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Abstract

Predator-prey interactions are one of the most common co-
evolutionary dynamics in Nature. We consider a model
of the coevolution of prey appearance and predator vision,
where a successful result is visually apparent. While using a
neurophysiologically-based model of vision and a rich devel-
opmental process for prey patterning, we show that predator-
prey coevolution can maintain engagement. Backgrounds
with large regional differences generally lead to prey that
appear as mixtures of the regions. Finally, we find that en-
gagement between predators and prey is supported by greater
background complexity.

One of the most visually-striking phenomena in predator-
prey coevolution is prey crypsis, the ability of prey to avoid
detection by predators. Chameleons and cuttlefish take this
behavior to the extreme and physically alter their pigmenta-
tion to match their environment, which can even be realized
synthetically in robots (Morin et al., 2012). However, prey
crypsis is often manifested as static pigmentations, such as
stationary Turing patterns (Turing, 1952), that are selected
for being advantageous in particular environments. Inspired
by Bond and Kamil (2002), where blue jays are used to in-
teractively evolve moth phenotypes, we study the effect of
background complexity on the coevolution of prey appear-
ance and predator vision.

There is an intimate coevolutionary relationship between
predator vision and prey appearance. Visual systems are
generally adapted for stimuli that exert selective pressure on
the organism, such as food, prey, predators, and mates. Even
when visual systems have adapted to attenuate visual signals
from their relevant stimuli, there is still the challenge of vi-
sual attention. Visual attention can be roughly thought of
as a way of prioritizing a visual field based on interest. Im-
proper allocation of visual attention can mean the difference
between catching dinner or going home hungry.

In this research we study the coevolution of prey ap-
pearance and visual attention in predators. Prey appear-
ance is evolved via genetic programming, such as in (Sims,
1991a; Reynolds, 2011). Predator vision is evolved using
a neurophysiologically-based model of visual attention (Itti

and Koch, 2001). We focus on the effects of environmental
complexity on this coevolutionary interaction.

Merilaita (2003) shows that greater background complex-
ity can increase prey detection times by predators. In even
earlier work on background matching in camouflage, it was
suggested that visual complexity may favor color polymor-
phism, because there will often be many polymorphisms that
can achieve similar patterns (Endler, 1984). These and other
works focus on camouflage via background matching, but
there are alternative forms of camouflage, in particular, dis-
ruptive colorations. In contrast to background matching,
where an entity attempts to blend in with the background,
disruptive and distractive colorations are patterns that at-
tempt to draw the observer away from the pattern. Dis-
ruptive colorations have been shown to be an effective tool
for camouflage when tested against live predators (Schaefer
and Stobbe, 2006; Cuthill et al., 2005). A number of visual
properties significant to predator-prey interactions have been
identified in these contexts, including background complex-
ity, prey contrast, and object density (Dimitrova and Meri-
laita, 2010, 2012, 2014). In our model, the capacity for com-
plexity in prey is greatly enhanced by utilizing a develop-
mental mechanism to produce color images of moderate di-
mensions, as compared to previous work which explores the
selective favorability of simple patterns (Dimitrova and Mer-
ilaita, 2014) or directly-represented greyscale images (Bond
and Kamil, 2002).

In previous work, we have explored the coevolution of
predators and prey (Ficici and Pollack, 1996), finding that
such systems are often subject to pathologies such as conver-
gence to mediocre stable states (Ficici and Pollack, 1998),
loss of gradient, incorrect focusing, and relativism (Wat-
son and Pollack, 1996). Within the ecology literature,
predator-prey systems are commonly studied, including an-
alytical and computational models as well as empirical stud-
ies. However, analytical models of predator-prey systems
can quickly become infeasible for study as the number of
species increases. Furthermore, analysis of phenomena such
as predator preference runs into difficulty when accounting
for alternative food sources under ecological dynamics (van
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Figure 1: Time-series of prey morphogenesis.

Baalen et al., 2001; Leeuwen and Brännström, 2013).
The pathologies of competitive coevolution can be readily

explained in the language of predator-prey systems. Loss of
gradient, when one population becomes worse such that it
no longer exherts selective pressure on the competing pop-
ulation, or better such that the competing population can
no longer maintain engagement. Examples of this would
include evolutionary advances in a predator-prey ecosys-
tem where prey can achieve greater escape velocities, lead-
ing to diminished returns for predators, and in real ecosys-
tems, probably triggering the predators to seek another food
source. Incorrect focusing is when members of one popula-
tion overspecialize in interactions with specific competitors
such that they fail to generalize to other competitive interac-
tions and are prone to extinction. Examples of incorrect fo-
cusing are not as common in real ecosystems, where a large
number of coevolutionary interactions continually apply se-
lective pressure. In competitive coevolutionary interactions,
the quality of an individual is a function of its competitors.
This relativism in scoring means that an individual that ap-
pears to be more fit to an external observer, may be just as
fit as a lower quality individual relative to a given set of
competitors. In Nature, this is less of an issue for similar
reasons to incorrect focusing, there are continual pressures
from many aspects of the ecosystem and environment such
that these disambiguations will occur infrequently.

Predator-Prey Coevolution
When simulating predator-prey coevolution, we use a 2-
population competitive coevolution model. The prey pop-

ulation consists of a set of genetic programs that encode a
generative function for their visual appearance. The preda-
tor population consists of a set of numerical weights for a
saliency detection algorithm. Prey receive points for not be-
ing detected, or causing the predator to incorrectly classify
the background as prey. Predators receive points based upon
the accuracy of how they perceive the environment.

There are a number of ways to compute the fitness in co-
evolving populations. We focus on pairwise competitions.
Sims uses best v. best competitive coevolution (Sims, 1994),
where each population competes against the best individ-
ual of the competing population. However, best v. best
can lead to incorrect focusing and disengagement by assign-
ing greater fitness to individuals that overspecialize in de-
feating the champion competitor. Tournaments can reduce
the number of comparisons from O(N2) to O(NlogN), but
still represent approximations of a full pairwise competition
(Angeline and Pollack, 1993). All v. all competitive coevo-
lution reduces the tendency for focusing, but comes at great
computational cost. Nevertheless, we compute the complete
payoff matrix via all v. all pairwise competitions to facilitate
coevolutionary engagement between all species.

Prey
Prey patterns are produced through a process of algorith-
mic morphogenesis. The process is much like the standard
notions of chemical morphogenesis (Turing, 1952), where
a system of reactions determines chemical kinetics while a
diffusion system transports chemical species, contributing to
pattern formation. However, instead of a standard system of
reactions, we employ genetic programming to serve as an



algorithmic chemistry.
The use of genetic programming to evolve images and

dynamical systems has been a part of the ALife commu-
nity since the early years (Sims, 1991b, 1992). These ideas
were extended to the evolution of self-constructing and self-
repairing patterns (Miller, 2004). However, much of the
work on evolved computer graphics has focused on inter-
active evolution, perhaps in part because of the complexity
of developing a computer vision system capable of scoring
images in a meaningful way. The interactive evolution of
generative images has recently achieved widespread popu-
larity with the Picbreeder website (Secretan et al., 2011). Of
particular relevance to this study is the recent work on the in-
teractive evolution of camouflage (Reynolds, 2011), where a
sophisticated texture rendering system is employed to gener-
ate patterns for human-guided selection. Finally, alternative
biologically-inspired generative representations may be of
interest for achieving patterns that may be closer to those of
natural systems (Cussat-Blanc and Pollack, 2012).

Genetic programming is an evolutionary method for dis-
covering computer programs (Koza, 1992), where the pro-
grams may represent robot controllers, machine learning
classifiers, developmental processes, or many other things.
The algorithms used to evolve genetic programs are often
very similar to those employed by genetic algorithms, with
particular exception to how variation is performed. We use
the array method of program representation (Koza, 1994)
which is most conveniently bounded by program size limits
in units of number of nodes (200 nodes for the prey).

Prey programs are functions of 3 inputs (x, color, and cur-
rent value) that return a floating point, which are iterated
over all color channels at each (x,y) coordinate of the prey,
in this case an octagon of radius 41 and (x,y) coordinates are
scaled to [-1,1]. This function output is then squished with a
hyperbolic tangent. Prey programs can be composed of the
following terminal and function set:

x,color,value,+, -, *, /, iflte, sin, cos, tanh, min, max,
abs, hypot, sec, csc, cot, tan, gamma.

Prey are iterated function systems. During each iteration,
first the GP program is evaluated once per location and color
channel, then a Gaussian filter is convolved with the im-
age as a heuristic pseudo-diffusion. This pseudo-diffusion
can introduce artifacts at the boundaries, which we partially
alleviate by cropping the prey by a single pixel along the
boundary. An example figure can be seen in Figure 1.

Predators
Predator vision is modeled based upon a neurophysiological
model of visual attention (Itti and Koch, 2001). Images are
broken down into a set of feature maps of intensity, color
difference, and orientation, then combined into 42 features
taken as differences across multiple scales. Predator geno-
types encode weights for each feature map, which are lin-
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(c) Predator feature maps.

(d) Predator saliency map. (e) Predator classification.

Figure 2: Diagram of predator’s visual system. 2a shows the
prey pattern situated on the grassy background. 2b shows
a zoom-in of the prey pattern. 2c shows the weighted fea-
ture maps used by an example predator. 2d shows the corre-
sponding saliency map for the feature maps in 2c. 2e shows
the same example predator’s classification of 2a, where red
indicates incorrectly classified background, green indicates
correctly classified background, white indicates correctly
classified prey, and blue indicates incorrectly classified prey.

early combined into a saliency map. The saliency map en-
codes the priority of attention at each location in the visual
field. We allow the saliency map to take on both positive and
negative values, where positive values indicate a prediction
of the prey’s position. For a more detailed description of the
components of the vision model, see (Itti and Koch, 2001).

Saliency-based models of visual attention have a long his-
tory in studies of the neuroscience of vision (Niebur et al.,
1993; Itti and Koch, 2001; Borji and Itti, 2013). There are
now many algorithms for visual attention, some based on



Figure 3: Prey environments used in experiments.

neurophysiology and some engineered for optimality. A
comprehensive review of current visual attention algorithms
can be found in (Borji and Itti, 2013). We use a bottom-
up model based upon (Itti and Koch, 2001), which has been
shown to correlate with human eye movements (Parkhurst
et al., 2002; Itti, 2005). In the traditional model of Itti,
where feature maps are aggregated hierarchically into the
saliency map, first by grouping features by type into con-
spicuity maps, then combining conspicuity maps to compute
the saliency map. Our model uses the simplification of com-
bining all feature maps to immediately compute the saliency
map.

Evolutionary Algorithm
We use a genetic algorithm for both the predator and prey
populations. Individuals are selected with tournament selec-
tion using tournament sizes of 3. Selected individuals are
mutated (45%), crossed over (45%), or replicated (10%) in
the successive generation. Prey are crossed over using stan-
dard subtree mutation and crossover (Koza, 1992), while
predators are mutated by adding a vector of small Gaus-
sian mutations to the genome and recombined via uniform
crossover. The evolutionary algorithm is run for 500 gener-
ations in all experiments in this study.

Experiments
We consider a number of environmental backgrounds of
varying complexity. We obtained 5 naturally patterned im-
ages1 and created 3 simple images, shown in Figure 3.
Images were prepared by cropping regions to a size of
300x240. While a number of methods have been developed

1Images are public-domain, and are retrieved from
http://www.publicdomainpictures.net/.

within the computer vision community to characterize image
complexity, we report on the JPEG file size. The concept of
complexity resides at the heart of the field of data compres-
sion, hence our choice to use it as a metric of image com-
plexity. Image sizes in the same order as Figure 3: 446B,
1.3kB, 1.7kB, 14k, 47k, 123k, 93k, and 126k. During sim-
ulations prey position and rotation is randomly determined.
Prey position is randomly chosen such that the prey resides
entirely within the background environment, and rotation is
uniformly chosen from all 4 possible 90 degree rotations. 25
independent trials are conducted for each background en-
vironment2. Due to the computational costs of simulating
prey morphogenesis, predator vision, and computing com-
plete pairwise payoff matrices, we use population sizes of
100 for both the predators and prey. The same random seeds
are used for each background, such that the initial popula-
tions have the same constituents for each random seed, but
then quickly diverge as selection and mutation vary the pop-
ulations. In Figures 4, 5, 6, and 7 we use two colors, red and
blue, to indicate data reported for the population average and
best individual, respectively.

When measuring the degree of background matching that
is present in a given population over evolutionary time, we
use the same 42-D feature vector that is used by predator
vision. Merilaita and Lind (2005) previously suggested that
quantification of background matching in prey can be mis-
leading if it isn’t computed with respect to the predator’s
perception. When measuring the distance between a prey
and the background we take the Euclidean distance between
the average feature vector of the background image and the

2Due to computational difficulties, a few runs were incomplete.
Complete runs per background (ordered as in Figure 3): 24, 21, 25,
23, 25, 24, 22, 23
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(f) Prey background matching.

Figure 4: Example evolutionary trajectories of fitness and
background similarity. X-axis is time. Subcaption indicates
respective Y-axis.

average feature vector of the prey. For evolving populations
we measure the average of the average feature vector of all
prey in the population.

Background Matching
Background matching is generally successful for all back-
grounds in this study (see Figures 1n and 1u for particularly
compelling examples), with a noteable exception and some
unexpected insights. First, let us reiterate the argument ini-
tially proposed by Endler (1984). The regions of the back-
ground on which the prey are selected lead to correlations
between the prey patterns and those regions of the back-
ground, because better matches generally win. In our study
the random repositioning and rotation of the prey means that
prey effectively have a uniform probability of being tested
at each location in the image. Therefore, prey that match
the average background region in the image are predicted
to generally be a better fit. However, a priori it is unclear
what prey patterns will appear in environments with stark
differences, or natural complexity. In Figure 1g, we show
one example of such a situation, where on a background of
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Figure 5: Background matching in prey. Y-axis indicates
distance from the background, see Experiments for descrip-
tion of distance from background. Smaller means a better
match. X-axis is the ordering of backgrounds in Figure 3.

half blue and half red the prey adopts a strategy that contains
both red and blue which can be easily mutated to favor one
color over the other. This is a common trend in our results;
prey evolved on backgrounds with large differences at the
scale of the prey favor polymorphic populations.

Interestingly, there is not a clear relationship between prey
fitness and prey background matching. While this is not sur-
prising in some senses, because fitness under competitive
coevolution is a function of the competing population, where
an improvement in one population masks an improvement in
the competing population. It does suggest that the presence
of a third-party in competitive coevolution, the environment,
can non-trivially alter the coevolutionary dynamics. We dis-
cuss this in greater detail when reflecting on the representa-
tion of predator vision and prey appearance. Nevertheless,
because we randomly position and orient prey, we suggest
that it may be worthwhile to pursue non-random prey move-
ment to reduce the background-averaging tendency of prey.

Coevolutionary Dynamics

On first glance, the coevolutionary dynamics in this study
are fraught with the Red Queen effect. Originally presented
as a dynamic describing the constant probability of extinc-
tion (van Valen, 1973), the Red Queen effect is often de-
scribed as the requirement that “takes all the running you
can do, to keep in the same place” (Carroll, 1871). Figure
4 shows 2 example evolutionary trajectories from the white
background. In one (Figures 4a, 4c, and 4e), the prey pop-
ulation evolves to a near perfect solid white pattern (see the
8th image in Figure 8), and in the other (Figures 4b, 4d, and
4f), the prey population evolves first to a light grey then fix-
ates on a yellow cross pattern for an extended period (see the
17th image in Figure 8) and ends at generation 500 with a
black prey pattern as the champion. Nevertheless, by simply
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Figure 7: Predator fitness. X-axis is time. Y-axis is predator
fitness. Bigger is better.

inspecting the fitness of the predators and prey it is not ob-
vious that there has been any major change in the predator-
prey interactions, certainly not to the degree that has previ-
ously been described as loss of gradient, suggesting that this
dynamic is akin to relativism (Watson and Pollack, 2001).

From the set of backgrounds we used in these experi-
ments, simple backgrounds led to the greatest degree of rel-
ativism. In particular, multiple trials with the white back-
ground resulted in evolutionary trajectories that first con-
verged to near-white prey patterns, followed by a divergence
from background similarity leading to colored patterns. We
suspect that one of the reasons for this relativism was related
to background discrimination ability in predators. In partic-
ular, predators make absolute decisions regarding the loca-
tion of prey, where a slight change in prey hue can lead to
predator misclassification. Probabilistic decisions may facil-
itate environmental engagement by allowing predators some
degree of uncertainty in detecting prey.

Representation
Representation often has a significant impact on evolution-
ary dynamics by, amongst other effects, affecting the genetic
distances between phenotypes and constraining the space
of possible phenotypes. We utilize a genetic programming
representation for prey which, by incorporating a heuris-
tic pseudo-diffusion, is capable of producing a wide array
of prey patterns. Yet these patterns are likely to have lim-
itations that arise from both the function set used as the
basis for prey programs and the instabilities that arise un-
der diffusion (although in some systems diffusive instabili-
ties can provide macroscopic stability, such as Turing pat-
terns (Turing, 1952)). Furthermore, there is no interaction
between prey patterns and the environment. Not only do
some species exhibit active camouflage, but there are links
between visible pigmentation and diet (Whitehead et al.,
2012).

We suspect that the representation of predator vision is
one of the more significant variables worthy of future inves-
tigation. Figure 7 suggests that predators have difficulty with
multi-colored images. Prey also perform better on back-
grounds with homogeneous color schemes, both in terms of
fitness and background similarity, Figures 6 and 5 respec-
tively. Due to the competitive nature of the model, it is un-
clear whether the bias towards homogeneous color schemes
is due to the predators or the prey, but we suspect that it
is due to the representation of predator vision. By consid-
ering alternative visual attention algorithms, such as those
reviewed in (Borji and Itti, 2013), we expect to observe prey
patterns that reflect the properties of the visual attention al-
gorithm.

Conclusions
We have presented a model of the coevolution of predator
vision and prey camouflage, where prey utilize a develop-
mental process to form complex multicolored patterns and
predators use a neurophysiologically-based model of visual
attention. Prey successfully evolve to match their back-
ground, with some exceptions that are predicted to stem
from randomized prey movement, and predators success-
fully evolve the ability to discriminate between prey and
background. We observe a type of coevolutionary rela-
tivism, where competing populations remain engaged while
drifting away from their environment. This type of di-
vergence from background matching generally happens in
simpler backgrounds, leading to the hypothesis that back-
ground complexity can facilitate coevolutionary engagement
on background matching problems.

While other coevolutionary studies have found that
pursuer-evader tasks can lead to mediocre stable states (Fi-
cici and Pollack, 1998), we find that coevolution in our
model is generally engaged and leads to effective back-
ground matching. We suggest that it is the richness of the
model that facilitates engagement. However, background



Figure 8: Collage of some of the best matching, and most interesting prey patterns

matching is not always achieved. In particular, simple en-
vironments with stark differences where only partial back-
ground matching is possible tend to favor prey that can read-
ily mutate to match regions of the environment. This sug-
gests that polymorphic populations may be an effective re-
sponse to a highly variable background. In the case of com-
plex backgrounds we find that predators and prey are gen-
erally more engaged, and background complexity appears to
support the advance of the coevolutionary ratchet, leading to
effectively camouflaged prey.

Future Work
There are many avenues for future research stemming from
this work. We suggest only two examples. First, many nat-
ural predators learn over time, whereby they may become
better at identifying prey during their lifetime, see (Tros-
cianko et al., 2013). Second, in Nature, prey patterns act
are signals, both to prey and to mates. It may prove inter-
esting to consider the dynamics of mate signaling which has
led to such brilliant patterns as peacocks’ plumage. Along
this line, we have previously discovered models and corre-
sponding parameters capable of leading to the emergence of
such costly signaling (Harrington et al., 2012).
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