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Electronic coordinates

These slides are linked from my new page on partial inconsistency
and vector semantics of programming languages:

http://www.cs.brandeis.edu/~bukatin/partial_inconsistency.html
E-mail:

bukatin@cs.brandeis.edu
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Abstract

Partially inconsistent interval numbers
Negative probability

The mathematics of partial inconsistency starts with adjoining
formally inconsistent elements, such as negative probabilities or
formal intervals [a, b] with the contradictory property that b < a.

Then one progresses to more complex subjects, such as the
"bilattice pattern” which arises in different situations, bitopology,
ordered Banach spaces of measures, Scott domains, and a new
type of " possible worlds” models.

Actual and potential applications include handling inconsistency in
databases, non-monotonic reasoning in Al, semantics of
probabilistic programs, and, with some luck, better machine
learning schemes over spaces of programs.
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Partially inconsistent interval numbers
Negative probability

Puzzle connectors

This talk overviews how a variety of different studies done by

different people seem to fall together like pieces of a single puzzle.

Here is the list of the puzzle connectors:

o Bilattice pattern

o Partial inconsistency

o Non-monotonic inference

o Bitopology

o Negative probability and parametrization by signed measures

o Group and vector space semantics of programming languages
compatible with Scott domain semantics
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Partially inconsistent interval numbers
Negative probability

Outline

@ Introduction
o Partially inconsistent interval numbers
o Negative probability

(@ Bilattice pattern
o Examples
o History and definition
o Bilattice pattern
o Bitopology and d-frames

(3 Signed measures and vector semantics
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Partially inconsistent interval numbers
Negative probability

Interval numbers

Segments [a, b] on real line, a < b.

What [a, b] means: [a, b] stands for a partially defined number x,
what is known about x is the constraint a < x < b.

Partial order on the interval numbers:
[a,d] C [b,c]iffa<b (L) c<d.

Here [b, c] is better (more precisely) defined than [a, d|.
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Partially inconsistent interval numbers
Negative probability

Addition and weak minus

Addition: [al, bl] + [32, bz] = [al + as, b1 + bz].
Weak minus: —[a, b] = [—b, —a].

These are monotonic operations:
xCy=x+zLy+zand —xC —y.

However, the minus is weak, e.g. —[2,3] = [-3,—2], so
_[273] + [273] = [_17 1] L [an]

So one does not get a group here.
And it would be nice to have a group.
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Partially inconsistent interval numbers
Negative probability

Partially inconsistent interval numbers

Add pseudosegments [a, b], such that b < a.
This corresponds to contradictory constraints, x < b&a < x.

The new set consists of segments and pseudosegments.

Addition: [a1, b1] + [a2, b2] = [a1 + a2, b1 + ba].
True minus: —[a, b] = [—a, —b].

—[a, b] + [a, b] = [0, 0].

This gets us a group.
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Partially inconsistent interval numbers
Negative probability

True minus is antimonotonic

xLy=-yL —x

True minus maps precisely defined numbers, [a, a], to precisely
defined numbers, [—a, —a].

Other than that, true minus maps segments to pseudosegments
and maps pseudosegments to segments.

This suggests that we ought to look beyond Scott paradigm that
“computable implies monotonic” and bring bitopology into play.

9/47



Introduction
Bilattice pattern
Signed measures and vector semantics

Partially inconsistent interval numbers
Negative probability

Negative self-distances

The standard partial metric on interval numbers is
p([ala b1]7 [327 b2]) :maX(b]_, b2)_min(a].7 ‘92)-

Hence for x = [a, b] the self-distance is p(x,x) = b — a.

Hence if x is a pseudosegment, and if we expect the formula above
to hold, the self-distance is negative.
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Partially inconsistent interval numbers
Negative probability

Negative self-distance and negative probability

Partial metrics are often expressed via probability measures of
certain sets associated with pairs of points.

If partial metrics can take negative values, we should consider
using signed measures and negative probabilities.
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Partially inconsistent interval numbers
Negative probability

Negative probability in the literature

The idea of negative probability is not new, see e.g.
http://en.wikipedia.org/wiki/Negative_probability

and links and references therein for some of the history of this
notion and its applications in physics and in mathematical finance.

See in particular Richard Feynman, “Negative Probability,”

in Quantum Implications : Essays in Honour of David Bohm,

F. David Peat (Ed.), Basil Hiley (Ed.), Routledge & Kegan Paul
Ltd, London and New York, 1987, pp. 235-248.
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Partially inconsistent interval numbers within a segment

[1,0]

[0,0] [1,1]

[0,1]

[a,b] < [c,d]iffa<c,b<d

[a,d] C [b,c]iffa< b,c<d
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Bitopology and d-frames

Partially inconsistent interval numbers within a segment

[1,0]

[0,0] [1,1]

[0,1]

blue — precisely defined numbers

pseudosegments are above the blue
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Bitopology and d-frames

Negative and positive subspaces

[1,0]

[0,0] [1,1]

[0,1]

Negative — space of upper bounds [0, x]

Positive — space of lower bounds [x, 1]
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Bitopology and d-frames

Negative and positive subspaces

[B, Al

[A, A] [B, B]

[A, Bl

Negative — space of upper bounds [A, x|

Positive — space of lower bounds [x, B]
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Negative and positive subspaces

[B, Al

[A, A] [B, B

[A Bl

We require A < B.

We can even allow A = —o0, B = 0.
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Bitopology and d-frames

Negative and positive subspaces

[B,A|=T

L=[AA BB U

[AB] =L

We require A < B.

We can even allow A = —o0, B = 0.
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Decomposition into negative and positive subspaces

[B,Al=T

L=[A A BB U

[A, b] [2, B]
[A,B] = L

[A,b] =[a,b] A L =1a,b]ML
[a,B] = [a,b] V L =[a, b1 U
[a, b] = [A, b] U [a, B]
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The idea of bilattice

Matthew L. Ginsberg. Multivalued logics: a uniform approach to
inference in artificial intelligence. Computational Intelligence,
4(3):256-316, 1992.

Free versions of this paper and all papers referenced in subsequent
slides can be found online.
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Original context

Matthew Ginsberg created a number of successful systems in
applied Al.

Bilattices were introduced to provide a unified framework for a
variety of practical inference schemes used in Al, such as
non-monotonic inference, inference with uncertainty, etc.

Besides purely theoretical interest, they seemed to increase
modularity and efficiency of inference implementations.
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Non-monotonic inference

Plenty of examples of commonsense non-monotonic inference.

E.g. if one knows that Larry is a bird, then one infers that Larry
can fly. If one then learns that Larry is actually a pinguin, then one
takes this inference back and instead infers that Larry cannot fly. If
one then learns that Larry is a magical flying pinguin, then...

Other examples include “negation as failure” in Prolog, etc.
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Non-monotonic motives in our work

“True minus” is anti-monotonic.

Consider a partial metric p, and its associated quasi-metric,
Q(X,y) = p(Xay) - p(X’X)'

g is monotonic with respect to one of its arguments, and
anti-monotonic with respect to another. This is so annoying in a
number of respects that Ralph Kopperman even introduces

q : Ax A" = R instead of the original g : A x A — R in some
contexts to mitigate the situation. Here A’ is A with reversed
order, making ¢’ monotonic with respect to both variables.
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Bitopology and d-frames
Definition of bilattice

[1,0]

[0,0] [1,1]

[0,1]

The standard definition of bilattice: 1) < and C form complete lattices;

2) an involutive " weak negation” monotonic with respect to C and antimonotonic with respect to < preserving

the appropriate lattice structures (in our case, a reflection with respect to the blue line).
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This is not a new situation. For example, a lot of applied math is
based on linear algebra, but is implemented with computer
representations of real numbers, and these computer
representations do not form a group, but one is able to mostly
ignore this.

In our case, if we take A = —o0, B = 00, but omit the segments
with infinities, we get a group.

Here we have dropped the requirement that < and C form
complete lattices.

However, the positive and negative subspaces will disappear, and
we need them. So let's adjoin their elements, (—o0, x] and [x, c0),
externally for finite x, and also L = (—o0, 00).
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Decomposition into negative and positive subspaces

[B,Al=T

L=[A A BB U

[A, b] [2, B]
[A,B] = L

[A,b] =[a,b] AN L =[a,b] L
[a,B] = [a,b] V L =[a,b] T U
[a, b] = [A, b] U [a, B]
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Bilattice pattern

(—o0, b] = [a,b] A L
[a,00) =[a,b] V L
[a, b] = (—o0, b] U [a, 00)
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Bitopology and d-frames

Achim Jung, M. Andrew Moshier. On the bitopological nature of
Stone duality. Technical Report CSR-06-13. School of Computer
Science, University of Birmingham, December 2006, 110 pages.

This text has a lot of very interesting material. | am only touching
a bit of it here.
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d-frames

Take two frames L, and L_ (the informal intent is for their
elements correspond to open sets where the predicates are true and
where they are false).

L=L; x L_ is a bilattice.

Introduce Con, Tot C L with the informal intent that for pairs of
open sets U = (U4, U_), U € Con when Uy NU_ =), and
U € Tot when Uy U U_ covers the whole space.

This allows to handle partial inconsistency and the bilattice pattern
does appear. (Li,L_, Con, Tot) is called a d-frame.

31/47



Examples

History and definition
Bilattice pattern
Bitopology and d-frames

Introduction
Bilattice pattern
Signed measures and vector semantics

Bitopological Stone duality

This paper studies Stone duality modified to apply to bitopological
spaces and d-frames.

It also demonstrates that a number of classical dualities, namely
dualities of Stone, Ehresmann-Bénabou, and Jung-Siinderhauf,
actually have bitopological nature, namely they are special cases of
the Stone duality between bitopological spaces and d-frames.
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Bitopological Stone duality

Jung and Moshier explain why specialization orders point in the
opposite directions in the bitopological situations we tend to
encounter. Namely, the property that the intersection of the two
specialization orders in question is the equality relation is a
corollary of bitopological sobriety when both topologies are Ty.

A bitopology with two specialization orders pointing in the
opposite directions is what seems to be required to handle
antimonotonic functions well.
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Current events

"Marie Curie IEF Project: Bilattices meet d-frames” by Umberto
Rivieccio and Achim Jung:

http://www.cs.bham.ac.uk/~rivieccu/bmdf.html

25th European Summer School in Logic, Language and
Information (ESSLLI 2013), Heinrich Heine University, Diisseldorf,
Germany, August 5-16, 2013. Course “From bilattices to d-frames”

by Umberto Rivieccio and Achim Jung (Logic and Computation,
Advanced). See Week 1 Slot 4 at:

http://essl11i2013.de/schedule/
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Semantics of probabilistic programs

Dexter Kozen. Semantics of probabilistic programs. Journal of
Computer and System Sciences. 22 (3), 1981, pp. 328-350.

Programs are understood as transformers of probability
distributions over spaces of input data.

Kozen finds it convenient to generalize to transformers of signed
measures over spaces of input data, which introduces vector spaces
and makes it applicable to our situation.
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Hahn-Jordan decomposition

Every signed measure p has unique decomposition into the
difference of positive measures ™ and p~, such that there is no
set A with both ™ (A) and p~(A) being non-zero: = ™ — ™.

The total variation norm, ||| = supa ™ (A) + supg ™ (B), makes
the space of measures with bounded ||u|| a Banach space.
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Partial order on the space of signed measures

One takes positive measures as the positive cone in this space.
Our partial order: v < p iff u — v is a positive measure.

This is a vector lattice (a Riesz space) and a Banach space, so
people call this a Banach lattice.
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Bilattice pattern on the space of signed measures

pt = V0 (0is the zero measure)
—p~ =puA0

There are two ways to think about = pu* — ™.

We can just say that u = put + (—u~) looks sufficiently similar to
our earlier formulas to constitute a bilattice pattern.

Or we can define v C p if v < u™ and v~ < ™, and then
pw=pt U (—p"), and then it is obviously a bilattice pattern.

(Note: Matthew Ginsberg denotes LI as + (and T as L, while
denoting L as u) which might lead to extra confusion here).
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Probabilistic semantics via linear operators

Denotations of programs are taken to be continuous linear
operators on a Banach space of signed measures with finite norms.

Probabilistic power domain is embedded into the positive cone,
and < plays the role of Scott's C.

In general, constructions from denotational semantics can be
transferred from Scott domains into this setting, and one can
iterate them for higher types with what seem to be relatively mild
technical complications, although | am not aware of the limits
(meaning reflexive domains) having been studied in this setting.
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Distances between programs

On one hand, Anthony Seda and Maire Lane note that there is a
natural norm in this situation, which allows to define conventional
metric.

Anthony Seda, Mdire Lane. On continuous models of
computation: towards computing the distance between (logic)
programs. IWFM'03 Proceedings, 2003.

On the other hand, in this context, where everything is a function
of a measure, the popular constructions of partial metrics over
Scott domains which tend to be parametrized by measures look
quite natural (we tend to view their dependency from a measure as
an obstacle which needs to be overcome, but perhaps it is actually
a desirable feature).
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Possible worlds indexed by measures

A paper by William Wadge on intensional logic and data flow
programming explores various ways to index possible worlds:

William Wadge, Intensional Logic in Context, in Intensional
Programming II: based on the papers at Islip 99, Manolis
Gergatsoulis and Panos Rondogiannis, Eds., pp. 1-13, World
Scientific, 2000.

In our case, possible worlds would be indexed by measures, which
is quite attractive and feels natural (a world is distinguished by
how often one sees various things, and we do sampling to figure
out what kind of world we currently inhabit).
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More sophisticated applications?

The resulting setup does look promising for our chances to extend
various methods of applied math based on linear algebra and
functional analysis to spaces of programs.

Without claiming any real progress here, I'd like to sketch a tiny
bit which | seem to understand somewhat.
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Addition of programs

If 0 < o < 1, and we have programs P and Q denoting
transformers of positive measures p and g, and a generator
random of random real numbers uniformly distributed in [0, 1],
we know how to write a program denoting ap + (1 — a)gq.

Namely, the program is: if random < « then P else Q
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Computations with signed measures

We should compute separately for positively and negatively valued
components.

If we do that, then taking the minus is done by simply swapping
components marked as positive with components marked as
negative.

In particular, if we consider sampling-based probabilistic
programming (e.g. MCMC-based engines, one can think about
them as an unusual form of data flow programming languages),
these two-component computations seem natural.
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Retina computes with positive and negative components

To illustrate the last point | conclude with an example from:
David Marr, Vision, 1982.

One of the more important functions of retina is computing the
convolution of various filters of the form V2G with the intensity of
light. Here V2 is the Laplacian, 92/0x? 4+ 0?/0y?, and G is the

X"+
2D Gaussian depending on o, e 207 . Ignoring the differences

between individual photons one can intepret the light intensity
distribution as the probability distribution for where the next
photon would hit.
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Experimental data from Marr
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