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Abstract

Two methods for incorporating position features along with the more tradi-
tional color features are introduced for the content-based image retrieval task.
Both methods use vector quantization (VQ) to compute image similarity by
encoding query image features using database image codebooks. Database im-
ages that encode the query at low distortion are considered similar to the query.
The first method trains VQ codebooks separately for color and position fea-
tures. Separate training alleviates the problem of feature weighting during the
training phase and allows different weightings while querying. The second par-
titions images into regions and trains tree structured codebooks (TSVQ) for
these regions. During the query phase, the number of codewords for each re-
gion is dynamically determined. The pruned TSVQ codebooks are then used to
encode query image regions. Both of these approaches, especially the second,
have significantly lower complexity than previous techniques that employ VQ,
and experiments performed on the COREL image database indicate that the
performance of our methods is comparable (slightly better than) these previous
methods.

1 Background

With the recent proliferation of digital images, there is a need for information systems
that can organize and understand images. In the query-by-example model (Eakins
and Graham [3]), a user presents the system with a query image and the system re-
sponds by retrieving a set of database images with (visually) similar content. Relying
on the discriminative power of color features, histograms measuring color volumes
have been efficiently and effectively for this task (Swain and Ballard [10], Faloutsos
et al. [4], Flickner et al. [5]). However, a drawback of global color histograms is
that if images with different statistical properties (classes) are later added to the
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database, the histogram colors (labels) may need to be recomputed to maintain re-
trieval accuracy. When dealing with varying databases (the web, for example), it can
be advantageous to use models generated individually from each image.

Probabilistic models are favorable in this setting since they are provide minimum
probability of error retrieval. Vasconcelos [11] uses finite Gaussian mixture models to
represent image densities and uses Bayes classifiers for retrieval, i.e the most similar
image (class) is the one that maximizes the posterior probability of the database image
(class) given the query image. Jeong and Gray use finite Gaussian mixture models
where an image’s similarity is explicitly computed as the probability of the query
features given a database model [8]. Their method performs better than Vasconce-
los’ asymptotic likelihood approximation (ALA), method which uses distributional
distances as similarity measures. We introduced similar approach using VQ code-
books [1], where the similarity was computed by determining the how well a database
image’s codebook can represent a query image. Although this method is not explicitly
probabilistic, it compares well with more complex Gaussian mixture models and is
computationally more favorable.

In our previous work [2], we introduced a simple method to combine position
features in a VQ framework. Position features were directly incorporated into the
training of codebooks and the weighting for the color and position features was de-
termined empirically. It was found that by using position features for retrieval, there
was an overall modest improvement in performance for a minor increase in com-
plexity (feature vector dimension increase by 2), while at the same time providing
“insurance” where it makes little difference for many classes but can yield significant
improvements for some.

In this paper, we present two new methods for incorporating position features into
the retrieval framework. The first method trains codebooks for color and position fea-
tures separately, thereby not requiring feature weighting during the training phase.
Our second method partitions images into 9 regions and trains VQ codebooks for
each on them. While maintaining a competitive level of retrieval accuracy, it works
with greatly reduced complexity (lower than our previous work and an order of mag-
nitude or more lower than previous methods employing Gaussian mixture models).
This second method can be viewed as related to the work by Stricker and Dimai [9]
where images were represented by fuzzy, partially overlapping regions; feature vectors
consisting of the first three color moments in the HSV color space are extracted from
each region and retrieval is performed by essentially computing the sum of weighted
differences between color feature moments.

2 Computing Image Similarity

In our methods we use VQ codebooks as generative models for the image observations.
Vector quantization is a technique generally used for signal compression [6]. Given
a set of training vectors, a training algorithm determines a set of codewords that
constitute a codebook. Compression is achieved in representing a source vector by
transmitting the index of the codeword that is closest (in the MSE sense) to it.
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We use VQ codebooks to represent images by training a codebook for every database
image. Image similarity is determined by how well a given database image’s codebook
encodes a query image. Specifically, given a query image A, and a database image
B, our system computes a simple retrieval distance which is defined to be the mean
squared error when A is encoded with B’s codebook:

d(A, B) =
1

N

N
∑

i=1

argmin
j

‖(ai − bj)‖W (1)

where ai, bj ∈ R
k, {bj}M

j=1 is the codebook for image B, {ai}N
i=1 are the feature vectors

from query image A, W ∈ R
k×k is a weight matrix and ‖x−y‖W = (x−y)tW(x−y).

In our previous work [2], we extended this basic approach by incorporating the XY-
coordinates into the feature vectors. Full search VQ codebooks were trained jointly on
color and position features using the GLA and the feature weightings and codebook
sizes were determined empirically. Although this approach performed comparably to
previous methods employing VQ at lower complexity, it is still more complex than
the methods we will present here.

2.1 Separate Training with Color-Position Codebooks

It is not clear what effect joint training of disparate features has on retrieval accuracy,
thus in order to avoid the feature weighting problem during the training phase, color
and position features can be trained separately. Color-position codebooks consist of
separate codebooks for different feature types. We use the Lloyd clustering algorithm
to first train a color only codebook. The feature vectors are then mapped, using only
their color components, to entries in this codebook. Using the position components
of these feature vectors, a position codebook is trained for each color codeword (so
each color codeword has a position codebook associated with it). When encoding a
given a query vector, the best color position match is the one that jointly minimizes
the weighted color and position distortion:

d(A, B) =
1

N

N
∑

i=1

argmin
j,k

{

‖(a(c)
i − b

(p)
j )‖W(c) + ‖(a(p)

i − b
(p)
jk )‖W(p)

}

(2)

where x
(c)
i and x

(p)
i are the color and position features respectively for feature vector x,

W(c) and W(p) are the color and position weights respectively and k ∈ {1, . . .M (p)
j }

with M
(p)
j the number of position codewords associated with color j. In terms of

complexity, this method is cheaper than having an unstructured VQ codebook of size
M1M2 with M1 colors and M2 positions per color.

2.2 Region VQ

Our second method partitions the image into regions and computes similarity between
corresponding regions. Separate VQ codebooks trained on color feature vectors are
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associated with each region of each database image. To compare a query image with
a database image, the total similarity score is the sum of the scores for each region,
where the score for a region is the MSE when the query image features for that region
are encoded using a database image’s VQ codebook for that region:

d(A, B) =

r
∑

i=1

wi

|Ri|

|Ri|
∑

j=1

argmin
k

‖aij − bik‖ (3)

where r is the number of regions in the images, |Ri| is the number of feature vectors
in region Ri, {bik}

Mi

k=1 is image B’s (color only) codebook of size Mi for region Ri and
wi is the weight to be assigned to region Ri. The size of the region codebook Mi is
varied by query and region by setting a parameter called the query threshold. This
parameter will determine how many codewords to use when encoding a query. Since
the database codebook size needs to be varied based on the query image statistics, we
use tree-structured codebooks (TSVQ) for the database images. After partitioning
the image into regions, we train large TSVQ codebooks by successively splitting nodes
with the largest distortion until we arrive at the desired number of leaf codewords.
The following steps summarize the querying process for a query image Q, database
image D and query threshold T .

• Extract N regions from the query Q = {qi}N
i=1 and train TSVQ codebooks for

each region C(qi) such that the average distortion for each region is less than
the query threshold T .

• Prune database image’s region codebooks C(di) to size |C(qi)|. The pruning
algorithm merges siblings u and v with parent w such that D(w)−(D(u)+D(v))
is minimal amongst all siblings. Where D(n) is the (training) distortion at node
n and is stored in the codebook.

• Encode query features using this pruned codebook using full search VQ as
defined in Eq. 3.

Figure 1 shows two sample database images; to the right of each image is a table
showing the number of entires in the codebook for the corresponding region. A key
advantage of this approach is additional reduction in complexity. Position informa-
tion is implied and not longer explicitly part of the computation. In addition, when
a region is processed, smaller codebooks are being searched. In fact, as we shall see,
setting the query threshold so that average codebook size is less than 2 yields perfor-
mance in practice that is still comparable (slightly better) than previous methods.

2.3 MDIR

We compare the two methods presented in this work with the minimum distortion
image retrieval (MDIR) method of Jeong and Gray, which is based on Gauss mixture
VQ, and is currently the most competitive probabilistic image retrieval method [8].
MDIR uses finite Gaussian mixture models (GMM) trained using GMVQ clustering
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Figure 1: Sample database images with corresponding region codebook sizes for a
query threshold of 1500.

(Gray [7]) to represent images. The best match for a query image is the database
GMM that minimizes the distortion when the query features are encoded using that
GMM:

d(A, B) =
N

∑

i=1

argmin
j

ρ(ai, πj , gj) (4)

where {πj , gj = N (µj, Σj)}M
j=1 is the finite Gaussian mixture model with priors πj

trained from image B and ρ(ai, πj , gj) = (dLL(ai, gj) − lnπj) is the penalized log-
likelihood.

3 Experiments

For our experiments, we used the standard COREL database (also used by Wang et
al. [12], Jeong and Gray [8]), which consists of 1500 JPEG images, organized into
15 classes of 100 images each. Database images are either 256 × 384 or 384 × 256
in size. For convenience, the images were cropped to a central 256 × 256 region and
then scaled down to 128 × 128 using the Convert1 program. Figure 2 shows sample
images from the database.

3.1 Image features

We employed relatively simple features for experiments. Database images were trans-
formed from the RGB to the nonlinear CIE-LUV color space in which the Eu-
clidean distance between color vectors corresponds more closely with human percep-
tion (Wyszecki and Stiles [13]). We used a window of size 2×2 for feature extraction
by sliding it across the image in a raster tiling fashion. Each feature vector com-
prises of the mean and the variance for each color channel within that block along
with its position (XY-coordinates). The result is an 8-dimensional feature vector:
(µL, µU , µV , σ2L, σ2U , σ2V , x, y)t.

1http://www.imagemagick.org/
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Figure 2: Samples database images from each class in raster order: Africans, Ele-

phants, Caves, Beach, Roses, Postcards, Architecture, Horses, Sunsets, Buses, Moun-

tains, Tigers, Dinosaurs, Foods, Women.

3.2 Results

The same set of 210 query images as used in Jeong and Gray [8] and in our previous
work [2] was used in all experiments reported here. Standard precision vs. recall

curves were used as performance metrics. Precision is defined as the fraction of
images retrieved that are relevant (belong to the same class as the query) and recall
is the fraction of the relevant images that are retrieved: p = a/(a+b) and r = a/(a+c)
where a is the number of relevant images that are retrieved, b, the number of irrelevant
items retrieved and c, the number of relevant items not retrieved. Precision and recall
are shown on a single graph so that they may show the change in precision as the
recall increases. Since the precision typically drops as the recall increases, a retrieval
system is said to be more effective if it has higher precision at the same recall values.

To test our first method using color-position codebooks, we trained codebooks with
8 colors and 8 positions per color. Figure 3 shows the precision recall plots of color-
position codebooks with our previous work of jointly trained codebooks consisting of
a total of 8 codewords and MDIR also consisting of 8 component Gaussian mixtures.
It can be seen from this plot that in the recall range of 10% to 50% (arguably the
most important region for image retrieval systems), color-position codebooks improves
precision by almost 20% at best. The influence of position weighting is shown in
table 1. Here we show the total precision, which is simply the precision sum at
all recall values: Pt =

∑100
r=1 Pr where Pr is the precision at recall r, for various

position weights. We have used simple scalar weights of type wI, with I being the
identity matrix of the appropriate dimensions for position features. Although the
various position weightings fractionally improve total precision, the method is still
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Figure 3: Precision vs. Recall for color-position codebooks.

advantageous since the influence of weightings is removed from the codebook training
phase.

For region VQ experiments, we partitioned each database image into 9 regions
where the 4 corner regions were of size 43 × 43. For each region, a TSVQ codebook
was trained with 32 leaf codewords. Tests were performed at various query thresh-
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Figure 4: Total precision vs. Average codebook size for region VQ
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Color Weight Position Weight Total Precision

1 6 38.90
1 5 38.88
1 7 38.85
1 8 38.73
1 10 38.40
1 2 38.03

Table 1: Total precision for color-position codebook with 8 colors and 8 positions per
color with different positional weightings.

olds. Figure 4 plots the total precision verses the average region codebook size which
is computed as the average codebook size for all 210 queries for all 9 regions. The
best performance occurs at an average codebook size of 5.41 corresponding to a query
threshold of 1500. Figure 5 shows the precision recall performance of region VQ com-
pared with jointly trained codebooks and MDIR. Region VQ with average codebook
size of 1.08 performs almost as well as with average codebook size 5.41. However
notice that over the recall range of 10%-40%, the latter improves precision by around
3%. Also, region VQ for both average codebook sizes shows an improvement both,
in terms of precision and complexity over the other methods for recall up to 40%.
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Figure 5: Precision vs. Recall for region VQ. The numbers in parenthesis are the
average codebook sizes
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Figure 6: Precision vs. Recall plots

3.3 Complexity

In this section we perform a simple complexity analysis of the various methods referred
to in this work. As an example, consider the cost (multiplications) of searching for
the best codeword for a given 8-dimensional source vector. A color-position codebook
with 8 colors and 8 positions per color, requires 8(6 + 2 × 8) = 176 operations while
an equivalent jointly trained codebook with 64, codewords requires 8 × 64 = 512
operations. Region VQ affords even more reduction in complexity. Indeed, for an
average of 8 codewords per region, 6 × 8 = 48 multiplications suffice. On the other
hand, MDIR with 64 components per Gaussian mixture and full covariances requires
8 × 8 × 64 = 4096 multiplications.

4 Conclusion and Future Work

We have presented two low complexity alternatives for incorporating position features
into the VQ based image retrieval framework. Both methods perform comparably or
better than previous methods while offering significantly lower complexity. Figure 6
shows the precision recall plots comparing these We see here that for recall values up
to 50%, the new methods show improved precision, up to 20% at best. Further inves-
tigation in terms of region weighting and soft partitioning of images will help better
understand region based VQ methods. Also, it would be interesting to replace region
VQ codebooks with Gaussian mixtures especially when the number of codewords is
very low.
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