Self-modifying Dynamical Systems: a Primer

Michael A. Bukatin

February 26, 2017

A simple example of self-modifying dynamical system described in Appendix D.2.2 of our https://arxiv.org/abs/1610.00831 preprint.

Let us describe the construction of lightweight pure dataflow matrix machine. We consider rectangular matrices $M \times N$. We consider discrete time, $t=0,1, \ldots$, and we consider $M+N$ streams of those rectangular matrices, $X^{1}, \ldots, X^{M}, Y^{1}, \ldots, Y^{N}$. At any moment t, each of these streams takes a rectangular matrix $M \times N$ as its value. (For example, X_{t}^{1} or Y_{t}^{N} are such rectangular matrices. Elements of matrices are real numbers.)

Let's describe the rules of the dynamical system which would allow to compute $X_{t+1}^{1}, \ldots, X_{t+1}^{M}, Y_{t+1}^{1}, \ldots, Y_{t+1}^{N}$ from $X_{t}^{1}, \ldots, X_{t}^{M}, Y_{t}^{1}, \ldots, Y_{t}^{N}$. We need to make a choice, whether to start with $X_{0}^{1}, \ldots, X_{0}^{M}$ as initial data, or whether to start with $Y_{0}^{1}, \ldots, Y_{0}^{N}$. Our equations will slightly depend on this choice. In our series of preprints we tend to start with matrices $Y_{0}^{1}, \ldots, Y_{0}^{N}$, and so we keep this choice here, even though this might be slightly unusual to the reader. But it is easy to modify the equations to start with matrices $X_{0}^{1}, \ldots, X_{0}^{M}$.

Matrix Y_{t}^{1} will play a special role, so at any given moment t, we also denote this matrix as A. Define $X_{t+1}^{i}=\sum_{j=1, \ldots, N} A_{i, j} Y_{t}^{j}$ for all $i=1, \ldots, M$. Define $Y_{t+1}^{j}=f^{j}\left(X_{t+1}^{1}, \ldots, X_{t+1}^{M}\right)$ for all $j=1, \ldots, N$.

So, $Y_{t+1}^{1}=f^{1}\left(X_{t+1}^{1}, \ldots, X_{t+1}^{M}\right)$ defines Y_{t+1}^{1} which will be used as A at the next time step $t+1$. This is how the dynamical system modifies itself in lightweight pure dataflow matrix machines.

Example similar to the one from Appendix D.2.2

Define $f^{1}\left(X_{t}^{1}, \ldots, X_{t}^{M}\right)=X_{t}^{1}+X_{t}^{2}$. Start with $Y_{0}^{1}=A$, such that $A_{1,1}=1, A_{1, j}=0$ for all other j, and maintain the condition that first rows of all other matrices $Y^{j}, j \neq 1$ are zero. These first rows of all $Y^{j}, j=1, \ldots, N$ will be invariant as t increases. This condition means that $X_{t+1}^{1}=Y_{t}^{1}$ for all $t \geq 0$.
Let's make an example with 3 constant update matrices: $Y_{t}^{2}, Y_{t}^{3}, Y_{t}^{4}$. Namely, say that $f^{2}\left(X_{t}^{1}, \ldots, X_{t}^{M}\right)=$ $U^{2}, f^{3}\left(X_{t}^{1}, \ldots, X_{t}^{M}\right)=U^{3}, f^{4}\left(X_{t}^{1}, \ldots, X_{t}^{M}\right)=U^{4}$. Then say that $U_{2,2}^{2}=U_{2,3}^{3}=U_{2,4}^{4}=-1$, and $U_{2,3}^{2}=U_{2,4}^{3}=$ $U_{2,2}^{4}=1$, and that all other elements of U^{2}, U^{3}, U^{4} are zerc ${ }^{1}$. And imposing an additional starting condition on $Y_{0}^{1}=A$, let's say that $A_{2,2}=1$ and that $A_{2, j}=0$ for $j \neq 2$.
Now, if we run this dynamic system, the initial condition on second row of A would imply that at the $t=0$, $X_{t+1}^{2}=U^{2}$. Also $Y_{t+1}^{1}=X_{t+1}^{1}+X_{t+1}^{2}$, hence now taking $A=Y_{1}^{1}\left(\right.$ instead of $\left.A=Y_{0}^{1}\right)$, we obtain $A_{2,2}=1+U_{2,2}^{2}=0$, and in fact $A_{2, j}=0$ for all $j \neq 3$, but $A_{2,3}=U_{2,3}^{2}=1$.

Continuing in this fashion, one obtains $X_{1}^{2}=U^{2}, X_{2}^{2}=U^{3}, X_{3}^{2}=U^{4}, X_{4}^{2}=U^{2}, X_{5}^{2}=U^{3}, X_{6}^{2}=U^{4}, X_{7}^{2}=$ $U^{2}, X_{8}^{2}=U^{3}, X_{9}^{2}=U^{4}, \ldots$, while the invariant that the second row of matrix Y_{t}^{1} has exactly one element valued at 1 and all other zeros is maintained, and the position of that 1 in the second row of matrix Y_{t}^{1} is 2 at $t=0,3$ at $t=1,4$ at $t=2,2$ at $t=3,3$ at $t=4,4$ at $t=5,2$ at $t=6,3$ at $t=7,4$ at $t=8, \ldots$

This element 1 moving along the second row of the network matrix is a simple example of a circular wave pattern in the matrix $A=Y_{t}^{1}$ controlling the dynamical system in question.

It is easy to use other rows of matrices U^{2}, U^{3}, U^{4} as "payload" to be placed into the network matrix Y_{t}^{1} for exactly one step at a time, and one can do other interesting things with this class of dynamical systems.

[^0]
[^0]: ${ }^{1}$ Essentially we are saying that those matrices "point to themselves with weight -1 ", and that " U^{2} poiints to U^{3}, U^{3} points to U^{4}, and U^{4} points to U^{2} with weight $1 "$.

