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Introduction

Abstract

Progress often comes from identifying common patterns and motives in
different mathematical and natural phenomena.

In this talk we give some examples of such common patterns.

In particular, we focus on the pattern of ”strong triangularity”, which
occurs in various contexts including partial metrics and fuzzy equalities,
and on the ”bilattice pattern”, which is known to occur in the contexts of
non-monotonic reasoning, partial contradictions, bitopology, and
probabilistic programming.
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Introduction

transitivity, triangularity, composition, ...

d(x , y) + d(y , z) ≤ d(x , z)

a ≤ b & b ≤ c ⇒ a ≤ c

a→ b & b → c ⇒ a→ c

Hom(A,B)× Hom(B,C )→ Hom(A,C )

A(z , y) ◦ A(y , x) ≤ A(z , x)

...
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Introduction

Natural sciences

Eugene Wigner, The Unreasonable Effectiveness of Mathematics in the
Natural Sciences, Richard Courant lecture in mathematical sciences
delivered at New York University, May 11, 1959, Communications on Pure
and Applied Mathematics 13, 1–14, 1960.

I think this unreasonable effectiveness to a considerable extent comes from
the tendency of various aspects of nature to form and exhibit various
classes of similar patterns.
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Introduction

Generalization and transfer; categories

Categories, enriched categories, abstract data types, ...

The effeciency of the theory of categories, in particular, comes from their
superefficiency of describing and studying various common patterns.

Great for studies of high general applicability. Great for transfer of
knowledge between various fields. Very productive at the high end.

Not so great: high abstraction barrier, high barriers to entry, loss of
intuition and of expressive notation from particular fields, different
patterns look alike, the differences between them get blurred.

Can we do something to counter the “not so great” part?
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Introduction

Non-standard generalization; individuation

We should try to generalize by importing notions into unusual frameworks
(e.g. into the metric framework instead of the categorial framework) just
to get different flavors of representations and to get viewpoints from
different angles.

Individual treatment of particular patterns: use non-standard notation,
distinctive fonts, less standard geometric presentations and icons
(categorial diagrams are great, but one eventually gets tired of them being
everywhere).
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Strong triangularity

Strong triangularity (“Vickers form”) for partial metrics

Steve Vickers discovered the following strengthening of
the triangularity axiom for metrics with non-zero self-distances
discovered by Steve Matthews:

p(x , z) + p(y , y) ≤ p(x , y) + p(y , z)

or equivalently,

p(x , z) ≤ p(x , y) + p(y , z)− p(y , y)
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Strong triangularity

In quantales

For quantale-valued fuzzy equalities (Höhle, 1992):

E (x , y) ∗ (E (y , y)⇒ E (y , z)) v E (x , z)

For quantale-valued partial metrics
(Kopperman, Matthews, Pajoohesh, 2004):

p(x , z) ≤ p(x , y) + (p(y , z)−̇ p(y , y))
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Strong triangularity

Further appearances of this pattern

Strong trianularity axiom for partial metric:
p(x , z) + p(y , y) ≤ p(x , y) + p(y , z).

Obtaining weighted metric from partial metric:
d(x , y) = 2p(x , y)− p(x , x)− p(y , y).

Metric-entropy pairs on lattices (Simovici, 2007):

Definition: (d , η) is a ∧-pair if
d(x , y) = 2η(x ∧ y)− η(x)− η(y).

Theorem: for a ∧-pair d(x , y) ≤ d(x , z) + d(z , y) iff
η(z) + η(x ∧ y) ≤ η(x ∧ z) + η(y ∧ z).
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Strong triangularity

An explanation for the pattern

There are many explanations for why
p(x , z) ≤ p(x , y) + p(y , z)− p(y , y)
looks this way.

The best explanation I know comes from the theory of categories enriched
in quantaloids and states that the operaton a ◦y b = a + b − p(y , y)
should be defined in such a way, that p(y , y) is a unit of this operation,
even if p(y , y) 6= 0.

Namely, we want a ◦y p(y , y) = a and p(y , y) ◦y b = b.

I think we’ll see more appearances of this pattern in various situations.
Can we create software which would search for this pattern?
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Bilattice pattern

Bilattice pattern

This is can also be viewed as a short preview of tomorrow’s talk.

I omit most references to the literature today and include them in the slide
deck I’ll be using tomorrow.
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Bilattice pattern

Example of a bilattice
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Bilattice pattern

Partially inconsistent interval numbers within a segment
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[a, b] ≤ [c , d ] iff a ≤ c , b ≤ d

[a, d ] v [b, c] iff a ≤ b, c ≤ d
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Bilattice pattern

Partially inconsistent interval numbers within a segment
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Bilattice pattern

Partially inconsistent interval numbers within a segment

�
�
�
�
�

@
@

@
@
@

t

�
�

�
�
�

@
@
@
@
@

t

[0, 1]

[0, 0] [1, 1]

[1, 0]

t t

blue – precisely defined numbers

pseudosegments are above the blue
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Bilattice pattern

Negative and positive subspaces
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Negative – space of upper bounds [0, x ]

Positive – space of lower bounds [x , 1]
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Bilattice pattern

Negative and positive subspaces
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Bilattice pattern

Negative and positive subspaces
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We require A < B.

We can even allow A = −∞,B =∞.
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Bilattice pattern

Negative and positive subspaces
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Bilattice pattern

Decomposition into negative and positive subspaces
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[A, b] = [a, b] ∧ ⊥ = [a, b] u L
[a,B] = [a, b] ∨ ⊥ = [a, b] u U
[a, b] = [A, b] t [a,B]
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Bilattice pattern

The idea of bilattice

Matthew L. Ginsberg. Multivalued logics: a uniform approach to inference
in artificial intelligence. Computational Intelligence, 4(3):256–316, 1992.

Free versions of this paper and all papers referenced in subsequent slides
can be found online.
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Bilattice pattern

Original context

Matthew Ginsberg created a number of successful systems in applied AI.

Bilattices were introduced to provide a unified framework for a variety of
practical inference schemes used in AI, such as non-monotonic
inference, inference with uncertainty, etc.

Besides purely theoretical interest, they seemed to increase modularity and
efficiency of inference implementations.
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Bilattice pattern

Non-monotonic inference

Plenty of examples of commonsense non-monotonic inference.

E.g. if one knows that Larry is a bird, then one infers that Larry can fly. If
one then learns that Larry is actually a pinguin, then one takes this
inference back and instead infers that Larry cannot fly. If one then learns
that Larry is a magical flying pinguin, then...

Other examples include “negation as failure” in Prolog, etc.
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Bilattice pattern

Definition of bilattice
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The standard definition of bilattice: 1) ≤ and v form complete lattices; 2) an

involutive ”weak negation” monotonic with respect to v and antimonotonic with respect to ≤ preserving the appropriate lattice

structures (in our case, a reflection with respect to the blue line).
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Bilattice pattern

Maximal elements are incompatible with group properties

This is not a new situation. For example, a lot of applied math is based on
linear algebra, but is implemented with computer representations of real
numbers, and these computer representations do not form a group, but
one is able to mostly ignore this.

In our case, if we take A = −∞,B =∞, but omit the segments with
infinities, we get a group.

Here we have dropped the requirement that ≤ and v form complete
lattices.

However, the positive and negative subspaces will disappear, and we need
them. So let’s adjoin their elements, (−∞, x ] and [x ,∞), externally for
finite x , and also ⊥ = (−∞,∞).
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Bilattice pattern

Decomposition into negative and positive subspaces
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Bilattice pattern

Bilattice pattern
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Bilattice pattern

d-frames

Take two frames L+ and L− (the informal intent is for their elements
correspond to open sets where the predicates are true and where they are
false).

L = L+ × L− is a bilattice.

Introduce Con,Tot ⊆ L with the informal intent that for pairs of open sets
U = 〈U+,U−〉, U ∈ Con when U+ ∩ U− = ∅, and U ∈ Tot when U+ ∪ U−
covers the whole space.

This allows to handle partial inconsistency and the bilattice pattern does
appear. (L+, L−,Con,Tot) is called a d-frame.
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Bilattice pattern

Hahn-Jordan decomposition

Every signed measure µ has unique decomposition into the difference of
positive measures µ+ and µ−, such that there is no set A with both
µ+(A) and µ−(A) being non-zero: µ = µ+ − µ−.

The total variation norm, ‖µ‖ = supA µ
+(A) + supB µ

−(B), makes the
space of measures with bounded ‖µ‖ a Banach space.
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Bilattice pattern

Partial order on the space of signed measures

One takes positive measures as the positive cone in this space.

Our partial order: ν < µ iff µ− ν is a positive measure.

This is a vector lattice (a Riesz space) and a Banach space, so people call
this a Banach lattice.
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Bilattice pattern

Bilattice pattern on the space of signed measures

µ+ = µ ∨ 0 (0 is the zero measure)
−µ− = µ ∧ 0

There are two ways to think about µ = µ+ − µ−.

We can just say that µ = µ+ + (−µ−) looks sufficiently similar to our
earlier formulas to constitute a bilattice pattern.

Or we can define ν v µ if ν+ ≤ µ+ and ν− ≤ µ−, and then
µ = µ+ t (−µ−), and then it is obviously a bilattice pattern.
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Bilattice pattern

Electronic coordinates

These slides are available from my new page on partial inconsistency and
vector semantics of programming languages, where bilattice pattern plays
a prominent role:

http://www.cs.brandeis.edu/∼bukatin/partial inconsistency.html

E-mail:

bukatin@cs.brandeis.edu
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