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Mathematics of partially defined elements.

Generalized distances: instead of p(x, x) = 0

axiom, value p(x, x) expresses how far x is from

being completely defined.

Generalized equalities: instead of x = x being

always true, value = (x, x) expresses how well

defined x is.
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p(y, y)+p(x, z) ≤ p(x, y) + p(y, z)

p(x, z) ≤ p(x, y) + p(y, z)−p(y, y)

q(x, y) = p(x, y)− p(x, x)

d(x, y) = q(x, y)+q(y, x) = 2p(x, y)− p(x, x)− p(y, y)
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1. Semantics of programming languages.

Generalized metrization of non-Hausdorff

topologies.

2. Sheaves and fuzzy sets.

3. Entropy of partitions.
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1. Semantics of programming languages.

Generalized metrization of non-Hausdorff

topologies. Partial metrics.

2. Sheaves and fuzzy sets. Fuzzy equalities.

3. Entropy of partitions. Metric-entropy pairs.
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1. Semantics of programming languages.

Generalized metrization of non-Hausdorff

topologies. Partial metrics.

Measuring common information.

2. Sheaves and fuzzy sets. Fuzzy equalities.

3. Entropy of partitions. Metric-entropy pairs.

Measuring common information.
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1. Semantics of programming languages.

Dana Scott

2. Sheaves and fuzzy sets. Fuzzy equalities.

Dana Scott

3. Entropy of partitions. Metric-entropy pairs.
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Example: interval numbers

Consider segments [a, b] and [c, d].

Define the distance between them as

max(b, d)−min(a, c).
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Example: partially defined functions

The degree of equality of two functions f and

g is the interior of {x ∈ X | f(x) = g(x)}.
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Domains for denotational semantics

(Dana Scott)

Partial order, Scott topology, Scott continuous

functions.
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Sierpinski space: the domain for void

Two-element space: {undefined, result}

11



Using Sierpinski space as an example:

“Tobin Bridge distance” vs. partial metric

Both allow us to define Scott topology.

Only partial metric is Scott continuous.
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Partial metrics via measures of common

information

Define Cx as a closed set of all segments, con-

taining segment x, and Ix as an open set of all

segments, not intersecting with segment x.
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We can informally think, that Cx represents

all positive information known about x, and

Ix represents all negative information known

about x, i.e. such information which cannot

become true when the partially defined number

x gets defined better.
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Observe, that for totally defined numbers, x =

[a, a] and y = [b, b], upper and lower bounds

coincide, and a classical metric results.
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Steve Matthews: partial metrics

p(x, y) = p(y, x) (symmetry)

p(x, x) = p(x, y) = p(y, y) ⇒ x = y

p(x, x) ≤ p(x, y) (small self-distance)

p(y, y)+p(x, z) ≤ p(x, y) + p(y, z) (strong trian-

gularity aka Vickers’ triangularity)

late 1980s – early 1990s (originally came from

the need to prove the absence of deadlock in

lazy data-flow)

http://partialmetric.org
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Weighted quasi-metrics

Non-negative weight w(x)

w(x) + q(x, y) = w(y) + q(y, x)

Given partial metric p(x, y), we define:

q(x, y) = p(x, y)− p(x, x) and w(x) = p(x, x).

Given a weighted quasi-metric (q, w) we define:

p(x, y) = w(x) + q(x, y) = w(y) + q(y, x).
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Weighted metrics

Non-negative weight w(x)

w(x)− w(y) ≤ d(x, y)

Given partial metric p(x, y), we define:

d(x, y) = q(x, y)+q(y, x) = 2p(x, y)− p(x, x)− p(y, y)

and w(x) = p(x, x).

Given a weighted metric (d, w) we define:

p(x, y) = d(x,y)+w(x)+w(y)
2 .
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Metrics with the base point
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Application: approximating classical metrics
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Ω-sets

Ω-valued fuzzy equalities

D.Scott,M.Fourman,D.Higgs (1970s)
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Ω – complete Heyting algebra

complete lattice, v

for all a, b, there is greatest x, denoted as a → b,

such that a ∧ x v b.

A topology is a typical complete Heyting alge-

bra: v=⊆, ∧ = & = ∩, U → V = Int(V ∪ Ū).
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Ω-valued fuzzy equality: E : A×A → Ω

Axioms:

E(a, b) = E(b, a)

E(a, b) ∧ E(b, c) v E(a, c)

Partial ultrametrics, p(x, z) ≤ max(p(x, y), p(y, z)),

can be viewed as fuzzy equalities.

[0,+∞] can be thought of as the Scott topol-

ogy on positive reals.

v=⊆=≥ (order is reversed)
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Fourman and Scott also introduced a mech-

anism of singletons, which was used to de-

fine the notion of complete Ω-set and to es-

tablish that complete Ω-sets and sheaves over

complete Heyting algebra Ω are essentially the

same thing.

[see Fourman M. P., D. S. Scott, Sheaves

and Logic, in “Applications of Sheaf Theory

to Algebra, Analysis, and Topology,” Lecture

Notes in Mathematics, 753, Springer, 1979,

pp. 302–401.]
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Quantale-valued partial metrics

R.Kopperman, S.Matthews, H.Pajoohesh (2004)

The quantale V is a complete lattice with an
associative and commutative operation +, dis-
tributed with respect to the arbitrary infima.
The unit element is the bottom element 0.
The right adjoint to the map b 7→ a + b is de-
fined as the map b 7→ b −̇ a =

∧
{c ∈ V |a+c ≥ b}.

Certain additional conditions are imposed.

The axioms for a partial pseudometric
(V -pseudopmetric) p : X ×X → V are

• p(x, x) ≤ p(x, y)

• p(x, y) = p(y, x)

• p(x, z) ≤ p(x, y) + (p(y, z)−̇ p(y, y))
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Quantale-valued sets

Quantale-valued fuzzy equalities

Ulrich Hoehle (early 1990s)
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The quantale M is a complete lattice with an

associative and commutative operation ∗, dis-

tributed with respect to the arbitrary suprema.

The unit element is the top element 1. The

right adjoint to the map b 7→ a ∗ b is defined

as the map b 7→ a ⇒ b =
∨
{c ∈ V |a ∗ c v b}.

Certain additional conditions are imposed.

An M-valued set is a set X equipped with a

map E : X ×X → M (fuzzy equality) subject

to the axioms

• E(x, y) v E(x, x)

• E(x, y) = E(y, x)

• E(x, y) ∗ (E(y, y) ⇒E(y, z)) v E(x, z)
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We noticed the equivalence between partial

metrics and fuzzy equalities in 2006:

http://www.cs.brandeis.edu/∼bukatin/distances and equalities.html
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Metric-entropy pairs

Dan Simovici

Metric-Entropy Pairs on Lattices, Journal of

Universal Computer Science (Springer-Verlag),

vol. 13, no.11, 2007, pp. 1767-1778

http://www.cs.umb.edu/∼dsim/papersps/de.pdf
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Definition 1, formula (1): The pair (d, η) is a

∧-pair if d(x, y) = 2η(x ∧ y)− η(x)− η(y).

Theorem 4, formula (3): Given a ∧-pair (d, η),

axiom d(x, y) ≤ d(x, z)+d(z, y) holds if and only

if η(z)+η(x∧y) ≤ η(x∧z)+η(y∧z) for all x, y, z.

Section 3. Conditional function of a ∧-pair

(d, η) is defined as κ(x, y) = η(x ∧ y)− η(y).

Consider p(x, y) = η(x ∧ y).

Then p(x, x) = w(x) = η(x).

We also have κ(x, y) = q(y, x).
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