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ABSTRACT 
A fundamental hurdle in building intelligent systems is in 
acquiring enough information about a user and her context, in a 
form that the system can use, without impairing the usability of 
the system. A variety of interaction paradigms have been explored 
in this regard – agents, spoken language understanding, the 
incorporation of biometrics and other interaction modalities – that 
aim to make interaction more natural for the user. In contrast to 
these efforts, we have studied how structure can be added to a 
system to improve the user’s performance in the domain task. In 
this paper, we demonstrate how this structure can then be 
leveraged to provide useful intelligent support.  Our domain of 
investigation is a groupware system, and we show how structured 
support for co-referencing activity can be used by the system to 
infer user intent. We also provide empirical results demonstrating 
the effectiveness of an adaptive component that is built on the 
intent inferencing procedure.    

Categories and Subject Descriptors 
H.5.2 [User Interfaces]: Interaction styles (e.g., commands, 
menus, forms, direct manipulation.) H.1.2 [User/Machine 
Systems]: Human Information Processing 

General Terms 
Algorithms, Design, Human Factors, Languages 

Keywords 
Distributed Cognition, Cognitive Artifacts, Intelligent Interfaces, 
Groupware. 

1. INTRODUCTION 
Despite more powerful computers, numerous advances in AI, and 
decades of research, a general approach to developing adaptive 
software – software that intelligently responds to the needs of its 
users to improve their ability to perform a task – remains an 
elusive goal for researchers and engineers. Indeed, these 
difficulties have led some to question the merits of adaptation 
itself [31].  In our view, though, adaptive systems often fail 
because user’s reject the interface techniques that have been 
developed to get the information the system needs to act 
intelligently.  Like others [4], we believe that the problem is not 
with adaptation per se, but rather with the interface between the 

user and the adaptive system.  
The design of interfaces to intelligent systems is hard because it is 
subject to competing requirements. On one hand, many AI 
techniques are most effective with structured information about 
the user and her environment. From this perspective, interface 
facilities should be provided so that the user may express her 
needs to the system. On the other hand, the average user does not 
wish to be burdened with the task of encoding information so that 
the system can understand it [25]. From this perspective, the 
interface should be designed to make the user’s domain task as 
easy as possible.  
A variety of approaches have been developed within the research 
community to satisfy these requirements. The ubiquitous 
metaphor of computer as a collaborative partner in a joint task 
(e.g. [28]) may be seen as a way of encouraging the user to 
provide more information to the machine. Efforts in natural 
language understanding (e.g. [13]), and diagram understanding 
(e.g. [16]) are designed to make communication with 
collaborating agents easier for people, but these approaches do 
not scale beyond fairly narrow task definitions. 
Some intelligent interfaces make opportunistic use of multiple 
information channels in order to improve inferences about the 
user without requiring that the user do more work. Biometrics 
have been exploited to help interpret language [6], and gestural 
information can be incorporated in multimodal interfaces to help 
interpret deixis [10]. Many of these systems perform well, but 
these extra information channels often come at a cost in the form 
of cumbersome sensor arrays or careful and brittle environment 
configurations. 
Another research area seeks to leverage computer readable 
information that is available in the domain environment itself. For 
example, the semantic web is a large scale effort to encode more 
system-accessible information, in the form of ontologies, into a 
virtual user’s domain. A related approach relies on external 
information resources that can be associated with the user’s 
location, as in mobile applications, which use of embedded 
information servers and/or GPS input to retrieve location specific 
information (e.g. [11]).  
While all of the above research shows promise, it does not 
leverage, in any systematic way, the privileged role of the 
computer as cognitive artifact [26]. It has been pointed out by 
many researchers (e.g. [7][20][22][29]) that people can and do use 
external tools to manipulate the information processing 
requirements in cognitive tasks. Checklists can be used as an 
external memory aid in safety critical applications [21], 
transforming an error-prone memory maintenance task into a 
simpler monitoring task. External devices (e.g. the Mercator 
projection chart [20], and nomographs [7] in general) can be used 
by people to support rapid and complex calculations. In everyday 

 

 



activity, people create and use such devices without any coaxing 
(e.g. grocery lists, lists of phone numbers); such artifacts are used 
to simplify work and improve performance.  
Thus, cognitive artifacts structure information in ways that make 
it easier for people to perform specific tasks, and people willingly 
(even happily) use these artifacts. The critical point we make here 
is that this same structure can be a source of information that can 
be used by an autonomous process to provide intelligent 
assistance.  
Here, we demonstrate how we can use the structured information 
in cognitive artifacts to provide intelligent user support in a 
collaborative system. First, we provide some of the background 
that informs our approach. We then introduce our experimental 
platform and an intent inference procedure that infers users’ 
domain goals. Baseline effectiveness metrics are established for 
intent inference when complete and accurate information about 
objects in the domain is available. After that, we will explain 
some of the problems with accessing complete and accurate 
information at runtime. We then describe a cognitive artifact, 
which is shared between the users, and improves their 
performance in the domain task. We show how this artifact 
provides the system with a large portion of the domain 
information the intent inference mechanism requires, and 
additional information about users’ co-referencing behavior that 
further improves intent inference. We then present an adaptive 
component that uses the output of the intent inference procedure, 
and describe empirical evidence documenting that it was adopted 
and that it was effective. Finally, we will discuss some related 
approaches to building adaptive software, and conclude with a 
summary.    

2. BACKGROUND 
The tension between the requirements for the design of interfaces 
to intelligent systems reflects a debate within the interface 
community.  This debate was crystallized in the system as agent 
vs. system as tool debate (Maes vs. Schneiderman) [23]. From the 
agent perspective, the system should autonomously act on behalf 
of and with knowledge about the user. The agent is a 
knowledgeable collaborator to whom the user may delegate work, 
and the agent might even interrupt the user with critical 
information.  From the tool perspective, a system should provide 
only a set of representations that make the domain easier to 
interpret and manipulate. Control should never be ceded to the 
system, and user interactions are primarily focused on the domain, 
rather than the system itself. 
The mixed initiative approach has been suggested as a response to 
this debate. Horvitz [19] suggested several issues that should be 
addressed in combining AI and direct manipulation. The thrust of 
these suggestions is that an agent in a mixed initiative system 
should take into account the uncertainty in the inference process, 
as well as the user’s social and task contexts, in making a decision 
about whether or not to take some action. At a certain level, the 
expected utility of an interaction between the user and agent 
warrants a direct engagement. 
A variety of agent-based, mixed-initiative systems (e.g. TRAINS, 
[14]; COLLAGEN [28]; Lumiere [18]) have been developed, 
however it has not been conclusively demonstrated that users 
prefer to interact directly with an agent, regardless of how careful 
we are about interrupting with less than perfect information. 

Interface agents are rarely seen in mainstream software; the 
much-maligned Microsoft Office Assistant is perhaps the only 
example casual computer users can point to. We suspect that the 
notion of a dialogic interaction itself may be a source of the 
problem.  
We are interested in finding ways to introduce intelligent 
assistance to the user without invoking the agent metaphor. 
Cognitive artifacts offer a potential solution, because they 
introduce structure into the interface that makes a user’s task 
easier, and can also be exploited by AI algorithms. 

2.1 Distributed Cognition & Collaboration 
The field of distributed cognition (e.g. [20][29]) documents how 
people use external artifacts to enhance task performance in 
particular domains. We seek to leverage the useful structure that 
such artifacts provide to create powerful adaptations (see 
Alterman[1] for a theoretical introduction to this approach).  
The development of cognitive artifacts to support specific and 
complex coordination as part of an established work practice has 
been well documented in the literature ([34][17][20][24]). In 
addition to their role in transforming a user’s cognitive task, these 
artifacts have several coordination aspects [31]. They are external 
representations that are distinct from the work domain itself. They 
lend persistence and structure to information, and make it easier 
to share this information among multiple collaborators. Finally, 
they are associated with a protocol that typifies their use within a 
particular work practice. We refer to these artifacts as 
“coordinating representations” ([3], c.f. Suchman & Trigg[34]). 
In previous work [12], we have described a methodology by 
which coordinating representations (CRs) may be developed 
based on an ethnographic analysis of an existing practice. 
Through this methodology we identify “weak spots” in the 
representation system that reveal themselves as coordination 
breakdowns and emerging conventions. Here, we describe how a 
CR that has been developed via the application of our 
methodology can be leveraged to add intelligent support to an 
existing application. 

3. EXPERIMENTAL PLATFORM 

 
Figure 1 The VesselWorld System 

Our experimental platform is a groupware system called 
VesselWorld, shown in Figure 1. To support analysis, 
VesselWorld logs complete interaction data that can be used to 



“play back” user activity. VesselWorld was demonstrated at 
CSCW 2000. 
In VesselWorld, three participants collaborate on remote 
workstations to remove barrels of toxic waste from a harbor. Each 
participant is the captain of a ship, and their joint goal is to 
remove all of the barrels from the harbor without spilling any 
toxic waste. Two of the users operate cranes that can be used to 
lift toxic waste barrels from a harbor and load them onto a large 
barge (which has a fixed position). The third user is the captain of 
a tugboat that can be used to drag small barges (which can be 
moved from place to place) from one place to another.  The crane 
operators can load multiple wastes on the small barge, and can 
unload them later.  
The progression of a VesselWorld session is turn-based, such that 
every user must submit a step to be executed by the server before 
the server can evaluate executions and update the world on each 
client screen. Users may plan any number of steps in advance, 
although any plan steps that involve objects are restricted to those 
objects that are currently visible, and only one step can be 
submitted to the server at a time. Communication may occur at 
any point, but all communication must occur through a text-based 
chat window that is part of the system. The users are scored by a 
function that takes into account the number of steps it takes to 
remove all of the waste, the number of barrels cleared, the number 
of errors made, and the difficulty of the problem. 

Several complicating factors make coordination between 
participants a necessary part of solving a VesselWorld problem. 
Each ship has a geographically limited view of the harbor; thus 
ships in different locations will have different directly-observable 
domain information, and no player has prior knowledge about 
how many or where waste sites are. The toxic waste barrels are of 
different sizes, which entail different coordination strategies that 
may involve more than one of the actors. For example, a single 
crane may lift a small or medium barrel, but the two cranes must 
join together to lift and carry a large barrel, and an extra large 
barrel may be jointly lifted but can only be carried on a small 
barge by the tugboat operator. Toxic waste barrels may require 
specialized equipment to be moved, and the cranes carry different 
types of equipment. Finally, the tugboat operator is the only actor 
who can determine the type of equipment a toxic waste barrel 
requires. 

3.1 Intent Inference in VesselWorld 
Planning in VesselWorld is a laborious and error prone operation 
[2]. User errors are often due to forgotten plan steps or joint plans 
that have become unsynchronized. Automatic plan generation 
could overcome some of these problems. However, over a 
hundred goals may be possible for each user at any given time, 
depending on the number and types of objects in the world. To 
avoid requiring that users specify their goals manually, intent 
inference was used to reduce the number of possible goals to a 
manageable list that users could select from.  
To infer user intent we employed an intent-inference procedure 
based on Bayesian Networks (BN). Two BNs were developed that 
assess likelihoods for Crane and Tug operator intentions, 
respectively. At runtime, evidence about the state of the world is 
posted to these models for each agent-waste pair separately. The 
likelihood an agent has an intention with respect to a given waste 
is read off one of the nodes in the network, and the intention with 

the highest value for a given agent-waste pair is taken to be the 
most likely intention.  New evidence is posted whenever a 
relevant change in the world is detected.  
In this paper we restrict our analysis to the portion of the Crane 
network that predicts Crane lift intentions. This BN is shown in 
Figure 2; it models the likelihood that an actor has the intention to 
lift (or jointly lift with the other crane operator) a specific toxic 
waste based on information about the state of the world, 
including: 

• The type of equipment required. 

• The size of the waste (which determines whether a single 
crane can lift the waste, or if it need the support of another 
crane). 

• Whether the cranes are close to or heading towards the 
waste. 

• If the crane actor is currently holding a waste 

 
Figure 2 Schematic of BN used to infer Crane Lift Intentions 

3.1.1 Evaluating Intent Inference 
We are interested in how the performance of the intent inference 
procedure varies when different sources and types of input 
information are used. Here, we provide results on the performance 
of the procedure using “perfect” information about the simulated 
world – specifically, where each waste is, what size it is, and what 
type of equipment it requires are all known at the outset. The 
reason we evaluate the model with perfect information is to 
provide a basis for comparison. Perfect information is not usually 
available, and in following sections we will compare performance 
with perfect information to performance with imperfect 
information. 

Table 1 Population summary for evaluations 

To derive the conditional probability tables for the BN, we trained 
it using the parameterized EM learning algorithm [4] (η=1.8, and 
the network was trained until δ ≤ .001), and tested the network on 
the same data set, summarized in Table 1. To obtain the perfect 

Group Sessions Avg. # of wastes 
per problem 

Total 
Hours 

Group 1 10 11.7 9.9 

Group 2 6 11 8.4 

Group 3 9 14.3 9.1 

Group 4 16 14.5 8.7 

All 41 13.5 34.3 



state information required for this analysis, we were able to use 
the problem files that were used to initialize each user session. 
To evaluate the performance of the network, we calculate the 
proportion of correctly guessed goals, or correct goal rate (CGR); 
and the proportion of guesses that were false, or the false positive 
rate (FPR). We count any uninterrupted sequence of correct 
guesses – recall, a guess is made whenever a relevant state 
variable changes – leading up to the step immediately preceding 
the execution of the predicted goal as a single correct goal. The 
total number of goals is the number of wastes lifted. Thus,  

CGR  = correct goals / total goals 
FPR = incorrect guesses / total guesses 

Our results (shown in Table 2) indicate that user intent can, in 
general, be reliably inferred in our domain using perfect 
information about the world. However, there are clear differences 
between groups. Closer inspection reveals a relationship between 
the number of wastes and the performance of the algorithm. There 
is a weak inverse correlation between the number of wastes in a 
problem and the correct goal rate (r=-.29), and a stronger positive 
correlation between the number of wastes and the false positive 
rate (r=.56). Hence, the variability between groups may be 
partially explained by the fact that it easier to guess a user’s 
intentions when there are fewer possibilities to pick from, and 
groups 3 and 4 had more wastes per problem.  

Table 2 Performance of Intent Inference with Perfect 
Information 

Group CGR (StdDev) FPR (StdDev) 

Group 1 .91 (.12) .46 (.13) 

Group 2 .91 (.10) .47 (.13) 

Group 3 .83 (.14) .57 (.12) 

Group 4 .77 (.15) .56 (.12) 

Average .83 (.14) .53 (.13) 

The values in Table 2 establish baseline performance for the 
developed network when the system has access to perfect 
information about objects (toxic waste barrels) in the world. In 
most applications, though, perfect domain information is not 
available. In the next section, we will describe some of the 
problems in getting this information from VesselWorld at runtime 
(without using the problem files). We will then show how we can 
use information from a cognitive artifact to do nearly as well as 
with perfect information.  We will also show how additional 
information made available by the artifact can be used to improve 
intent inference even if perfect information were available. 

4. OBTAINING STATE INFORMATION 
The problem files are the only source of complete, correct, and 
structured information about the toxic waste barrels in 
VesselWorld. Some information about toxic waste barrels can 
also found in conversations between users in chat, but it is 
unstructured, and hence difficult for the system to access. 
An excerpt from chat during a typical planning session shown in 
Figure 3 demonstrates this. In the first line of the example, Crane2 
announces a waste at (120, 420). In lines 2-4, Crane1 asks for 
clarification about the specifics of the waste. In lines 5-6, the Tug 
operator replies (having apparently already investigated that toxic 
waste barrel) with corrected coordinates (105, 420) and specific 

information. In line 8, Crane2 thanks the Tug operator for the 
clarification, and the Tug closes the conversational turn in line 9. 

Automatically extracting information about toxic waste barrels, 
which is required by our intent inference procedure, from chat 
logs would be very difficult; the above dialogue illustrates some 
of these problems. The dialogue occurs between three active 
participants, and conversational turns that might be used to 
narrow the reference resolution scope are hard to identify. Also 
problematic is that referring expressions can change from 
utterance to utterance even within the same conversational turn. 
For example, line 1 refers to the waste as “120 420” and line 5 
refers to the same waste as “105 420.”  People can sometimes 
handle such ambiguities, but this is problematic for automatic 
reference resolution algorithms. 

1. Crane2: I found a waste at 120 420 
2. Crane1: ok 
3. Crane1: what type of waste? 
4. Crane1: large,small? 
5. Tug1:   105 420 needs a dredge, i think that is where 

you are 
6. Tug1:   small 
7. Crane1: ok 
8. Crane2: Thanks for checking 
9. Tug1:   no problem 

Figure 3 Excerpt from chat during VesselWorld session 
Rather than developing specialized algorithms to deal with the 
nuances of three-way, live chat in the VesselWorld domain, it 
would vastly simplify our task if users were to enter all the 
information the system needs in a structured form. Although this 
might seem to unnecessarily burden the user, we will discuss in 
the next section why it is reasonable for our domain, and describe 
empirical evidence supporting this claim. 

4.1 Coordinating Representations 
As we have discussed, people develop and use external structured 
representations to enhance their ability to perform complicated, 
error-prone, laborious, or critical activities. There is no well-
defined methodology describing how to develop these 
representations in the general case. However, we have developed 
a methodology that allows us to do this for the specific case of 
collaborative applications [12]. Our method is based upon the 
ethnographic techniques of Suchman & Trigg [34] and Hutchins 
[20], and the discourse analysis methods of Sacks, Schegloff, and 
Jefferson [29].  
The incorporation of coordinating representations into 
VesselWorld system was our solution to several problems 
uncovered in our analysis of online user behavior. One such 
problem was the users’ difficulty in managing information about 
domain objects. Some of the groups handled these difficulties by 
developing mnemonic expressions for referring to domain 
objects; other examples of this kind of co-referencing behavior 
has been documented elsewhere (cf. [9]). However, users did not 
always agree on consistent mnemonics, and coordination errors in 
the maintenance of this information were frequent. Thus, one of 
the CRs that was introduced to the VesselWorld system was 
designed to support the organization and naming of objects in the 
world. We call this CR the Object List (Figure 4). 



The Object List is a tabular WYSIWIS (What You See Is What I 
See) component that helps users to manage and coordinate 
reference and state information. Users enter and maintain all of 
the data in the Object List. Each row of data contains several 
fields of information, including a user assigned name, the status, 
and the location of the associated object. The location field may 
be filled in by clicking on the field and then on the object in the 
interface (and hence has fixed structure). The size, equipment, 
action, and leak fields are filled in using drop-down menus. A free 
text field (“notes”) is also provided for each entry so that any 
other relevant information may be communicated. Entries in the 
Object List can be displayed on the primary map interface as 
icons that are annotated with the name that is in the “Name” field 
at the coordinates in the “Location” field. 

 
Figure 4 The Object List CR 

In studies published elsewhere ([2][3]), we have found that the 
Object List, and other CRs, were used, and that they significantly 
improved user performance. Our studies revealed that the CRs 
reduced errors and time spent chatting, and on average halved the 
time it took to solve problems.   
Another important feature that occurs in groups that used the 
Object List is that people almost always use the names that they 
have assigned to objects with the Object List to refer to objects in 
the world while chatting. This is perhaps an obvious occurrence in 
hindsight, but it provides the system with a significant piece of 
information for inferring intent. 

5. INTENT INFERENCE FROM USER 
SUPPLIED INFORMATION 
In using the Object List, users provide the system with some 
portion of the state information that our intent inference procedure 
requires. This information is of course not perfect – it is only 
revealed to users (and entered into the Object List) as they 
discover and examine wastes, and it is subject to errors, 
omissions, and duplication – but it can be posted directly to the 
BN above.  The Object List also provides us with a set of 
references to objects in the world that can be used to mine chat for 
clues about user intentions. We were able to incorporate this 
information into our BN in a straightforward manner.  

We found that the occurrence of references (labels assigned to 
wastes in the Object List) in chat were predictive of lift actions 
for roughly a fifteen-minute window of time preceding a lift. 
Table 3 depicts the likelihood that a reference for an object will 
appear in chat for the three consecutive five minute windows 
prior to a lift of that object at time t, based on a frequency 
analysis of the data. In the table, “Joint” and “Single” refer to 

whether or not a waste requires both or just one crane operator to 
lift. In the ~Lift conditions, values reflect the likelihood some 
other waste is referred to prior to a lift of some waste. 

Table 3 Probability of reference preceding a lift at time t 
t-5 to t t-10 to t-5 t-15 to t-10  

Joint Single Joint Single Joint Single 

Lift .62 .42 .27 .15 .25 .08 

~Lift .15 .11 .10 .07 .08 .04 

Users in VesselWorld often refer to wastes in chat using the labels 
they’ve assigned in the Object List; as shown in the table, there is 
about a sixty percent chance that waste will be referred to in chat 
in the five minutes preceding the lift if that waste requires 
assistance, and about a forty percent chance if that waste can be 
lifted singly.  Outside of a fifteen minute window, references 
were not a very good predictor of lift actions.  On the basis of this 
analysis, we expanded our BN to include three five minute 
windows of chat history, with one node for each five minute 
window. These nodes are not assumed to be independent, 
allowing the EM algorithm to identify relationships between 
windows.  

5.1 Evaluating Intent Inference with User 
Supplied Information 
We compared the performance of our intent inference procedure 
across four conditions: 

• Perfect Info – All information about toxic waste barrels (size, 
location, equip) is known at the outset, and is correct. 

• Object List – Information about toxic waste barrels is taken 
from the Object List as it becomes available; subject to user 
errors. 

• Object List + Chat – The Object List condition, plus the 
occurrence of references in chat. 

•  Perfect Info + Chat – The Perfect Info condition, plus 
occurrence of references in chat. 

These results are shown in Table 4. As before, we are interested 
here in how well the data and model predict the Cranes’ lift 
intentions, rather than demonstrating the generality of the model 
itself. Therefore, we trained each of the four networks, as 
described previously, separately for each condition. The same 
starting parameters were used in each case (identical portions of 
each network had the same starting conditional probability 
tables), as the EM algorithm is sensitive to starting parameters.  

Table 4 Intent inference results for different info sources  

For each pair of conditions that are compared in the following, a 
two-tailed, paired t-test was used to determine the significance of 
the overall differences, and these values are reported. 

Condition CGR (StdDev) FPR (StdDev) 

Perfect Info .83 (.14) .53 (.13) 

Object List .70 (.17) .60 (.16) 

Object List + Chat .77 (.15) .58 (.15) 

Perfect Info + Chat .87 (.12) .51 (.11) 

As expected, the intent inference procedure performs significantly 



better (p<.001 for both CGR and FPR) with perfect information 
than it does with information from the Object List. However, it 
still performs quite well – seven out of ten lift intentions are 
predicted accurately (on average) vs. eight out of ten when 
working with perfect state information. The addition of reference 
information in chat improves upon this even further. The overall 
correct goal rate in the Object List + Chat condition is improved 
by .07 over the Object List condition (p<.001), although the 
change in false positive rate is not quite a significant effect (p = 
.058).  The performance differences between the Object List + 
Chat and Perfect Info conditions are still significant (p<.05 for 
CGR, p=.058 for FPR).   
The reference information made available by the Object List also 
improves intent inference when combined with perfect state 
information.  The difference between the Perfect Info + Chat and 
the Perfect Info conditions are significant (p<.01 for CGR and 
p<.05 for FPR). Thus, regardless of our access to state information 
(for instance, if we had intelligent sensors placed in the world) the 
Object List introduces a source of information that further 
improves our ability to infer user goals. 
We will now show that the level of inference provided by the 
procedure described above, using information from the Object 
List and chat, is good enough to support useful intelligent 
assistance at runtime. 

6. AN ADAPTIVE COMPONENT 
In the preceding sections, we have demonstrated several things. 
First, we have verified that our intent inference technique is valid; 
it performs well with access to perfect information. We have also 
shown how intent inference with the domain information 
performs nearly as well. Finally, in using this CR, users share a 
set of referring expressions with the system, and we have shown 
that this information can be used to further improve intent 
inference.  
To provide users with planning assistance that makes use of the 
intent inference procedure, we developed a WYSIWIS component 
(Figure 5) to present the five most plausible goals output by the 
intent inference procedure to each user at any point in time.  

 
Figure 5 The adaptive component 

The function of this component is as follows: 
1. After each update to state information, (e.g. plan execution, 

information added to the Object List, a reference to an object 
mentioned in chat, etc.) the system offers each user up to five 
possible goals.  

2. When a user selects a goal, it is displayed so that all users can 

see it. The user that selected the goal has the option to request 
an automatically generated plan for the goal. 

3. The system generates a plan that the user can inspect. If the 
goal involves multiple actors, the other involved actors are 
invited to join the plan. If all invited actors accept the 
invitation, a plan is generated; if invited users do not accept 
the invitation, the requesting user is so informed. 

4. The user may then accept the plan, in which case it is copied 
into the user’s planning window for execution. If the plan is 
generated from correct state information (i.e. the Object List 
reflects correct state information), and no user modifies the 
state in such a way that conflicts with the generated plan, the 
plan will succeed. 

6.1 User Studies 
To evaluate the effectiveness of the above component, we 
performed a 40-hour study with four teams of three people. The 
players were a mix of students and local-area professionals, with 
varying degrees of computer proficiency. Each team was trained 
together for two hours in use of the system, and then solved 
randomly chosen VesselWorld problems for approximately ten 
hours. To alleviate fatigue concerns, the experiment was split into 
four three-hour sessions.  
The participants were divided into two populations of two teams 
each, one that had the adaptive component, and one which did 
not. For the teams with the component, the inference procedure 
used information from the Object List and chat to infer user goals. 
The following results report on the last 5 hours of play time for 
each group, by which time performance of the users had 
stabilized.    
The component was used 
All groups used the component to generate plans within the 
system. On average, users confirmed a goal every 1.5 minutes 
(SD=46 seconds), requested a plan for each confirmed goal, 
accepted 71% of plans requested (SD=19%), and completed the 
execution of 83% (SD=6.75%) of these plans. 
For each problem solving session, one quarter of all plan steps 
submitted to the server were generated by the component 
(SD=8%). Finally, the component generated plans for 43% 
(SD=15%) of the domain goals it could have predicted for the 
Cranes. It was not possible to obtain a similar statistic for the Tug 
operator because it is difficult to recognize goals in the collected 
log files (goals for the tug are not bracketed by easy to detect plan 
steps like “LIFT” and “LOAD”).  
The component reduced errors 
The groups that had the component had 45% (p=.069) fewer joint 
errors (failures during joint actions) per minute than the groups 
that did not. This difference is not significant at the .05 level, 
because of the small sample size and overall low proportion of 
joint errors.  A reduction in joint errors corroborates prior analysis 
of use of the VesselWorld system [1], which indicated that joint 
errors were usually the result of plan submissions becoming 
unsynchronized. Because the component generates coordinated 
plans in advance, users may simply submit each step and be 
assured that actions will be coordinated.    
The component reduced cognitive effort 



To measure the change cognitive effort between the two 
populations, we examined the amount of interface work together 
with the amount of time it took users to execute plans. We found 
that the amount of clock time taken by users between submitting 
steps of automatically generated plans was 57% less (p<.01) than 
in groups without the adaptive component, and we also found no 
significant differences in the number of mouse clicks per waste.   
Because the reduction in clock time for groups with the 
component cannot be explained by a reduction in the amount of 
interface work, we conclude that the component reduced the 
cognitive effort of the collaborators. 
In summary, our studies indicate that the adaptive component was 
heavily used, improved user performance, and made plan 
execution easier. These results demonstrate that collaborating 
users can generate enough structured information when using a 
shared cognitive artifact to drive useful intelligent support. We 
conclude that the approach to adding intelligent support 
demonstrated here was successful for this domain.  Our approach 
can be generalized to other domains; in the following, we will 
describe some related work that illustrates this.  

7. DISCUSSION 
In this and other articles ([2][3][12]), we have outlined a 
methodology for adding adaptive support to a system by 
introducing useful structure at the interface. While the description 
of this methodology is novel, other researchers have leveraged the 
techniques we have described in building adaptive systems.  
These other systems point the way to the generality of our 
approach. For example, Pu & Lalanne [27] describe several 
information visualization techniques that can be used as a front 
end to various CSP algorithms. In these systems, the interface 
representations help people to think about a constraint solving 
task and to guide the underlying algorithms, while these 
algorithms explore the problem space and present results via the 
same representation. As described by the authors, the interface 
representation is informed by an understanding of the abstract 
representation used by the underlying CSP algorithms. Thus, the 
system’s internal representation is brought to the interface so that 
it is accessible to the user. In contrast, we have brought 
information from the users’ practice into an interface 
representation that the system can use. However, both approaches 
leverage structure in the interface to satisfy the competing 
requirements on the interface representation. 
St. Amant [33] presents a framework for studying the tradeoffs 
between interpretability and efficiency in intelligent systems. 
These qualities are very similar to the dual interface requirements 
we introduced at the beginning of this article. Efficiency refers to 
the amount of interface work a user must do to specify and 
evaluate system states. Interpretability “is the ability of the 
system to infer the relevance of information and actions to tasks, 
within and between states,” or the simplicity with which the 
system can interpret the user’s actions. St. Amant sketches an 
approach to analyzing interpretability of a system, and in so doing 
highlights the notion that some kinds of structure (as opposed to 
agent based dialogic interaction) may be used to simplify the 
identification of the user’s needs.  While we feel that this 
structure should be informed by an analysis of a particular work 
practice, there is much utility in understanding how different 
kinds of structure can be leveraged by autonomous algorithms. 

In collaborative environments, the application of coordinating 
representations to provide intelligent support has a rich history. 
The COORDINATOR [15] applied structure to inter-office 
messages and related these messages to transactions in a network 
of speech-acts. The system used this information to provide users 
with reminders and identify those who defaulted on commitments. 
Similarly, the Information Lens [24] added structure to messages 
to support better filtering and rule-based processing for end-users. 
Our work differs from these earlier systems in our strong 
ethnographic basis for the introduction of cognitive artifacts.  
The computer supported problem-solving environment (CPSE) 
described by Chin et al. [8] was developed in a manner similar to 
ours in this regard. Multiple coordinating representations were 
developed by and for a community that used a large scale 
distributed computing environment. These representations were 
based not on theory, but actual user experiences with the system. 
For example, many scientists planned their own experiments on 
paper as workflow diagrams. A workflow based experiment 
interface was thus incorporated into the system. This structure 
made it easier for scientists to coordinate the use of many 
available distributed resources, and helped them to plan and 
monitor the progress of large scale experiments. Although the 
prototype system did not offer any automation, the authors 
recognized the possibility of leveraging structure in the workflow 
representation for that purpose. The prototype CPSE exemplifies 
the methodology we have described in our work.      

8. CONCLUSION 
As we have discussed, the design of interfaces to intelligent 
systems is hard because it is subject to competing requirements. 
These requirements are created by the system’s need for 
information about the user and context at runtime, and the user’s 
need for a fluid interaction with the domain.  Here, we have 
described how both of these requirements can be addressed by 
introduction cognitive artifacts. On one hand, such artifacts 
provide the users with structure that improves their cognitive task; 
on the other, this structure can be used by the system to interpret 
user actions and provide intelligent assistance. We have 
demonstrated a methodology for the development of such 
artifacts, called coordinating representations, in collaborative 
interfaces.  
In this paper, we have shown how one type of CR, which supports 
labeling and organizing information about objects in a shared 
domain, can be used to support intent inference. Not only does 
this CR provide the system with access to domain information 
that might not otherwise be available, but it also provides the 
system with access to referring expressions that people use in 
natural dialogue. This later datum is used naïvely here to improve 
intent inference; other technologies may be able to derive even 
further mileage by interpreting the human dialogue that occurs 
around these referring expressions. For the system described here, 
our intent inference procedure was powerful enough to drive an 
adaptive component that significantly improved the users’ task. 
There is a need to develop both an approach and a catalogue of 
representations that can be applied to single-user as well as 
collaborative user interfaces. In this article, we have referred to 
several sources from which to draw insight, and there are many 
other sources that are not discussed here. We hope that others will 
join us in drawing upon this fount to develop new approaches for 
integrating AI and human activity. 
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