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Electronic coordinates

These slides are linked from my page on partial inconsistency and
vector semantics of programming languages:

http://www.cs.brandeis.edu/∼bukatin/partial inconsistency.html

E-mail:

bukatin@cs.brandeis.edu
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Partial inconsistency landscape

Negative distance/probability/degree of set membership

Bilattices

Partial inconsistency

Non-monotonic inference

Bitopology

x = (x ∧ 0) + (x ∨ 0) or x = (x ∧ ⊥) t (x ∨ ⊥)

Scott domains tend to become embedded into vector spaces

Modal and paraconsistent logic and possible world models

Bicontinuous domains

The domain of arrows, DOp × D or COp × D
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Negative probability

Probabilistic powerdomain is embedded into the vector space of
signed measures [Kozen].

(Phase space formulation of quantum mechanics is based on
Wigner quasiprobability distribution.

It’s enough to have good cancellation properties, complex numbers
are not strictly necessary for this.)
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Warmus numbers

Start with interval numbers, represented by ordinary segments.

Add pseudosegments [a, b], such that b < a.

This corresponds to contradictory constraints, x ≤ b&a ≤ x .

The new set consists of segments and pseudosegments.

Addition: [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2].

True minus: −[a, b] = [−a,−b].

−[a, b] + [a, b] = [0, 0].

This gets us a group and a 2D vector space.
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True minus is antimonotonic

x v y ⇒ −y v −x .

True minus maps precisely defined numbers, [a, a], to precisely
defined numbers, [−a,−a].

Other than that, true minus maps segments to pseudosegments
and maps pseudosegments to segments.

In the bicontinuous setup, true minus is a bicontinuous function
from [R] to [R]Op (or from [R]Op to [R]).
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Multiple rediscoveries

Known under various names: Kaucher interval arithmetic, directed
interval arithmetic, generalized interval arithmetic, modal interval
arithmetic, interval algebraic extensions, etc.

First mention we know: M. Warmus, Calculus of Approximations.
Bull. Acad. Pol. Sci., Cl. III, 4(5): 253-259, 1956,
http://www.cs.utep.edu/interval-comp/warmus.pdf

A comprehensive repository of literature on the subject is
maintained by Evgenija Popova: The Arithmetic on Proper &
Improper Intervals (a Repository of Literature on Interval Algebraic
Extensions),
http://www.math.bas.bg/~epopova/directed.html
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From Cartesian to Hasse representation
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Partially inconsistent interval numbers as a domain of
arrows

[R] = R× ROp

(There is a tension between the group structure on R and [R] and the axioms
of domains requiring ⊥ and > elements which can be satisfied by restricting to
a segment of reals, or by adding −∞ and +∞. I am mostly being ambiguous
about this in this slide deck, but this is something to keep in mind.)
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Bitopology and d-frames

Achim Jung, M. Andrew Moshier. On the bitopological nature of
Stone duality. Technical Report CSR-06-13. School of Computer
Science, University of Birmingham, December 2006, 110 pages.
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d-frame for the (lower, upper) bitopology on R

d-frame elements are pairs 〈L,U〉 of open rays, 〈(−∞, a), (b,+∞)〉
(a and b are allowed to take −∞ and +∞ as values).

Non-overlapping pairs of open rays are consistent (a ≤ b),
overlapping pairs of open rays (b < a) are total.
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Correspondence with partially inconsistent interval numbers

The bilattice isomorphism between d-frame elements and partially
inconsistent interval numbers with “infinity crust”:
〈(−∞, a), (b,+∞)〉 corresponds to a partially inconsistent interval
number [a, b].

Consistent, i.e. non-overlapping, pairs of open rays (a ≤ b)
correspond to segments. Total, i.e. covering the whole space, pairs
of open rays (b < a) correspond to pseudosegments.
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Monotonic evolution of Warmus numbers by additions

Consider x v (x + x1) v (x + x1 + x2) v . . .

Then every xi = [ai , bi ] must be a pseudo-segment
anti-approximating zero:

[0, 0] v [ai , bi ], that is bi ≤ 0 ≤ ai .
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Logic for fuzzy paraconsistent mathematics

Traditional fuzzy math: logic based on [0, 1].

Paraconsistent math: logic based on the 4-valued bilattice.

Fuzzy paraconsistent math: logic based on the bilattice of
Warmus numbers (probably within [0,1] or within [-1,1], or all reals
with added “infinity crust”).
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References

Section 4 of Bukatin and Matthews, Linear models of computation
and program learning, GCAI 2015, EasyChair Proceedings in
Computing, 36, pages 66–78, 2015,
http://easychair.org/publications/download/Linear_

Models_of_Computation_and_Program_Learning

Slides of my November 2014 talk at Kent State University:
http://www.cs.brandeis.edu/~bukatin/

PartialInconsistencyProgressNov2014.pdf
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Kozen denotational semantics

One can think about probabilistic programs as transformers from
the probability distributions on the space of inputs to the
probability distributions on the space of outputs.

It is fruitful to replace the space of probability distributions by the
space of signed measures (containing the probabilistic
powerdomain).

D. Kozen, Semantics of Probabilistic Programs, Journal of
Computer and System Sciences 22 (3), 328–350 (1981)

17 / 42



Partial inconsistency landscape
Linear models of computation

Recurrent neural networks
Dataflow matrix machines

Denotational semantics
Operational semantics

Open problem: domain equations

First steps towards higher-order theory are made in [Kozen,
Semantics of Probabilistic Programs] and also in [Keimel,
Bicontinuous Domains and Some Old Problems in Domain Theory].

However, in this context I have not seen anything coming close to
the solution of domain equations, such as D ∼= [D → D].

If one follows the approach by Kozen, where programs denote
linear operators, and if one focuses on reversible programs, what
seems to be called for here is applicative representation theory.
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Denotational semantics vs operational semantics

Denotational semantics: it is not clear how to pull the
constructions made in the spaces of meanings back to the realm of
programs in the ways which would be computationally effective.

To address this problem let’s focus on operational semantics,
namely on software architectures which allow to take linear
combinations of actual computational processes, rather than just
of program meanings.
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Denotational semantics
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Sampling semantics and generalized animations

Linear streams: streams admitting the notion of linear
combination of several streams.

Two years ago we considered two classes of linear streams:
streams of samples from probability distributions (actually, from
signed measures, so that we can have negative coefficients in our
linear combinations) and generalized animations.

Since that time our group achieved the following progress.
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Programming with linear streams: progress in 2015-2016

Dataflow matrix machines (DMMs) are a powerful
generalization of recurrent neural networks.

Large classes of dataflow programs were parametrized by
matrices of numbers. http://arxiv.org/abs/1601.01050

Recurrent neural networks are an important partial case of
that. http://arxiv.org/abs/1603.09002

Streams of matrices defining the network allow for
self-referential facilities and self-modifying networks.
http://arxiv.org/abs/1605.05296

DMMs seem to be a powerful programming platform, unlike
recurrent neural networks.
http://arxiv.org/abs/1606.09470
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Recurrent neural networks - the core part

A finite set of neurons indexed by i ∈ I .

”Two-stroke engine”:

”Up movement”: for all i , yi := f (xi ).

”Down movement”: for all i , xi :=
∑

j∈I wij ∗ yj .

(wij) is the matrix of weights.
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”The unreasonable effectiveness of recurrent neural
networks”

Andrej Karpathy (PhD student at Stanford):

http:

//karpathy.github.io/2015/05/21/rnn-effectiveness/
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Rectifier

It was typical to use sigmoid non-linearities as f , but a few years
ago people discovered that ReLU (rectified linear units) tend to
work much better: f (x) = max(0, x).

This is an integral of the Heaviside step function. Lack of
smoothness at 0 does not seem to interfere with gradient methods,
and otherwise it’s nice when the derivatives are so simple.

Strangely enough, our standard quasi-metrics on reals are closely
related to ReLU:

q1(x , y) = f (x − y) = q2(y , x).
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Problem of vanishing gradients

The training only started to work well after people figured out how
to fight the problem of vanishing gradients.

LSTM (original flavor): 1997.

A lot of options now, including a variety of LSTM flavors and
other schemas. For a nice compact overview see this paper from
Nanjing University: Guo-Bing Zhou, Jianxin Wu, Chen-Lin Zhang,
Zhi-Hua Zhou, Minimal Gated Unit for Recurrent Neural Networks.
http://arxiv.org/abs/1603.09420
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Convergence problems

Convergence of methods for solving optimization problems during
training of recurrent neural nets is tricky, and is not so much
science, but feels more like a black art.

To get a flavor of it, see this nicely written paper: Matthew Zeiler,
ADADELTA: An Adaptive Learning Rate Method.
https://arxiv.org/abs/1212.5701

The available selection of optimization methods is huge.
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Boom in various flavors of neural nets

Explosion of research in neural nets and of industrial adoption.

NIPS conference: 1600 submitted papers last year, 2600 submitted
papers this year.

DeepMind (London) publishes a lot of very interesting papers in
this field: https://deepmind.com/publications

Etc, etc...
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Dataflow matrix machines as a generalization of RNNs

Arbitrary linear streams.

A finite or countable collection of available kinds of linear
streams.

A finite or countable collection of neuron types.

Each neuron type:

a nonnegative input arity,

a nonnegative output arity,

a particular kind of linear streams is associated with each
input and each output,

a particular built-in stream transformation.
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Dataflow matrix machines as a generalization of RNNs

Countable collection of neurons of each type.

Hence countable number of inputs xi and outputs yj .

Take countable matrix of weights with finite number of non-zero
elements, and in particular make sure that wij can be non-zero only
if the same kind of linear streams is associated with xi and yj .

Only neurons with at least one nonzero input or output weight are
active, otherwise we keep them silent and treat their outputs as
zeros. Hence only a finite number of neurons are active.
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”Two-stroke engine”

”Up movement”: for all active neurons C ,
y1,C , ..., yn,C := fC (x1,C , ..., xm,C ).

n, m, and fC correspond to the type of the neuron C .

”Down movement”: for all inputs i having non-zero weights
associated with them, xi :=

∑
{j | wij 6=0} wij ∗ yj .
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Self-referential facilities

Allow the kind of linear streams of countably-sized matrices (wij)
with finite number of non-zero elements.

Introduce neuron Self having a stream of matrices (wij) on its
output and use the current last value of that stream as the network
matrix (wij) during the computations on each ”down movement”:

xi :=
∑

{j | wij 6=0} wij ∗ yj .
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Self-referential facilities

In the preprints above, Self has a single input taking the same
kind of stream of matrices and the identity transformation of
streams, so it just passes its input through.

Its output is connected with weight 1 to its input, hence it is
functioning as an accumulator of additive contributions of other
neurons connected to its input with non-zero weights.
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Self-referential facilities

Now we think, it is more convenient to have two separate inputs
for Self, xW and x∆W , connect the output of Self yW to xW
with weight 1, take additive contribution from other neurons at the
x∆W input, and compute xW + x∆W on the ”up movement”.

This is the mechanism we propose as a replacement of untyped
lambda-calculus for dataflow matrix machines.

If we limit ourselves to one kind of linear streams, namely streams
of matrices (wji ), we obtain the ”moral equivalent” of
programming within pure untyped lambda-calculus.
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RNNs as a general-purpose programming platform

RNNs are Turing-universal.

However they are not a convenient general-purpose programming
language, but belong to the class of

https:

//en.wikipedia.org/wiki/Esoteric_programming_language

and

https://en.wikipedia.org/wiki/Turing_tarpit

together with many other elegant and useful Turing-universal
systems such as Conway’s Game of Life and LaTeX.
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DMMs as a general-purpose programming platform

DMMs are much more powerful than RNNs:

arbitrary linear streams

neurons with multiple input arity

selection of convenient built-in transformations

friendliness of DMMs towards sparse vectors and matrices

self-referential facilities

approximate representations of infinite-dimensional vectors
(samples from probability distributions and signed measures)
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DMMs as a general-purpose programming platform

Representing characters as vectors: “1-in-N” representation is
standard in RNNs.

Take the alphabet as the basis, represent characters as vectors with
1 at the corresponding coordinate, and zeros at all others.

Sparse arrays are extremely important here, especially for large
alphabets like Unicode (100,000+ characters).
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DMMs as a general-purpose programming platform

Multiple inputs allow us to program via multiplicative masks,
which can dynamically turn on and off, attenuate and amplify parts
of the network.

By turning parts of the network on and off one can implement
conditionals, redirect flows of data within the network, and
precisely orchestrate coordination.
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DMMs as a general-purpose programming platform

The lack of neurons with identity transform in usual RNNs is
incredibly inconvenient, because one needs them for accumulators,
leaky accumulators, and more.

We don’t have this problem in DMMs.
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DMMs as a general-purpose programming platform

We did some experimental work on sketching a programming
language to interactively update a DMM while its running.

We try to follow the following informal principle:

Principle of self-referential completeness of the DMM signature
relative to the language available to describe and edit the DMMs.

(DMM signature = available kinds of linear streams and types of
neurons.)

The principle states that for all updates one can do in the
language, one should be able to accomplish those updates by
triggering appropriate neurons producing additive changes to Self.
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DMMs as a general-purpose programming platform

More details in preprints:

Michael Bukatin, Steve Matthews, Andrey Radul, Dataflow matrix
machines as programmable, dynamically expandable,
self-referential generalized recurrent neural networks,
http://arxiv.org/abs/1605.05296

Michael Bukatin, Steve Matthews, Andrey Radul, Programming
patterns in dataflow matrix machines and generalized recurrent
neural nets, http://arxiv.org/abs/1606.09470

This is just a start, a lot of further work is required...
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Initial open-source prototypes

https://github.com/anhinga/fluid
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