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Duality between metric and logical viewpoints

The metric viewpoint: how far two objects are from each other.
The logical viewpoint: to what degree two objects overlap.

Fuzzy mathematics is traditionally done from the logical viewpoint,
so the first step in introducing fuzzy metrics is often the
transformation f(x,y) = exp(-d(x,y)) (SumTopo2009).

Then we have the following correspondences:

d(x , y) = 0 if and only if f (x , y) = 1.

d(x , y) = +∞ if and only if f (x , y) = 0.

d(x1, y1) < d(x2, y2) if and only if f (x2, y2) < f (x1, y1).

The axiom d(x , x) = 0 becomes f (x , x) = 1.

The axiom d(x , z) ≤ d(x , y) + d(y , z) becomes
f (x , y) ∗ f (y , z) ≤ f (x , z).

Non-expansive maps become maps which respect overlap by not
letting it decrease.

Etc..
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Duality between metric and logical viewpoints

What if we omit the exponent: f (x , y) = −d(x , y)?

Then we have the following correspondences:

d(x , y) = 0 if and only if f (x , y) = 0.

d(x , y) = +∞ if and only if f (x , y) = −∞.

d(x1, y1) < d(x2, y2) if and only if f (x2, y2) @ f (x1, y1).

The axiom d(x , x) = 0 becomes f (x , x) = 0.

The axiom d(x , z) ≤ d(x , y) + d(y , z) becomes
f (x , y) + f (y , z) v f (x , z).

Non-expansive maps become maps which respect overlap by not
letting it decrease.



Reviewing duality between logical and metric viewpoint for
partially defined elements



Mathematics of partially defined elements

Generalized distances: instead of p(x , x) = 0 axiom,
value p(x , x) expresses how far x is from being completely defined.

Generalized equalities: instead of x = x being always true,
value = (x , x) expresses how well defined x is.
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Partial ultrametrics

Partial metrics Ω-sets

Quantale-valued partial metric = Quantale-valued sets



Example: interval numbers

Consider segments [a, b] and [c, d ] on the real line.
Define the distance between them as

max(b, d)−min(a, c).



partial metrics (Steve Matthews)

p : X × X → R+

p(x , y) = p(y , x) (symmetry)
p(x , x) = p(x , y) = p(y , y)⇒ x = y
p(x , x) ≤ p(x , y) (small self-distance)
p(y , y)+p(x , z) ≤ p(x , y) + p(y , z) (strong triangularity (Steve
Vickers))



Some applications of partial metrics

Good for generalized metrization of a wide class of (usually
non-Hausdorff) topologies and bi-topologies.

Main case for computer science so far: the Scott topology.

In the bitopological setting: dually, lower topology, and Lawson
topology as join of Scott and lower.

Computer scientists love them, because one can obtain Scott
continuous generalized metrizations of Scott domains with partial
metrics, when one adopts a logical viewpoint of R+.

This cannot be done with quasi-metrics, because of q(x , x) = 0.



A logical viewpoint of R+

t 0

t +∞

v=≥ and we equip this set with a Scott topology.
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Example: partially defined functions

Consider topological space X , set Y , and set of pairs (f ,U), where
U is an open subset of X and f : U → Y .

The degree of equality of two functions (f ,U) and (g ,V ) is the
interior of {x ∈ U ∩ V | f (x) = g(x)}.



Fuzzy equalities valued in complete Heyting algebras

Ω-sets

Ω-valued fuzzy equalities

D.Scott,M.Fourman,D.Higgs (1970s)



complete Heyting algebras

Ω – complete Heyting algebra

complete lattice, v

for all a, b, there is greatest x , denoted as a→ b, such that
a ∧ x v b.

A topology is a typical complete Heyting algebra: v=⊆,
∧ = & = ∩, U → V = Int(V ∪ Ū).



Sets valued in complete Heyting algebras

Ω-valued fuzzy equality: E : A× A→ Ω

Axioms:

E (a, b) = E (b, a)

E (a, b) ∧ E (b, c) v E (a, c)



Example (again): partially defined functions

Consider topological space X , set Y , and set of pairs (f ,U), where
U is an open subset of X and f : U → Y .

The degree of equality of two functions (f ,U) and (g ,V ) is the
interior of {x ∈ U ∩ V | f (x) = g(x)}.



Another example: pre-sheaves of sets over Ω

Let x be a section over a, and y - a section over b.

E (x , y) =
∨
{p v a ∧ b | x �p= y �p}.

Distributivity of complete Heyting algebras is used to establish
E (a, b) ∧ E (b, c) v E (a, c).



Some applications: singleton completion and sheafification

Singletons are functions s : A→ Ω, such that

s(x) v E (x , x)

s(x) ∧ E (x , y) v s(y)

s(x) ∧ s(y) v E (x , y)

All functions y 7→ E (x , y) are singletons. If all singletons are
uniquely represented in this way, the Ω-set is called complete.
Otherwise, an Ω-set can be mapped into the set of its singletons,
resulting in singleton completion.

Complete Ω-sets with morphisms f : (A,E )→ (B,F ) satisfying
E (x , x) = F (f (x), f (x)) and E (x , y) vB F (f (x), f (y)) are
equivalent to the category of sheaves of sets over Ω.
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partial ultrametrics

p(x , y) = p(y , x) (symmetry)
p(x , x) = p(x , y) = p(y , y)⇒ x = y
p(x , z) ≤ max(p(x , y), p(y , z))

Example: consider set of finite and infite sequences over some
alphabet, and denote the length of the common prefix of sequences
s1 and s2 as L(s1, s2). Then define p(s1, s2) = 2−L(s1,s2).



Partial ultrametrics are partial metrics

p(x , x) ≤ max(p(x , y), p(y , x)) = p(x , y), obtaining small
self-distances.

p(x , z) ≤ max(p(x , y), p(y , z)) means p(x , z) ≤ p(x , y) or
p(x , z) ≤ p(y , z). Consider p(x , z) ≤ p(x , y).

We know that p(y , y) ≤ p(y , z), so
p(x , z) + p(y , y) ≤ p(x , y) + p(y , z), obtaining strong triangularity.



A logical viewpoint of R+ revisitedt 0

t +∞

[+∞, 0] can be thought of as the Scott topology on positive reals,
(0,+∞).

x corresponds to the (x ,+∞) Scott open set, so 0 corresponds to
the whole space (0,+∞), and +∞ corresponds to the empty open
set.

v=⊆=≥ (order is reversed)



Partial ultrametrics are Ω-sets

Consider p(x , z) ≤ max(p(x , y), p(y , z)).

Consider [+∞, 0] as the Scott topology on positive reals.

Then “p(x , y)” ∧ “p(y , z)” v “p(x , z)”.

Or, writing this in details,
(p(x , y),+∞) ∩ (p(y , z),+∞) ⊆ (p(x , z),+∞)



Partial ultrametrics are Ω-sets

Consider p(x , z) ≤ max(p(x , y), p(y , z)).

Consider [+∞, 0] as the Scott topology on positive reals.

Then ”p(x , y)” ∧ ”p(y , z)” v ”p(x , z)”.

Or, writing this in details,
(p(x , y),+∞) ∩ (p(y , z),+∞) ⊆ (p(x , z),+∞)

In general, whenever I talk about Ω-sets from a metric viewpoint,
and, thus, have p(x , z) ≤ p(x , y) ∨ p(y , z), I tend to call p a
partial ultrametric valued in the system of numbers in question.
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Quantale generalizations

Quantale-valued partial metrics

R.Kopperman, S.Matthews, H.Pajoohesh (2004)

used for generalized metrization of large topologies

Quantale-valued sets

Quantale-valued fuzzy equalities

Ulrich Hoehle (early 1990s)

used for bringing substructal logic to fuzzy sets, e.g.
non-idempotent conjunctions such as Lukasiewicz conjunction:

x&y = max(0, x + y − 1).



Partial pseudometrics into quantales

The axioms for a partial pseudometric
(V -pseudopmetric) p : X × X → V are

I p(x , x) ≤ p(x , y)

I p(x , y) = p(y , x)

I p(x , z) ≤ p(x , y) + (p(y , z)−̇ p(y , y))

Quantale-valued sets

An M-valued set is a set X equipped with a map E : X × X → M
(fuzzy equality) subject to the axioms

I E (x , y) v E (x , x)

I E (x , y) = E (y , x)

I E (x , y) ∗ (E (y , y)⇒E (y , z)) v E (x , z)



Quantales

Metric viewpoint

The quantale V is a complete lattice with an associative and
commutative operation +, distributed with respect to the arbitrary
infima. The unit element is the bottom element 0. The right
adjoint to the map b 7→ a + b is defined as the map
b 7→ b −̇ a =

∧
{c ∈ V |a + c ≥ b}. Certain additional conditions

are imposed.

Logical viewpoint

The quantale M is a complete lattice with an associative and
commutative operation ∗, distributed with respect to the arbitrary
suprema. The unit element is the top element 1. The right adjoint
to the map b 7→ a ∗ b is defined as the map
b 7→ a⇒ b =

∨
{c ∈ V |a ∗ c v b}. Certain additional conditions

are imposed.
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Do we have a duality between partial metrics and fuzzy equalities?

Specialization orders are the same in both cases (better defined
elements are higher).

There are many choices of the notion of morphism, giving various
interesting categories, but in all cases we know morphisms go in
the same direction yielding (covariant) equivalences (even
isomorphisms) of the categories in question.

So it seemed to me in 2009 that it was correct to talk about
equivalence between partial metrics and fuzzy equalities up to the
choice of notation and not about duality between them. After all,
every time we have a partial order, we also have a dual partial
order on the same set, and what we have here is just the choice
which of these two orders to use to express the same axioms.

The duality in the choice of notation (and in spirit) could have
been handled on a meta-level (and, could have been, perhaps, left
informal).



Do we have a duality between partial metrics and fuzzy equalities?

Mustafa Demirci disagreed with us and told us that we should talk
about duality here, and that we should not go to the meta-level,
but should use the formal duality between truth values and
distances values to express this duality (e.g. if the truth values
formed a Heyting algebra, then the distance values were to form a
dual Heyting algebra, etc).



Do we have a duality between partial metrics and fuzzy equalities?

I think the right compromise here is as follows. On one hand we
should emphasize that partial metrics and fuzzy equalities are
really the same up to a dual viewpoint, that we have isomorphisms
between their various classes, that no contravariance was
discovered here so far.

On the other hand, the duality of the viewpoints should not be left
informal and should not be formalized on the meta-level, but, as
Demirci suggested, should be formalized via duality between truth
values and distance values, and should be emphasized as strongly
as possible, because it really reflects the duality between intuitions
of mathematicians working on the metric side of things and on the
logical side of things.



Emphasizing duality between logical and metric viewpoints as
strongly as possible

If truth values form a Heyting algebra (e.g. an algebra of open
sets), we should not say that the correspondent distance values
form a dual Heyting algebra. We should say instead that the
distance values form a Browerian algebra (e.g. an algebra of closed
sets, not an algebra of open sets with reversed order).

If distance values are non-negative reals, we should not say that
the corresponding truth values are non-negative reals turned upside
down (like everyone does, and like we did in the preceeding slides).
We should say instead that the truth values are non-positive reals.

Then one would avoid the annoying need to “turn one’s head
upside down”, which one usually has to do all the time in this
context.



The ultrametric case and sheaves

Consider a complete Heyting algebra Ω. Consider a corresponding
complete Browerian algebra α.

Every separated pre-sheaf of sets over complete Heyting algebra Ω
can be thought of as a separated co-pre-sheaf of α-ultrametrics
and non-expansive maps (a bit of technical work is required to
prove this).

For example, consider a sheaf of partially defined functions.



Sheaf of partially defined functions (we’ve seen this)

Consider topological space X , set Y , and set of pairs (f ,U), where
U is an open subset of X and f : U → Y .

The degree of equality of two functions (f ,U) and (g ,V ) is the
interior of {x ∈ U ∩ V | f (x) = g(x)}.

For V ⊆ U, restriction (f ,U) �V is (f ′,V ), where for any
x ∈ V , f ′(x) = f (x).

The partial ultrametric here is the compliment to the fuzzy
equality, that is a closure of the set of elements where either
f (x) 6= g(x), or either f (x), or g(x), or both are undefined, with
self-distance from (f ,U) to itself being just a complement of U.



Co-sheaf of closed-set-valued ultrametric spaces and non-expansive
maps

The closed-set-valued (non-partial) ultrametric on a section
associated with Ū is

p((f ,U), (g ,U))−̇Ū = Closure({x ∈ U | f (x) 6= g(x)}).

For V ⊆ U, the associated co-restriction from Ū to V̄ produces
p((f ′,V ), (g ′,V ))−̇V̄ = Closure({x ∈ V | f (x) 6= g(x)}) ⊆
Closure({x ∈ U | f (x) 6= g(x)}), hence non-expansiveness of the
restriction map.



Partial metrics into non-negative reals

Their logical counter-part should “morally” be fuzzy equalities
valued in non-positive reals.

Partial ultrametrics correspond to idempotent logic (usually, to the
ordinary intuitionistic logic). Partial metrics should typically
correspond to the linear logic, and we think about linear logic as
the resource-sensitive logic.

So, from the linear logic point of view, it is natural to think about
the weight (self-distance) of an element as the work which still
needs to be done to make it fully defined. This is the work to be
done, something owed, hence negative (like in our balance
statements).



Relaxed metric considerations

Relaxed metric typically maps (x , y) into an interval number
[l(x , y), u(x , y)], where u is usually a partial metric, and l is
usually a symmetric function, such that l(x , y) ≤ u(x , y).

u yields an upper bound for the inequality of “true, underlying x
and y”; essentially, “x and y differ no more that u(x , y)”, while l
yields a lower bound for that, essentially, “x and y differ at least
by l(x , y)”. There is an intimate relationship between l and
negative information, and also between l and tolerances.

From the earlier logical considerations of relaxed metrics (starting
with [Bukatin and Joshua Scott, 1997]) we know that u dualizes,
but l does not. This means that on the logical side, U becames
negative (non-positive, actually), but L remains non-negative.



Relaxed metric considerations

So, while U represents a work still owed (a work to estimate
distance better, actually), and hence negative, L represents a work
done, and hence positive (on the logical side).

Interestingly enough, the condition l(x , y) ≤ u(x , y) on the metric
side becomes L(x , y) + U(x , y) ≤ 0 on the logical side.

If the distance between 2 elements, x and y , is precesely defined
(often the case for maximal elements x and y), then
l(x , y) = u(x , y), or equivalently L(x , y) + U(x , y) = 0, expressing
the fact that no further computations are owed.

In general the amount which expressed debt here is not U(x , y),
but L(x , y) + U(x , y) = l(x , y)− u(x , y). (Note that l(x , x) is
always 0, so the self-distance is always fully owed.)



Space-time considerations

The distance which still needs to be covered is owed, is debt, is
negative.

The distance which we already covered is an asset, a positive.

With time it is the opposite. The time spent is resource spent, it’s
gone, it’s negative. The time ahead is a resource we can use, it’s
positive.
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(= order-idea-l etc. in a poset) of 6 and that, for x in s, € gives
the inverse tn the bi- jection [Ora]-+p,x] . F is said to be

6targ if the set of sections of F has join r. Let E be the cate-
gory of cHArs and 6tare mappings. Then gop/& is equivarent
to S(f;-) for each CHA cL.

To give an indicatj.on of why this is so, ]e.b n.!ti be 6tale and

let 5 be the set of sections of F. Then (s, 6 ) is a sheaf where
5(x, y) = € (xny) ((S, S ) is clearly an rl--valued set and one shows

thatxSyin (5r6 ) if andonlyif x_<yin6, and that tr-l
is a compatible family in (Sr 6 ) if and onry if Y*, O" ,";t:";J-
versely, given a sheof (S, e ) <zn &, let G= p(S, 3 ) and

define n5O by a 1-; ane ; then F is 6tate. It is straightfor-
ward to turn these construetions into functors and one way to show

that thay are inverse to each other to within naturar isomorphism
is to use essentiaLly the same argument as was used in proving
Theorem 2 "f [rr](wherein, we now see, only injective &-valued sets
with A, boolean h,ere considered, such B,-valued sets cotresponding
to 6ta1e, there called analyticl ernbedding" ft.-+G y.

By modifying its definition somewhat, the functor from Er/A. to Sh(Al
may be extended to a functor from Xol& to Sh( & ), where f{ i" th"
category of cHAts and all nrV-p"u"erving mappings, and it resurts tpdi
E?/& is a corefJ.ective subjeategory of ftt"r/ & (all oF thfs being

just as it is in the topological case when our CHA,s .tre latticeg
of open sets).

Insofar as the use ef H,-varued sets sometirnes provides an econonicar
description of sheaves on &, th" question arises whelher the same
sort of construction is possible ,l-,en il. is an arbitrary site (E site
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here being a small category with a Grothendieck toporogy an it):
it is possibLe, but at some cogt in simplicity.

Let fl, ba a site. If a and b are objeets of ff-, let &/(., b) denota
the category of diagrams

r-z 4.-
'\6 = (r's)'

Then an fr.-valued set is a triple tX, €rA ) "hr"e X is a set, E is
a furction fron X to thE set of objects og &16 is a function on
X x X such thatl for aIJ. x, y in X, 6(x, y) is a crible in V/(. (x), €(y))

and the following conditiona are satisfied for alr x, y, z i.tr
X and appropriate r, s, t in [:-

(i) (r,r) € 6(xrx),

(ii) (r1s) € 6 (xry) implies (srr) e 6 (yrx) r

(iii) (rrs) e 6(xry) and (srt)ed(ytzl implies (rrt) e 6(xrzlr
(iv) if {p;(rpr sp) e d("rv)} covers then (r,s) e 6(xry),

Amorphism (XrerE) f >(yrerf) is afunctionfonXx ysuchthat,
for atl x in X and y in y, f{xry) is a cribre in &/( e(x), s(y1} and,
for all xls and rls etc., we have

(v) (rrrr) e 6(xrxr) and (rrs) € f(xry) impties (rrrs) e f(xrry)1
(rrs) e f(xry) and (srsr) e 6tyr Vr) imp.1ies (rrsr) e f(xryr),

(vi) if tpr (rprap) e f(xrylJ covers then (r,s) e f(xry)p

(vii) (rrs) e f(xry) and (rrs') e f(xryr) implies (srs,) e 6(yry, ),



49.

e f(xry)](viii) {rt there exist y and s such that (rrs)
coverS.

Lat (X' E 16 ) l- (Y; er 6 ) and (Y1 s,
be norphisrns. Then (X, g, E ) 9f 

"
by the eondition that (r't) e (gf)(xrz)

{u;there exist y and s such that (rrrra) e

5)
(2, er 6 )

if and only

f(xry) and

(zrer6)
is defined

if
(srtu ) e g(yrz)1

g

covgtlt.

The study of the resulting category S( A ) goes nuch as befora,
t{rouEh conplicated by the fact that we have no joins but havc to
us? coveaing cribles instead. In partictrlar, it is still the case
that 5( A ) is equivalent to the category E of shcaves on 6,(and
there is still a fairly obvious .functor A ..- S( & ) which, cop
bined with this equivarencr, yields the sheafifying functor 0.-*E ),

E. lBooleant powels and ultraoowers

Powering bV tt: S ^,
s 3-s(&) turs( 

R )zr

1 -E* 5, and ultrapowering ty (ctr?t);
S, are both well-known and re confine

s(n
rr

oolserves to a feu renalkE. (soms references are [s] [e] [roJ and

[reJ ; in f6] various mors generar constructions ale discussed.)

For a logician, one of the first questions about thesE constnrctions
and the functors thcy involva is: uhat logical notions do they ple-
ser,rre? (Tfrey all presclve nonos so the qucstion nakeE good sensa

- for the external rogical operations, that is). Any geonetrical
norphisra 7'+ 7 of topos nith 7t boolean, and in particular s A>

5( A ) here, presEwes all first-order logic (see G.E. Reyes [ff] ; "f"oR' ltlansfiera [16] , corotlary r.21 for the case of s As( a ) with



This is more like a weighted metric in spirit. (Weighted
ultrametric, that is.)

What we really want to do here is to try to see whether this
generalizes to Lawvere-Tierney topology. This might be easier
intuitively than to study Grothendieck topology directly, and it
might be easier to dualize, which we would need to do, if we want
to go to a metric viewpoint (what Higgs did here is from the
logical viewpoint).

Lawvere-Tierney topology is a categorical generalization of a frame
nucleus (a closure operation preserving intersections). If we
succeed in doing what the previous paragraph suggests, and if we
want to generalize this beyond idempotent/ultrametric case and
towards quantales and linear logic, the first thing to try is to see
whether one can start with a quantic nucleus and get an
appropriate generalization of Lawvere-Tierney topology and work
with that.



An accidental discovery I made yesterday: pouring coffee into a
cup with a tea bag produces a nice coffee drink (it tastes softer
than pure coffee, but stimulates stronger).
Slides for this talk:

http://www.cs.brandeis.edu/∼bukatin/distances and equalities.html
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