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1. Introduction

”(some) generalized distances = (some) gen-

eralized equalities”

The axioms for partial metrics with values in

quantales coincide with the axioms for Q-sets

(M-valued sets, sets with fuzzy equality, quantale-

valued sets) for commutative quantales.

Ω-sets correspond to the case of partial ultra-

metrics.

Partial metrics usually occur in context of do-

mains for denotational semantics, and quantale-

valued sets usually occur in context of sheaves.
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Domains for denotational semantics and sheaves

are two different (but related in spirit) ap-

proaches to the theory of partially defined ele-

ments.

Both approaches have applications to computabil-

ity in analysis. E.g. domains were used by

Edalat to handle Riemann integrals of func-

tions defined on fractals, and then by many

scientists to talk about computability of vari-

ous structures in analysis.

The authors of the present paper come from

the domain side. Therefore, speaking about

applications of sheaves to computability in anal-

ysis I should mention, for example, the connec-

tions between realizability toposes and recur-

sive analysis without claiming to understand

them at this point.
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”Common origins” (in some sense).

The seminal paper by Dana Scott, ”Contin-

uous Lattices”, which many people consider

to be the ”official” start of domain theory was

published in a volume of Springer Lecture Notes

in Mathematics essentially dedicated to sheaves:

”Toposes, Algebraic Geometry and Logic”,

LNM, v.274, 1972

The approach to sheaves based on Ω-sets also

originated with Dana Scott (and Michael Four-

man, and also Denis Higgs).
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Nevertheless, domains and sheaves are usually

treated as technically unrelated for a number

of reasons. Not many articles and books men-

tion them together.

A notable exeption here is synthetic domain

theory. I am not sufficiently familiar with this

theory yet to elaborate.

The observation I am presenting today might

enable further interesting interactions between

domains and sheaves.
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To summarize the introduction

The theory of generalized distances without

the axiom p(x, x) = 0, known as partial met-

rics, is closely related to the ”domains ap-

proach”.

The theory of generalized equalities, namely

non-reflexive equalities with values in complete

Heyting algebras and quantales, is closely re-

lated to the ”sheaves approach”.

We observe that the axioms for partial metrics

with values in quantales coincide with the ax-

ioms for quantale-valued sets for commutative

quantales.

In other words, generalized symmetric non-reflexive

distances and generalized equalities (quantale-

valued fuzzy equalities) coincide.
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2. Partial metrics

The generalized distances without the axiom

p(x, x) = 0 in the context of analyzing dead-

lock in lazy data flow computations were stud-

ied by Steve Matthews in his Ph.D. thesis.

Then certain axioms regaining some of what

is lost by dropping p(x, x) = 0 were added,

namely, small self-distances, p(x, x) ≤ p(x, y),

and the sharpened form of triangular equality,

p(x, z) ≤ p(x, y) + p(y, z) − p(y, y), introduced

by Steve Vickers.
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Michael Bukatin and Joshua Scott studied gen-

eralized distances on Scott domains and noted

that axiom p(x, x) = 0 is incompatible with

Scott continuity (or computability) of distances

in question. It should be noted that in the

similar fashion the axiom x = x, which can be

rewritten as Eq(x, x) = true, prevents the tra-

ditional equality from being Scott continuous

(or computable).

Because Bukatin and Scott were interested in

Scott continuity of the resulting distances and,

hence, needed monotonicity, their domain of

numbers was the set of non-negative reals (with

added +∞) with the reverse order: 0 was the

largest element, and +∞ was the smallest.
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However, the traditional view of 0 as the small-

est possible distance remained more prevalent

in the partial metrics research community, and

when Ralph Kopperman, Steve Matthews, and

Homeira Pajoohesh generalized partial metrics

so that they would take their values in quan-

tales rather than in non-negative reals, the ax-

ioms looked as follows.
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The quantale V in question was a complete

lattice with an associative and commutative

operation +, distributed with respect to the

arbitrary infima. The unit element was the

bottom element 0. The right adjoint to the

map b 7→ a + b was defined as the map b 7→
b −̇ a =

∧
{c ∈ V |a + c ≥ b}. Certain additional

conditions were imposed.

The axioms for a partial pseudometric

(V -pseudopmetric) p : X ×X → V were

• p(x, x) ≤ p(x, y)

• p(x, y) = p(y, x)

• p(x, z) ≤ p(x, y) + (p(y, z) −̇ p(y, y))
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3. Quantale-valued sets

Ω-sets were introduced by Michael Fourman

and Dana Scott (cf. also Denis Higgs). If Ω

is a complete Heyting algebra, an Ω-set A is

a set equipped with an Ω-valued generalized

equality, E : A × A → Ω, subject to axioms

E(a, b) = E(b, a) and E(a, b) ∧E(b, c) ≤ E(a, c).

Fourman and Scott also introduced a mech-

anism of singletons, which was used to de-

fine the notion of complete Ω-set and to es-

tablish that complete Ω-sets and sheaves over

complete Heyting algebra Ω are essentially the

same thing.

[see Fourman M. P., D. S. Scott, Sheaves

and Logic, in “Applications of Sheaf Theory

to Algebra, Analysis, and Topology,” Lecture

Notes in Mathematics, 753, Springer, 1979,

pp. 302–401.]
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Returning to partial metrics, from the sym-

metry and the ultrametric triangle inequality,

p(x, z) ≤ max(p(x, y), p(y, z)), one can obtain

p(x, x) ≤ max(p(x, y), p(y, x)) = p(x, y).

p(x, z) ≤ max(p(x, y), p(y, z)) means p(x, z) ≤
p(x, y) or p(x, z) ≤ p(y, z). Consider p(x, z) ≤
p(x, y). We know that p(y, y) ≤ p(y, z), so

p(x, z)+p(y, y) ≤ p(x, y)+p(y, z), and we obtain

the Vickers form of triangle inequality. Con-

sider p(x, z) ≤ p(y, z). We know that p(y, y) ≤
p(x, y), and we again obtain p(x, z) + p(y, y) ≤
p(x, y) + p(y, z).

So utrametrics without axiom p(x, x) = 0 obey

both extra axioms of partial metrics. This jus-

tifies the term partial ultrametrics and also

tells us that we should consider Ω-equality as

partial ultrametric with more general values

than non-negative reals.
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This motivated our search in the literature for

generalizations of Ω-equality beyond complete

Heyting algebras.

[Wagner, K. R., “Solving Recursive Domain

Equations with Enriched Categories,” Ph.D.

thesis, School of Computer Science, Carnegie

Mellon University, Pittsburg, 1994.]

[Wyler O., “Lecture Notes on Topoi and Qua-

sitopoi,” World Scientific Publishing Company,

1991.]

[Höhle U., M-valued sets and sheaves over in-

tegral, commutative cl-monoids, in S.E. Rod-

abaugh et al, editors, “Applications of Cate-

gory Theory to Fuzzy Subsets,” Kluwer Aca-

demic Publishers, Dordrecht, Boston, London,

1992, pp. 33–72.]
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Ulrich Höhle was motivated by the need to give

solid foundation to fuzzy set theory (and, in

particular, to the uses of such logical systems

as Lukasiewicz logic). His definition of an M-

valued set looked as follows.
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The quantale V in question was a complete

lattice with an associative and commutative

operation ∗, distributed with respect to the ar-

bitrary suprema. The unit element was the

top element 1. The right adjoint to the map

b 7→ a ∗ b was defined as the map b 7→ a ⇒ b =∨
{c ∈ V |a∗c ≤ b}. Certain additional conditions

were imposed.

An M-valued set was a set X equipped with a

map E : X ×X → M subject to the axioms

• E(x, y) ≤ E(x, x) ∧ E(x, y)

• E(x, y) = E(y, x)

• E(x, y) + (E(y, y) ⇒ E(y, z)) ≤ E(x, z)
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It is easy to see that the only difference be-

tween an M-valued set and a set with a V -

pseudopmetric, besides the particular restric-

tions imposed on the quantale, is in notation:

multiplicative vs. additive, the adjoint opera-

tion is denoted differenty and the order of its

arguments is switched, and the quantale order

is reversed.

So the notions of an M-valued set and a set

with a V -pseudopmetric coincide.

This is the main observation we would like to

communicate today.
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Further observations

An M-valued set is called separated iff the ax-

iom

E(x, x) ∨ E(y, y) ≤ E(x, y) implies x = y

holds. It’s easy to see that this is equivalent

to the separation axiom, making partial pseu-

dometric p into a partial metric (V -pmetric):

∀x, y ∈ X. x = y iff p(x, y) = p(x, x) = p(y, y).

There are further parallels, e.g. similar extra

conditions on quantales are imposed and stud-

ied, such as existence of halves in V vs. exis-

tence of square roots in M , etc, etc.
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We should also say that Höhle provides a gen-

eralization of singletons (Fourman, Scott) and

and develops a comprehensive theory relating

M-sets to a version of sheaves.

For the current state of the quantale-valued

sets, including generalizations to non-commutative

quantales, see

Höhle U., “Sheaves and quantales,” Preprint

http://www.math.uni-wuppertal.de/∼hoehle/publications/preprints.html

and references therein.
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4. Some applications

I’ll mention two small applications today, one

on the sheaf side, and one on the domain side.

Starting with the sheaf side:

If Ω is a complete Heyting algebra, an Ω-set A

is a set equipped with an Ω-valued generalized

equality, E : A × A → Ω, subject to axioms

E(a, b) = E(b, a) and E(a, b) ∧E(b, c) ≤ E(a, c).

Consider

F (a, b) = (E(a, a) ⇒ E(a, b))∧(E(b, b) ⇒ E(a, b)).

This is also an Ω-equality, and moreover (A, F )

is a global Ω-set: F (a, a) is the top element of

Ω for all a. Basically, F is not just a quantale-

valued partial ultrametric, but a quantale-valued

ultrametric.
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Given a presheaf A of sets over a complete

Heyting algebra Ω, one can define an Ω-equality

E(a, b) =
∨
{p ∈ Ω | a � p = b � p}

E(a, b) =
∨
{p ≤ E(a) ∧ E(b) | a � p = b � p}

and then define a quantale-valued ultrametric

F as above.

Consider p ≤ q ∈ Ω. Then the restriction map

from {a ∈ A | E(a, a) = q} to {a ∈ A | E(a, a) =

p} is a non-expansive map with respect to F .

So A becomes a presheaf of quantale-valued

ultrametric spaces with non-expansive maps as

morphisms.
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An ”application” on the domain side:

The question often arises: what is the right

notion of morphism in a given context. E.g.

for metric spaces, should one consider all con-

tinuous maps, or just non-expansive maps, etc.

The sheaf analogy suggests that the category

of partial metrics with values in a given quan-

tale and weight-preserving non-expansive maps

is an interesting category to consider.
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