Michael Bukatin

Partial Metrics, Fuzzy Equalities, and Metric-Entropy Pairs

June 2009

Slides for this talk:
http://www.cs.brandeis.edu/~bukatin/partial-metrics-talk-jun-2009.pdf E-mail:
bukatin@cs.brandeis.edu

Mathematics of partially defined elements.

Generalized distances: instead of $p(x, x)=0$ axiom, value $p(x, x)$ expresses how far x is from being completely defined.

Generalized equalities: instead of $x=x$ being always true, value $=(x, x)$ expresses how well defined x is.

$$
\begin{aligned}
& p(y, y)+p(x, z) \leq p(x, y)+p(y, z) \\
& p(x, z) \leq p(x, y)+p(y, z)-p(y, y)
\end{aligned}
$$

$$
q(x, y)=p(x, y)-p(x, x)
$$

$$
d(x, y)=q(x, y)+q(y, x)=2 p(x, y)-p(x, x)-p(y, y)
$$

1. Semantics of programming languages. Generalized metrization of non-Hausdorff topologies.
2. Sheaves and fuzzy sets.
3. Entropy of partitions.
4. Semantics of programming languages. Generalized metrization of non-Hausdorff topologies. Partial metrics.
5. Sheaves and fuzzy sets. Fuzzy equalities.
6. Entropy of partitions. Metric-entropy pairs.
7. Semantics of programming languages. Generalized metrization of non-Hausdorff topologies. Partial metrics.
Measuring common information.
8. Sheaves and fuzzy sets. Fuzzy equalities.
9. Entropy of partitions. Metric-entropy pairs. Measuring common information.
10. Semantics of programming languages. Dana Scott
11. Sheaves and fuzzy sets. Fuzzy equalities. Dana Scott
12. Entropy of partitions. Metric-entropy pairs.

Example: interval numbers

Consider segments $[a, b]$ and $[c, d]$.

Define the distance between them as

$$
\max (b, d)-\min (a, c) .
$$

Example: partially defined functions

The degree of equality of two functions f and g is the interior of $\{x \in X \mid f(x)=g(x)\}$.

Domains for denotational semantics

(Dana Scott)

Partial order, Scott topology, Scott continuous functions.

Sierpinski space: the domain for void Two-element space: \{undefined, result $\}$

Using Sierpinski space as an example:
"Tobin Bridge distance" vs. partial metric

Both allow us to define Scott topology.

Only partial metric is Scott continuous.

Partial metrics via measures of common information

Define C_{x} as a closed set of all segments, containing segment x, and I_{x} as an open set of all segments, not intersecting with segment x.

We can informally think, that C_{x} represents all positive information known about x, and I_{x} represents all negative information known about x, i.e. such information which cannot become true when the partially defined number x gets defined better.

$[A, A]$

Observe, that for totally defined numbers, $x=$ $[a, a]$ and $y=[b, b]$, upper and lower bounds coincide, and a classical metric results.

$[A, A]$

Steve Matthews: partial metrics

$$
\begin{aligned}
& p(x, y)=p(y, x) \text { (symmetry) } \\
& p(x, x)=p(x, y)=p(y, y) \Rightarrow x=y \\
& p(x, x) \leq p(x, y) \quad \text { (small self-distance) }
\end{aligned}
$$

$p(y, y)+p(x, z) \leq p(x, y)+p(y, z)$ (strong triangularity aka Vickers' triangularity)
late 1980s - early 1990s (originally came from the need to prove the absence of deadlock in lazy data-flow)
http://partialmetric.org

Weighted quasi-metrics

Non-negative weight $w(x)$
$w(x)+q(x, y)=w(y)+q(y, x)$

Given partial metric $p(x, y)$, we define:

$$
q(x, y)=p(x, y)-p(x, x) \text { and } w(x)=p(x, x)
$$

Given a weighted quasi-metric (q, w) we define:

$$
p(x, y)=w(x)+q(x, y)=w(y)+q(y, x)
$$

Weighted metrics

Non-negative weight $w(x)$
$w(x)-w(y) \leq d(x, y)$

Given partial metric $p(x, y)$, we define:

$$
\begin{aligned}
& d(x, y)=q(x, y)+q(y, x)=2 p(x, y)-p(x, x)-p(y, y) \\
& \text { and } w(x)=p(x, x)
\end{aligned}
$$

Given a weighted metric (d, w) we define:

$$
p(x, y)=\frac{d(x, y)+w(x)+w(y)}{2} .
$$

Metrics with the base point

Application: approximating classical metrics

Ω-sets
Ω-valued fuzzy equalities
D.Scott,M.Fourman,D.Higgs (1970s)
Ω - complete Heyting algebra
complete lattice, \sqsubseteq
for all a, b, there is greatest x, denoted as $a \rightarrow b$, such that $a \wedge x \sqsubseteq b$.

A topology is a typical complete Heyting algebra: $\sqsubseteq=\subseteq, \wedge=\&=\cap, U \rightarrow V=\operatorname{Int}(V \cup \bar{U})$.
Ω-valued fuzzy equality: $E: A \times A \rightarrow \Omega$

Axioms:
$E(a, b)=E(b, a)$
$E(a, b) \wedge E(b, c) \sqsubseteq E(a, c)$

Partial ultrametrics, $p(x, z) \leq \max (p(x, y), p(y, z))$, can be viewed as fuzzy equalities.
$[0,+\infty]$ can be thought of as the Scott topology on positive reals.

$$
\sqsubseteq=\subseteq=\geq \text { (order is reversed) }
$$

Fourman and Scott also introduced a mechanism of singletons, which was used to define the notion of complete Ω-set and to establish that complete Ω-sets and sheaves over complete Heyting algebra Ω are essentially the same thing.
[see Fourman M. P., D. S. Scott, Sheaves and Logic, in "Applications of Sheaf Theory to Algebra, Analysis, and Topology," Lecture Notes in Mathematics, 753, Springer, 1979, pp. 302-401.]

Quantale-valued partial metrics

R.Kopperman, S.Matthews, H.Pajoohesh (2004)

The quantale V is a complete lattice with an associative and commutative operation + , distributed with respect to the arbitrary infima. The unit element is the bottom element 0 . The right adjoint to the map $b \mapsto a+b$ is defined as the map $b \mapsto b-a=\wedge\{c \in V \mid a+c \geq b\}$. Certain additional conditions are imposed.

The axioms for a partial pseudometric (V-pseudopmetric) $p: X \times X \rightarrow V$ are

- $p(x, x) \leq p(x, y)$
- $p(x, y)=p(y, x)$
- $p(x, z) \leq p(x, y)+(p(y, z)-p(y, y))$

Quantale-valued sets

Quantale-valued fuzzy equalities

Ulrich Hoehle (early 1990s)

The quantale M is a complete lattice with an associative and commutative operation $*$, distributed with respect to the arbitrary suprema. The unit element is the top element 1 . The right adjoint to the map $b \mapsto a * b$ is defined as the map $b \mapsto a \Rightarrow b=\bigvee\{c \in V \mid a * c \sqsubseteq b\}$. Certain additional conditions are imposed.

An M-valued set is a set X equipped with a map $E: X \times X \rightarrow M$ (fuzzy equality) subject to the axioms

- $E(x, y) \sqsubseteq E(x, x)$
- $E(x, y)=E(y, x)$
- $E(x, y) *(E(y, y) \Rightarrow E(y, z)) \sqsubseteq E(x, z)$

We noticed the equivalence between partial metrics and fuzzy equalities in 2006:

http://www.cs.brandeis.edu/~bukatin/distances_and_equalities.html

Metric-entropy pairs

Dan Simovici

Metric-Entropy Pairs on Lattices, Journal of Universal Computer Science (Springer-Verlag), vol. 13, no.11, 2007, pp. 1767-1778
http://www.cs.umb.edu/~dsim/papersps/de.pdf

Definition 1, formula (1): The pair (d, η) is a \wedge-pair if $d(x, y)=2 \eta(x \wedge y)-\eta(x)-\eta(y)$.

Theorem 4, formula (3): Given a \wedge-pair (d, η), axiom $d(x, y) \leq d(x, z)+d(z, y)$ holds if and only if $\eta(z)+\eta(x \wedge y) \leq \eta(x \wedge z)+\eta(y \wedge z)$ for all x, y, z.

Section 3. Conditional function of a \wedge-pair (d, η) is defined as $\kappa(x, y)=\eta(x \wedge y)-\eta(y)$.

Consider $p(x, y)=\eta(x \wedge y)$.
Then $p(x, x)=w(x)=\eta(x)$.

We also have $\kappa(x, y)=q(y, x)$.

