ceases production of 
inhibitor. The inhibitor is then consumed and over time the 
oxidation resumes, creating a cycle. In a system of several BZ 
droplets separated by oil, only the inhibitor diffuses through to 
neighboring drops and prevents their oxidation, introducing 
inhibitory coupling between drops [3]. This inhibitory coupling 
allows for stable behavior that could provide a basis for 
computation through a chemical substrate [4].  

II. FIELD KÖRÖS-NOYES MODEL 

The most common method of simulating the BZ reaction is 
through the Field-Körös-Noyes (FKN) model that represents 
the chemical dynamics as a system of partial differential 
equations (PDEs). Each PDE dictates the rate of change of a 
certain reactant, one such example being of the form 

 dx/dt = – k1 xy + k2 y – 2 k3 x
2
 – k4 x + kr w

2
 + kred wx, (1) 

where ki  are constants and the other variables are reactants. 
The full model is quite precise and involves seven PDEs but as 
a result, the computation time needed for FKN is enormous, 
even for simple systems comprised of a few drops [3]. Fig. 1 
shows a plot of indicator and inhibitor concentration over one 
period generated by the FKN model. 

III. KURAMOTO MODEL 

A more generalized model for coupled oscillators that 
depends only on one parameter, the phase, is Kuromoto: 

 dθ i /dt = ω i + K ∑ sinj	�	i (θ j − θ i ) . (2) 

Here dθi /dt is the frequency of the i-th droplet with natural 
frequency ωi. The Kuromoto phase model is a great 
simplification as compared to FKN, with only one differential 
equation to solve. The summation accounts for global 
coupling, based on the difference in phase between all drops 
where K is a constant. Kuromoto-based models that exhibit 
local coupling have also been studied with similar form as (2), 
but with a summation over only nearest neighbors [5].  

IV. ADAPTED KUROMOTO MODEL 

 We extend [5] by introducing a coupling function that does 
not depend on the difference in phase due to the reaction’s 
nonlinearity. Since BZ demonstrates local inhibitory coupling, 
we search for a coupling function H (θ i ,θ j ) that depends on 
the phase of two drops with a summation over only nearest 
neighbors: 

 dθ i /dt = ω i +  ∑ Η (θ i ,θ j )
i�1

j
i-1
	. (3) 

Such a model allows for the simulation of large systems while 
capturing the inhibitory coupling BZ exhibits. 

V. INHIBITORY COUPLING FUNCTION 

Our coupling function must measure the deviation between 
the effective frequency of a drop and its natural, uncoupled 
frequency. To calculate it, we define the effective frequency of 
the i-th droplet ω i, eff  in terms of the rate of change of inhibitor 
concentration dM/dt. Our coupling function depends on the 
phase of each drop, which means there exists a bijection. Thus, 
we can extract from dM/dt  

 ω i, eff  / ω i  = (dM/dt)c / (dM/dt)uc , (4) 



 

 

Fig. 2.  Coupling function based on the phases of two droplets; θ ranges from 0 to 2π  which correspond to a peak in inhibitor concentration. We set ω i = 1. 

where the subscript c is for two coupled drops and the subscript 
uc is for a single uncoupled drop.  We can re-arrange (4) to 
find the effective frequency and deduce our coupling function 

 Η (θ i ,θ j )   = ω i, eff (θ i ,θ j ) – ω i . (5) 

We measured the coupling function by simulating a simple 
two-drop system separated by oil using the FKN model at 
various initial phases. The effective frequency and therefore 
coupling function were calculated numerically. Plotted in Fig. 
2 is our coupling function described by (5). It is mostly 
negative as expected, since we have inhibitory coupling. From 
(3), we see that negative H corresponds to a smaller frequency, 
and thus a longer period caused by the diffusion of inhibitor. 
Furthermore, there is primarily one range of phases where the 
drop is significantly affected by coupling, which is 
approximately 1 radian below peak indicator concentration. As 
we see by comparing to Fig. 1, this range corresponds to 
approximately 10 seconds before a spike in indicator. This 
result is physically sound, since inhibition of indicator just 
before the peak will maximize the period increase. 

VI. RESULTS AND DISCUSSION 

With initial conditions taken from experimental data, we 
are able to predict the phase of a particular BZ droplet in a one-
dimensional (1D) arrangement of multiple droplets to 0.118 
RMSE. Fig. 3 shows a plot of the phase of the simulated and 
experimentally measured drop. When predicting the phase of 
all drops in the capillary, the average phase drift between 
simulated and actual data is 0.401 radians per oscillation. We 
suspect this is the result of heterogeneity in the drops in the 
experimental data; our model assumes the frequency of each 
droplet is the same. 

VII. FUTURE WORK 

We intend to adapt our Kuromoto-based model to a 2D 
hexagonal lattice with a coupling function that depends on the 
phase of seven drops. Such a system is more enlightening and 
pertinent to real world biological systems. We also intend to 

 

 
 

 
investigate the nature of the inhibitory coupling, strong or 
weak, to characterize the limits and applications of our model. 
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Fig. 3.  Plot of phase over time for data collected in a physical experiment 
and simulation with the same initial conditions. Experimental phase found 
from interpolating between indicator peaks. RMSE of 0.118 radians. 


