Michael Bukatin

Partial Metrics, Fuzzy Equalities, and Metric-Entropy Pairs

June 2009

Slides for this talk:

 $\tt http://www.cs.brandeis.edu/\sim bukatin/partial-metrics-talk-jun-2009.pdf$

E-mail:

bukatin@cs.brandeis.edu

Mathematics of partially defined elements.

Generalized distances: instead of p(x, x) = 0axiom, value p(x, x) expresses how far x is from being completely defined.

Generalized equalities: instead of x = x being always true, value = (x, x) expresses how well defined x is.

$$p(y,y)+p(x,z) \le p(x,y)+p(y,z)$$
$$p(x,z) \le p(x,y)+p(y,z)-p(y,y)$$

$$q(x,y) = p(x,y) - p(x,x)$$
$$d(x,y) = q(x,y) + q(y,x) = 2p(x,y) - p(x,x) - p(y,y)$$

1. Semantics of programming languages. Generalized metrization of non-Hausdorff topologies.

- 2. Sheaves and fuzzy sets.
- 3. Entropy of partitions.

1. Semantics of programming languages. Generalized metrization of non-Hausdorff topologies. Partial metrics.

- 2. Sheaves and fuzzy sets. Fuzzy equalities.
- 3. Entropy of partitions. Metric-entropy pairs.

 Semantics of programming languages.
Generalized metrization of non-Hausdorff topologies. Partial metrics.
Measuring common information.

2. Sheaves and fuzzy sets. Fuzzy equalities.

3. Entropy of partitions. Metric-entropy pairs. Measuring common information.

Semantics of programming languages.
Dana Scott

Sheaves and fuzzy sets. Fuzzy equalities.
Dana Scott

3. Entropy of partitions. Metric-entropy pairs.

Example: interval numbers

Consider segments [a, b] and [c, d].

Define the distance between them as

max(b,d) - min(a,c).

Example: partially defined functions

The degree of equality of two functions f and g is the interior of $\{x \in X \mid f(x) = g(x)\}$.

Domains for denotational semantics

(Dana Scott)

Partial order, Scott topology, Scott continuous functions.

Sierpinski space: the domain for void

Two-element space: {undefined, result}

Using Sierpinski space as an example:

"Tobin Bridge distance" vs. partial metric Both allow us to define Scott topology. Only partial metric is Scott continuous.

Partial metrics via measures of common information

Define C_x as a closed set of all segments, containing segment x, and I_x as an open set of all segments, not intersecting with segment x.

We can informally think, that C_x represents all positive information known about x, and I_x represents all negative information known about x, i.e. such information which cannot become true when the partially defined number x gets defined better.

Observe, that for totally defined numbers, x = [a, a] and y = [b, b], upper and lower bounds coincide, and a classical metric results.

Steve Matthews: partial metrics

p(x,y) = p(y,x) (symmetry)

 $p(x,x) = p(x,y) = p(y,y) \Rightarrow x = y$

 $p(x,x) \le p(x,y)$ (small self-distance)

 $p(y,y)+p(x,z) \le p(x,y) + p(y,z)$ (strong triangularity aka **Vickers' triangularity**)

late 1980s – early 1990s (originally came from the need to prove the absence of deadlock in lazy data-flow)

http://partialmetric.org

Weighted quasi-metrics

Non-negative weight w(x)

$$w(x) + q(x, y) = w(y) + q(y, x)$$

Given partial metric p(x, y), we define:

$$q(x,y) = p(x,y) - p(x,x)$$
 and $w(x) = p(x,x)$.

Given a weighted quasi-metric (q, w) we define:

$$p(x,y) = w(x) + q(x,y) = w(y) + q(y,x).$$

Weighted metrics

Non-negative weight w(x)

$$w(x) - w(y) \le d(x, y)$$

Given partial metric p(x, y), we define:

$$d(x,y) = q(x,y)+q(y,x) = 2p(x,y) - p(x,x) - p(y,y)$$

and $w(x) = p(x,x)$.

Given a weighted metric (d, w) we define:

$$p(x,y) = \frac{d(x,y) + w(x) + w(y)}{2}.$$

Metrics with the base point

Application: approximating classical metrics

 Ω -sets

 $\Omega\text{-valued}$ fuzzy equalities

D.Scott, M.Fourman, D.Higgs (1970s)

Ω – complete Heyting algebra

complete lattice, \sqsubseteq

for all a, b, there is greatest x, denoted as $a \rightarrow b$, such that $a \wedge x \sqsubseteq b$.

A topology is a typical complete Heyting algebra: $\sqsubseteq = \subseteq$, $\land = \& = \cap$, $U \rightarrow V = Int(V \cup \overline{U})$.

 Ω -valued fuzzy equality: $E: A \times A \rightarrow \Omega$

Axioms:

E(a,b) = E(b,a)

 $E(a,b) \wedge E(b,c) \sqsubseteq E(a,c)$

Partial ultrametrics, $p(x, z) \le max(p(x, y), p(y, z))$, can be viewed as fuzzy equalities.

 $[0, +\infty]$ can be thought of as the Scott topology on positive reals.

 $\sqsubseteq = \subseteq = \ge$ (order is reversed)

Fourman and Scott also introduced a mechanism of *singletons*, which was used to define the notion of *complete* Ω -*set* and to establish that complete Ω -sets and sheaves over complete Heyting algebra Ω are essentially the

same thing.

[see Fourman M. P., D. S. Scott, *Sheaves and Logic*, in "Applications of Sheaf Theory to Algebra, Analysis, and Topology," Lecture Notes in Mathematics, **753**, Springer, 1979, pp. 302–401.]

Quantale-valued partial metrics

R.Kopperman, S.Matthews, H.Pajoohesh (2004)

The quantale V is a complete lattice with an associative and commutative operation +, distributed with respect to the arbitrary infima. The unit element is the bottom element 0. The right adjoint to the map $b \mapsto a + b$ is defined as the map $b \mapsto b - a = \bigwedge \{c \in V | a + c \ge b\}$. Certain additional conditions are imposed.

The axioms for a partial pseudometric (V-pseudopmetric) $p: X \times X \rightarrow V$ are

- $p(x,x) \leq p(x,y)$
- p(x,y) = p(y,x)
- $p(x,z) \leq p(x,y) + (p(y,z) p(y,y))$

Quantale-valued sets

Quantale-valued fuzzy equalities

Ulrich Hoehle (early 1990s)

The quantale M is a complete lattice with an associative and commutative operation *, distributed with respect to the arbitrary suprema. The unit element is the top element 1. The right adjoint to the map $b \mapsto a * b$ is defined as the map $b \mapsto a \Rightarrow b = \bigvee \{c \in V | a * c \sqsubseteq b\}$. Certain additional conditions are imposed.

An *M*-valued set is a set *X* equipped with a map $E: X \times X \rightarrow M$ (**fuzzy equality**) subject to the axioms

- $E(x,y) \sqsubseteq E(x,x)$
- E(x,y) = E(y,x)
- $E(x,y) * (E(y,y) \Rightarrow E(y,z)) \sqsubseteq E(x,z)$

We noticed the equivalence between partial metrics and fuzzy equalities in 2006:

 $\tt http://www.cs.brandeis.edu/\sim bukatin/distances_and_equalities.html$

Metric-entropy pairs

Dan Simovici

Metric-Entropy Pairs on Lattices, Journal of Universal Computer Science (Springer-Verlag), vol. **13**, no.11, 2007, pp. 1767-1778

http://www.cs.umb.edu/~dsim/papersps/de.pdf

Definition 1, formula (1): The pair (d,η) is a \wedge -pair if $d(x,y) = 2\eta(x \wedge y) - \eta(x) - \eta(y)$.

Theorem 4, formula (3): Given a \wedge -pair (d, η) , axiom $d(x, y) \leq d(x, z) + d(z, y)$ holds if and only if $\eta(z) + \eta(x \wedge y) \leq \eta(x \wedge z) + \eta(y \wedge z)$ for all x, y, z.

Section 3. Conditional function of a \wedge -pair (d,η) is defined as $\kappa(x,y) = \eta(x \wedge y) - \eta(y)$.

Consider $p(x, y) = \eta(x \wedge y)$.

Then $p(x,x) = w(x) = \eta(x)$.

We also have $\kappa(x,y) = q(y,x)$.