Daniel Abadi

May 4, 2001

Handbook to the COKO Coding Environment

1. Introduction

Consider the following predicate: (a & (b & c)) | d. It is often desirable in query optimization to convert a predicate to CNF (clausal normal form) before its evaluation. In this case, the transformed predicate would be (a & d) & ((b & d) | (c & d)). How can this transformation be accomplished? One way would be simply to add the following rule to the optimizer:

(a & (b & c)) | d  (a & d) & ((b & d) | (c & d))

Although this solution would work well in this case, what happens if the query is slightly altered? What if the input predicate was (a & (b & c)) | (d & e)? It would be necessary to have a rule for every possible predicate. Clearly, this is not an optimal solution. What is needed is a general way to give an algorithm of converting any predicate to CNF. This is the point of COKO. COKO is a transformation language that consists of KOLA (combinatoric language for rule expression) rules and an algorithm specifying when the rules are fired.

This paper discusses COKO: the language and its implementation. Section 2 discusses COKO at the level of its rule-block code - the input to the COKO compiler. Section 3 goes one level deeper and discusses the implementation of COKO in c++, and the c++ source files that are the output of the COKO compiler. Finally, Section 4 explains the overall process on how to use the COKO compiler to create c++ code from rule-block code and then c++ object files and executables from these source files. Throughout this paper, the COKO example will be the CNF transformation.

2. COKO: rule-blocks

In this section, the algorithm of converting a KOLA predicate to CNF is discussed, and then the COKO rule-block code that performs this task is demonstrated and explained.

In the case of converting a predicate to CNF (assuming the query does not contain negation) all that is needed are two base KOLA rules:

rule1: (p & q) | r  (p | r) & (q | r)

rule2: (p & q) | r (p | r) & (q | r)

and the following algorithm:

Assume the input predicate is in the form of a tree, for example:

 |

 / \

 & d

 / \

 a &

 / \

 b c

traverse the tree from the bottom up in a post-order pass. For each visited node, attempt to fire rule1. If that fails, then attempt to fire rule2. If either rule fired, then attempt to fire both rules on both children of this subtree and continue down on each child until both rules fail. The COKO code for this algorithm is the following:

TRANSFORMATION CNFNE

 USES

 CNFAux

 BEGIN

 BU {CNFAux}

 END

TRANSFORMATION CNFAux

 USES

 rule1: p | (q & r)  (p | q) & (p | r),

 rule2: (p & q) | r  (p | r) & (q | r)

BEGIN

 {rule1 || rule2} 
 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

END

The basic structure of a COKO transformation, is the keyword TRANSFORMATION followed by the name of the transformation, the keyword USES followed by a list (separated by commas) of the rules or other COKO transformations that this transformation will be using, and the keywords BEGIN and END surrounding the body of the transformation algorithm.

CNFAux uses the two rules discussed earlier. It declares them in the USES section using the format <rule-name>: <rule>. The rules are named so that they can be used later (in the line {rule1 || rule2}) without having to rewrite the entire rule. COKO does not require that these rules be declared in advance as this example shows. Another way that CNFAux could have been programmed is as follows:

TRANSFORMATION CNFAux

 USES

BEGIN

 { [p | (q & r)  (p | q) & (p | r)] || [(p & q) | r  (p | r) & (q | r)]} 
 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

END

However, this is messy and difficult to read, so in general it is best to declare rules ahead of time in the USES section.

The body of CNFAux is quite complicated and is best explained piece by piece. Once again the body is:

{rule1 || rule2} 
 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

A parser would break this line up into statements. In the above code, rule1 is a statement, rule2 is a statement, rule1 || rule2 is a statement, CNFAux (p) is a statement, CNFAux (q) is a statement, CNFAux (p); CNFAux (q) is a statement, GIVEN p & q DO {CNFAux (p); CNFAux (q)} is a statement, and finally, {rule1 || rule2} GIVEN p & q DO {CNFAux (p); CNFAux (q)} is a statement. Each of these statements will be looked at in turn. First, however, it is important to note that in addition to altering the input KOLA tree, execution of each statement returns a boolean success value indicating whether or not that statement was successful in its execution.

The first statement that the parser sees is rule1. An identifier such as this means that rule1 must be naming either a rule or another COKO transformation. From looking at the USES section, it is deduced that rule1 is a rule. This is code for an attempt to fire rule1 on the current KOLA tree. If the pattern for the rule does not match the pattern of the tree, then this attempt will fail (this statement will return a success value of false). If the patterns match, the rule will fire (the KOLA tree will transform) and a success value of true would be returned.

{rule1 || rule2} is a special type of statement, named a disjunctive multi-statement. A disjunctive multi-statement takes two statements (in this case rule1 and rule2) and will only execute the second statement (in this case rule2) if the first statement returned a success value of false. The success value of a disjunctive multi-statement is true if either one of the two input statements returned a success value of true. In this example, rule1 is attempted to be fired on the tree. If it failed, then rule2 is attempted.

As stated above, CNFAux (p) is a statement. This type of statement (an identifier followed by a variable name in parenthesis) is similar to the simple type of identifier statement (e.g. rule1) discussed above. CNFAux must either be a rule or a transformation (in this case, it is a recursive call to the current transformation). The variable in parenthesis is a pointer to the KOLA tree upon with the transformation call should be executed. In this case, CNFAux will be called on the KOLA tree rooted at the node pointed by p. If the code had been just CNFAux (without the '(p)') then a pointer to the current KOLA tree would have been sent to CNFAux, instead of a tree rooted at p.

{CNFAux (p); CNFAux (q)} is a special type of statement, named a sequential multi-statement. A sequential multi-statement takes two statements (in this case CNFAux (p) and CNFAux (q)) and will only execute both statements in order. Like a disjunctive multi-statement, the success value of a sequential multi-statement is true if either one of the two input statements returned a success value of true.

GIVEN p & q DO {CNFAux (p); CNFAux (q)} is also a special type of statement. The format of a GIVEN statement is GIVEN <equations> DO <statement>. The <equations> tag is a set of bindings of variables to pointers to various nodes of the KOLA tree. An equation is of the form <COKO expression with pattern variables> = <KOLA expression>. An equation can also take the form of just < COKO expression with pattern variables> where the right side is assumed to be a pointer to the current KOLA tree. In this example, there is one equation (p & q) with no right hand side, so an attempt to match p and q to the current KOLA tree leads to p pointing to the left child of the current tree, and q pointing to the right child of the current tree. With these bindings in place, the DO statement ('{CNFAux (p); CNFAux (q)}') can now be executed with p and q pointing to the correct trees. A GIVEN statement returns a success value of true if all of the equations succeed in pattern matching and the DO statement returns a success value of true.

The two statements discussed thus far can be put together using the symbol  .

{rule1 || rule2} 
 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

Once again, this is a special type of statement, named a conjunctive multi-statement. A conjunctive multi-statement takes two statements (in this case '{rule1 || rule2}' and 'GIVEN p & q DO {CNFAux (p); CNFAux (q)}') and will only execute the second statement if and only if the first statement returned a success value of true. The success value of a conjunctive multi-statement is true if the first of the two input statements returned a success value of true.

So now the body of CNFAux has been completely explained. Rule 1 is attempted to be fired on the current KOLA tree. If it fails, then rule2 is attempted. If one of them succeeded, then p and q are matched to be the left and right children of the current tree, and CNFAux is called recursively on each subtree.

Now, the body of transformation CNFNE will be examined. Once again, the body was simply:

BU {CNFAux}

CNFAux is an identifier, that, as stated above, must either be a rule or a transformation. In this case it is a transformation declared in the USES section. BU {<statement>} is a special kind of statement that executes <statement> on every node of the KOLA tree in a bottom up (post-order) traversal. In this example, CNFAux is called on every node of the input KOLA tree in a bottom up fashion. A BU statement returns a success value of true if <statement> succeeded on any of the subtrees that it was called upon.

It is clear that a call to CNFNE will transform the input KOLA predicate tree into a KOLA tree in CNF (assuming there were no negations). To conclude the discussion of COKO rule-blocks, a few more COKO statements must be defined:

TD {<statement>} will execute <statement> on every node of the current KOLA tree in a top-down (pre-order) traversal. A TD statement returns a success value of true if <statement> succeeded on any of the subtrees.

TRUEv <statement> will execute <statement> but will always return a success value of true. Likewise, FALSEv <statement> will execute <statement> but will always return a success value of false.

REPEAT <statement> will continually execute <statement> until <statement> returns a success value of true.

3. COKO: c++ code

Each of the COKO constructs discussed in the previous section were statements. A rule firing attempt is a statement, BU <statement> is a statement, GIVEN <equations> DO <statement> is a statement, etc. Notice that a statement is typically built from smaller statements. An object oriented view of COKO code becomes apparent - make each of these statements into objects - including the transformation as a whole. Each statement needs to have a way to execute itself, needs to know the current KOLA tree, and needs to return a success value. This is, indeed, how COKO is actually implemented. There is a superclass, CStmt, from which all of the COKO statement subclasses inherit. CStmt declares a virtual method (a method that every subclass must implement) called Exec that takes a state of the environment (which includes, among other things, the current KOLA tree, variable bindings, and the success flag) and returns a new state with the KOLA tree altered and the success flag reset to the correct value. For example, the following code is the implementation of the disjunctive multi-statement located in /cokokola/src/coko/PC/PCMulStmtDis.C with a few /*<explain>...*/ comments added:

//

//

// NAME: Kee-Eung Kim (kek)

// FILE: PCMulStmtDis.C

// PROJ: COKO

// DATE: 8/27/96

//

// SYNOPSIS

// Method definitions for CMulStmtDis class.

//

//

#include <assert.h>

#include "PCState.H"

#include "PCStmt.H"

#include "PCMulStmtDis.H"

//

//

// Function Name: CMulStmtDis

// Parameters: (CStmt *first, CStmt *second)

//

// Constructor.

//

//

/*<explain> This is the constructor for the disjunctive multi-statement. Notice that it takes two parameters - the two input statements. For example, in the CNFAux transformation the code {rule1 || rule2} would lead to the calling of this constructor with first pointing to a rule-block statement constructed from rule1 and second pointing to a rule-block statement constructed from rule2 */

CMulStmtDis::CMulStmtDis(CStmt *first, CStmt *second)

{

/*<explain> _first and _second are instance variables of this CmulStmtDis */

 _first = first;

 _second = second;

}

//

//

// Function Name: ~CMulStmtDis

// Parameters: (void)

//

// Destructor.

//

//

CMulStmtDis::~CMulStmtDis(void)

{

 if(_first) { delete _first; _first = NULL; }

 if(_second) { delete _second; _second = NULL; }

}

//

//

// Function Name: Exec

// Parameters: (CState*)

//

// What to do when executed.

//

//

/* <explain> This is the key Exec method that actually performs the execution of this disjunctive multi- statement. It takes a pointer to an object of type CState (which is the environment class discussed above) and returns and object of type CState where the returned environment contains the altered KOLA tree and a success flag */

CState *CMulStmtDis::Exec(CState *s)

{

if (_debug_)

 cout << "-- MulStmtDis Begins" << endl;

 // First, execute the former statements.

/*<explain> Attempt to execute the first statement, sending it the current environment. In the CNF example, this is rule1. Set the current environment (s) to the returned environment of this attempted execution. In the CNF example, if rule1 succeeded in firing, the new environment will contained a transformed KOLA tree and a success value of true, if rule1 failed, then the tree will be unchanged and s will contain a success value of false */

 s = _first->Exec(s);

/*<explain> Check the success value of s. If it is true then we can stop. If it is false, then the second statement must be executed (in the CNF example, this is rule2). */

 if(s->ISuccess() == F) {

 // If the all of the statements failed, do the next statement.

 s = _second->Exec(s);

 }

if (_debug_)

 cout << "-- MulStmtDis Ends" << endl;

/*<explain> s contains a pointer to the return environment including the correct success flag and a potentially transformed KOLA tree. */

 return s;

}
Other COKO statements are implemented in a similar way, with a constructor, a destructor, and an Exec file.

As discussed above, any new transformation can also be seen as a statement, and can also inherit from the CStmt class. The COKO compiler converts the rule-block file into a c++ file by creating a class with the same name as the rule-block and adding an Exec method which constructs a statement derived from the body of the transformation code and then calls the Exec method on that statement. For instance, the following is the c++ code that the COKO compiler generates from CNFNE.rb which is the COKO code for transformation CNFNE, with a few /*<explain>...*/ comments added:

#include "CNFNE.h"

#include "CNFAux.h"

CState * CORBCNFNE::Exec(CState *s)

{

/*<explain> CNFNE declares CNFAux in its USES section, so this code is generated. A pointer to a RuleBlock is given the variable name CNFAux and constructed. */

CRuleBlock * CNFAux = new CORBCNFAux;

/*<explain> Remember that the body of CNFNE was just: BU {CNFAux} which generates the following code. This code just constructs the bottom up statement) */

CStmt * _rStmt_ =

new CBottomUpStmt(new CRuleInvokeStmt(CNFAux, NULL));

/*<explain> Now that the bottom-up statement has been created, call its Exec method and save the returned environment in s. */

CState * new_s = _rStmt_->Exec(s);

delete _rStmt_;

delete CNFAux;

/*<explain> Return whatever the bottom-up statement returned. */

return new_s;

}

This object-oriented nature of the implementation of COKO makes it very easy to create c++ files for transformations from rule-block code.

4. Makefiles: From rule-blocks to executables

The process of creating an executable COKO transformation from a rule-block is quite a complicated task. An overview of the process is the following:

Typically there will be a few .rb files in the directory. There will be one .rb file for the main transformation and this transformation might use some auxiliary COKO transformations. Each of the auxiliary COKO transformations will be written in a .rb file. Each of these .rb files must be compiled into c++ source files. This is done by the COKO compiler. Once COKO has compiled each transformation to c++ source file (a .cc file), these source files must be compiled (by the c++ compiler) to c++ object (.o) files. In addition to creating a set of object files, an executable must also be created. This is done by again calling the COKO compiler on the main .rb file, but this time attaching a -x flag in the call. This results in a creation of a _main.cc file that then needs to get compiled (by the c++ compiler) to a _main.o file and an executable.

Needless to say, there is a lot of work involved in creating an executable transformation from a set of rule-block files. This process is greatly facilitated by the use of a Makefile. With the help of a Makefile, simply typing the word 'make' in the directory with the set of .rb files will result in all of the above mentioned files and the executable transformation being created. It is important to understand how the Makefile works, because any new transformation will typically need a Makefile to go along with it. The following Makefile is used for the CNF transformation. The main CNF rule-block file is TestCNF.rb which uses CNF.rb, CNFAux.rb, and CNFNE.rb. Most lines in this Makefile example are preceded by a #<explain># comment explaining exactly what that line accomplishes.

Makefile located in /cokokola/data/transformations/CNF

Generated automatically from Makefile.in by configure.

.KEEP_STATE:

#<explain># If this is deleted then one can see everything that happens in a make (i.e. one can see what files are getting compiled, what files are getting included, etc.)

.SILENT:

#<explain># These are the typical extensions for c++ files. Different conventions are used in different parts of COKO-KOLA so this is why there are so many suffixes. Essentially, .h and .H are header files for c++ code and .c and .C and .cc files contain the actual c++ code.

.SUFFIXES: .c .C .cc .h .H

#<explain># This is an example of a variable being set in a make file. The convention is for the variable to be all uppercase letters. Here the variable called TOP_COKO is being set to be equal to be the directory path where all of the COKO source code. This is a relative location to this Makefile, and will change in different Makefiles. The src/coko folder is located off the root /cokokola directory.

TOP_COKO = ../../../src/coko

#<explain># Likewise, this is setting the variable TOP_KOLA to be the location of the KOLA source code

TOP_KOLA = ../../../src/kola

Set this to the location of the COKO-KOLA executables

BIN = ../../../bin

#<explain># Here the location of the COKO compiler is specified. Notice that this statement says the compiler is in the bin directory specified in the line above. This is example of actually using a variable declared earlier. Variable usage is simply $(<variable-name>). The COKO compiler takes a .rb file and compiles it into a c++ source file.

COKOC = $(BIN)/coko

To support compilation of library

MAIN =

LIB_NAME =

#<explain># This says that the compiler to use is kg++

CC = kg++

For debugging symbols, use -g

CFLAGS = -g -O2

Includes needed - append additional at end

#<explain># This is declaring all of the directories where the compiler can find the object files used for the CNF transformation. The first few are standard across most Makefiles - they contain the KOLA and COKO objects that all transformations use. For instance, the $(TOP_COKO)/PC folder refers to the /cokokola/src/coko/PC folder where all of the important COKO classes (PCStmt.C, PCState.C, etc.) reside. The last include is another transformation that CNF uses (PrintTrees) because the compiler will need PrintTrees.o. The location of all included transformations must be included here.

IDIR =
-I. \

-I$(TOP_COKO)/include \

-I$(TOP_COKO)/PC \

-I$(TOP_KOLA)/PAK \

-I$(TOP_KOLA)/KO \

-I$(TOP_KOLA) \

-I$(TOP_KOLA)/TYK \

-I$(TOP_KOLA)/EN \

-I$(TOP_KOLA)/QLF \

-I../PrintTrees

##

#

Transformation Settings

#

##

What are the names of the other transformation

object files?

#<explain># These are the names of the object files that are going to be outputted. A good rule of thumb is that there will be one object file for each .rb file in the directory.

AUXOBJ = CNF.o CNFAux.o CNFNE.o

##

#

These Come for Free And Can Be Left As Is

#

##

#<explain># This is declaring the variable AUXSRC to be the same as the variable AUXOBJ declared in the line above, except replace each instance of .o with .cc. This variable contains the name of the source code files that will be compiled into object (.o) files.

AUXSRC = $(AUXOBJ:.o=.cc)

OBJ = $(TOP_KOLA)/PAK/PA.o \

$(TOP_KOLA)/KO/KO.o \

$(TOP_KOLA)/TYK/TY.o \

$(TOP_KOLA)/QLF/QL.o \

$(TOP_KOLA)/EN/EN.o \

$(TOP_COKO)/PC/PC.o

SLOBJ =
$(TOP_KOLA)/PAK/PA.o \

$(TOP_KOLA)/KO/KO.o \

$(TOP_KOLA)/TYK/TY.o \

$(TOP_KOLA)/QLF/QL.o \

$(TOP_KOLA)/EN/EN.o \

$(TOP_COKO)/PC/PC.o

Extras are for the executable

#<explain># Here all of the objects that the executable (TestCNF) is going to use are declared.

EXECOBJ = $(OBJ) \

TestCNF.o \

CNF.o \

CNFNE.o \

CNFAux.o \

../PrintTrees/PrintTrees.o

#<explain># If 'make' was typed then make all of the auxiliary objects specified above, plus the TestCNF executable

all: $(AUXOBJ) TestCNF

#<explain># In order to make the auxiliary objects, the .cc files have to be compiled. As specified above, the CC variable is the c++ compiler, the IDIR variable are the includes where to find necessary .o files, and CFLAGS and LFLAGS are flag variables defined above.

$(AUXOBJ):$(AUXSRC)

$(CC) $(IDIR) $(CFLAGS) $(LFLAGS) -c $^

#<explain># The above line specifies how to create .o files from .cc files. However, it still needs to be specified how to create .cc files from .rb files (remember that only .rb files need to be in the directory in order to create an executable). Here, the COKO compiler (whose location is specified above) is called to compile the .cc files from the .rb files. @echo is used to write to the screen what .rb files are being sent to the COKO compiler. Note that the order of specifications doesn't matter here - 'make' still is able to first "COKO" the .rb files into .cc files and then compile the .cc files into .o files even though the specifications have been written in reverse order.

%cc "%.h:%rb

@echo "Cokoing $<"

@$(COKOC) $<

#<explain># This specifies how to create the TestCNF executable. This and the next four statements of the Makefile can be copied and pasted into other COKO Makefiles. For instance, if a new transformation, call it TestFOO were to be created, then these four lines would be copied into the Makefile for TestFOO and each instance of TestCNF should be changed to TestFOO.

TestCNF: TestCNF.o TestCNF_main.cc TestCNF_main.o $(OBJ)

$(CC) $(IDIR) $(CFLAGS) -o TestCNF TestCNF_main.o $(EXECOBJ)

#<explain># In order to create TestCNF.o, TestCNF.cc (which was created when the COKO compiler was called on TestCNF.rb) must be compiled.

TestCNF.o: TestCNF.cc

$(CC) $(IDIR) $(CFLAGS) $(LFLAGS) -c $<

#<explain># In order to create TestCNF_main.o, TestCNF_main.cc (whose creation is specified in the next statement) must be compiled.

TestCNF_main.o: TestCNF_main.cc

$(CC) $(IDIR) $(CFLAGS) $(LFLAGS) -c $<

#<explain># TestCNF_main.cc is created by calling the COKO compiler with the -x flag on TestCNF.rb indicating that the rule-block is intended to be executed on KOLA queries, so a main method should be created.

TestCNF_main.cc "TestCNF_main.h: TestCNF.rb

echo "Cokoing $<"

$(COKOC) -x TestCNF.rb

#<explain># The following few statements have to do with libraries, and should probably be deleted.

lib: $(MAIN)_sl.cc $(MAIN)_sl.o lib$(LIB_NAME).so

$(MAIN)_sl.cc: $(MAIN).rb

$(COKOC) -l $(MAIN).rb

$(MAIN)_sl.o: $(MAIN)_sl.cc

$(CC) $(IDIR) $(CFLAGS) $(LFLAGS) -c $<

lib$(LIB_NAME).so : $(SLOBJ)

$(CC) $(IDIR) $(CFLAGS) $(LFLAGS) -o lib$(LIB_NAME).so $(MAIN)_sl.o $(MAIN).o

#<explain># on 'make clean' delete all the executables, the .ql files, the .cc files, the .h files, and the .o files. This is because 'make' will recreate them all.

clean:

$(RM) *.so $(EXEC)

$(RM) $(MAIN)_fin.pl $(MAIN).pl

$(RM) *.ql *.cc *.h *.o

$(RM) TestCNF

depend:

makedepend $(IDIR) $(CFLAGS) $(SRC)

DO NOT DELETE THIS LINE -- make depend depends on it.

5. Conclusion

This paper discussed COKO: the language and its implementation. The entire process: from COKO rule-block code, to COKO c++ source code, to the creation of COKO executables was demonstrated and explained using the CNF transformation as the primary example.

