
Design Documentation – COKO Compiler
Joon Suk Lee

May, 1998

1. Introduction

Since the processing times between two equivalent queries can vary and users of the database system
usually input a query that is not in the most efficient form, it is the responsibility of the system to transform
the input query into an equivalent query that can be computed more efficiently. Query-to-query
transformation is a query optimization technique that is widely used in object databases as well as relational
databases. However, not all transformations preserve the equivalency between two queries (input query and
output query) and produce more efficient output queries. Correctness and efficiency are the metric, which
determine the usefulness of transformations.

Rule-based optimizers and optimizer generators use rules to specify transformations of queries. Rules
act directly on query representations, which typically are based on query algebras. KOLA is a combinator-
based algebra rather than a variable-based algebra. While variable-based algebras use variables to name
manipulated data, combinator-based does not use variables. Combinator-based algebras have several
advantages over variable-based algebras. Optimizers that use variable-based algebras require
supplementary codes to express rules and these code fragments make rules difficult to understand and
prove correct (correctness of the rules depend on the correctness of the code fragments.) Details of the
KOLA algebra and its advantages over variable-based algebras are described in [CZ96].

Rewrite rules are declarative expressions of transformations. Rewrite rules consist of matching part
where variable unification occurs and building part where transformed queries are constructed. COKO is a
language with which to express transformations that transform KOLA queries. A COKO transformation is
a set of KOLA rewrite rules as well as a firing algorithm controlling their firing. The COKO compiler
described here can compile COKO transformations and generate C/C++ code, which then can be compiled
and executed to carry out actual transformations of KOLA queries. This documentation describes the
details of COKO and COKO compiler.

2. Background

2.1 KOLA

KOLA is a variable-free query representation for rule optimizers. By removing variables from query
representations, KOLA avoids the problems that variable-based algebras introduced. KOLA query
representations do not require supplementary code fragments for rewrite rules and therefore do not impede
the formation of declarative rules. The KOLA operators are listed in the following table. Most parts of the
table are taken straightly from the paper [Che97]. (A few more KOLA operators are added.) A more
detailed description of KOLA and the KOLA data model can be found on section 3 of the paper [Che97].

Operator Description Semantics
Basic Function Primitives

ID identity id ! xx =
#1 projection (1) #1 ! xyx =],[
#2 projection (2) #2 ! yyx =],[
SHIFTL Shift Left shiftl !]],,[[]],[,[zyxzyx =
SHIFTR Shift Right shiftr !]],[,[]],,[[zyxzyx =
TWIST twist operator twist !],[],[xyyx =

Int and Float Function Primitives
(i and j denote integers or floats)

ABS absolute value abs ! ii =
ADD addition add ! jiji +=],[
MINUS subtraction minus ! jiji −=],[
MUL multiplication mul ! jiji *],[=
DIV division div ! jiji /],[=
MOD modulus mod ! jiji mod],[=
SQUARE squaring square ! iii *=
INVERSE reciprocal

inverse !
i

i
1

=

String Function Primitives
(s and t denote strings (array of chars))

AT string indexing at !][],[isis =
CONCAT string concatenation concat ! tsts ||],[=
PREFIX string prefixing prefix !]...1[],[isis =
SUBSTR substring substr !]...[]],[,[jisjis =

Bag Function Primitives
(A and B denote bags. X denotes a bag of bags. For any type t,

|||| t denotes the type of bags whose elements are all of type t)

ELT element extraction elt ! xx =
SINGLETON singleton singleton ! xx =
SET duplication removal set ! }|{ AxxA ∈=
FLATTEN bag flattening

flatten ! X = XAAxx AXxA ∈∈• ,|)()()(

PW pair with
pw ! ByyxBx yB ∈= |]),([],[)(

CARTPROD cartesian product cartprod !

ByAxyxBA yBxA ∈∈= ,|]),([],[)().(

UNI bag union
uni ! BxAxxBA yBxA ∈∈= + ,|)(],[)()(

INT bag intersection
int ! BxAxxBA yBxA ∈∈= ,|)(],[))(),(min(

DIF bag difference
dif ! BxAxxBA yBxA ∈∈= − ,|)(],[)0),()(max(

INS insertion ins ! =],[Ax uni !],[Ax

Operator Description Semantics
Basic Function Formers

o composition)(gf o ! fx = ! g(!)x
pairing gf , ! fx [= ! gx, !]x

× products f(×)g ! fyx [],[= ! ,x g !]y

fK constant function)(xK f ! xy =

fC curried function),(xfC f ! fy = !],[yx
CON conditional function

con),,(gfp ! x =

elsexg

xpifxf

,!

?,!

PCON partial conditional
function ||pcon),(fp ! ||x =

else

xpifxf

,

?||,!||

φ
Query Function Formers

(* ⊗ is assumed to be commutative and associative and the expression,

yx ⊗ is equivalent to ⊗ !].),[yx
ITERATE iteration iterate),(fp ! =A ||?,|)!(||)(xpAxxf xA ∈
ITER iteration2 iter),(fp ! =],[Bx

||],?[,|]),[!(||)(yxpByyxf yB ∈
JOIN join join),(fp ! =],[BA

||],?[,,|]),[!(||)()(yxpByAxyxf yBxA ∈∈•

LSJOIN l. semijoin lsjoin),(fp ! =],[BA

||],?[,|)!(||)(BxpAxxf xA ∈
RSJOIN r. semijoin rsjoin),(fp ! =],[BA

||],?[,|)!(||)(AypByyf yB ∈
NJOIN nest join njoin),,(hgp ! =],[BA

}|||]],?[,|)!(||!,{[)(AxyxpByyghx yB ∈∈
UNNEST unnest unnest),(gf ! =A

||),!(,|]),!([||)()(ByxgBAxyxf yBxA ∈=∈•

PFOLD partial aggregate pfold),(⊗f ! =A

≥=
⊗⊗

*1||,,...,||

)!(...)!(

1

1

nxxAthatsuch

xfxf

n

n

FOLD total aggregate fold),(x ! =A

≥=
⊗⊗

*1||,,...,||

)!(...)!(

,

1

1 n

φ

Operator Description Semantics
Basic Predicate Primitive
(x and y are the same type)

EQ equality eq ? =
=

=
=

=
=

fpxfp ?(?)(=⊕ !)x
& conjunction p(&)?()?(?) xqxpxq ∧=
| disjunction)?()?(?)|(xqxpxqp ∨=
~ negation)?(?)(~ xpxp ¬=
INV inverse inv],?[],?[)(xypyxp =
× products)?()?(],?[)(yqxpyxqp ∧=×

pK constant predicate bxbK p =?)(

pC curried predicate],?[?),(yxpyxpC p =
Query Predicate Formers

exists ∃ exists)?(?)(xpAxxAp ∧∈∃=
forall ∀ forall)?(?)(xpAxxAp ⇒∈∀=
ex

2∃ ex]),?[(],?[)(yxpByyBxp ∧∈∃=
fa

2∀ fa]),?[(],?[)(yxpByyBxp ⇒∈∀=
Table1: KOLA Operators

2.2 COKO

A rewrite rule is of the form K1 ⇒ K2 such that both K1 and K2 are KOLA expressions supplemented with
unification variables. Note that these variables are not query variables. They stand for arbitrary KOLA
subexpressions and are part of the rule language rather than the query language. The term COKO
expression will be used to denote rule language variables together with KOLA expressions.

While a rewrite rule applies to a particular subtree of a query expression, it is often necessary to
express a more global technique for transforming queries. For example, we might want to apply a given
rewrite to all possible subtrees in a given expression, or we might want to express a technique for
unnnesting correlated subqueries. In each of these cases, something more than rewrite rules is required. In
order to explicitly program, algorithms for expressing complex transformations, COKO was developed.
COKO uses rules as primitives and surrounds their firing with built-in control structures, making rule
sequencing very directed and efficient.

2.3 COKO Compiler

We have implemented a compiler for COKO that generates C++ classes from COKO transformations.
Objects of these generated classes manipulate KOLA trees according to the firing algorithm of the
compiled COKO transformation. The compiler’s design is purely object-oriented. The current version of

the compiler used several UNIX tools including Lex/Yacc (Bison/Flex), STL and Sicstus Prolog in its
development.

3. COKO without Semantics

3.1 Design Overview

The following diagram shows the context within which COKO transformations are used. A KOLA parser
parses a KOLA textual query into a KOLA parse tree. A notation “[ID o ID]” will be used to denote a
parse tree equivalent of “ID o ID” through out this documentation. For example, a KOLA textual query,
“ID o ID ! 3” is parsed into “[ID o ID ! 3]” by the KOLA parser. The COKO compiler parses COKO
transformations into C++ classes. Computation of these C++ classes then act on the parse trees to
manipulate them into derived forms.

3.2 Grammar

3.2.1 Success Value and Current Tree

As stated before, rewrite rules are declarative expressions of transformations. By applying these rewrite
rules successively to a query, one can achieve a desired query-to-query transformation. A single action of
applying a rewrite rule to a query is called rule firing. While each rewrite rule is treated as a lemma that is
assumed to be always true, each rule firing has a success value. The success value tells whether a rule firing
is succeeded or not. For example, firing a rule “f o g à g” on a KOLA tree, “[ID o ID]” will result in a
successful transformation of the input tree to the output tree, “[ID]”. In this case, the success value of the
rule firing is set to be true. Note that even in a case, which the rule itself is algebraically absurd, the
correctness of the rule has no effect on determining the success value of the rule firing. The correctness of
rules can be verified by the theorem prover. (A more detailed explanation of the rule firing will be stated in
later section.)

KOLA transformations are achieved by utilizing and manipulating the current tree (curr). The current
tree is entire local KOLA tree. More accurately, curr is a default unification variable that always gets
matched with a local root of KOLA tree. For example, suppose that we have an input KOLA tree, “[ID o
ID ! 3]” and a COKO transformation which includes a rule called fuse. If fuse is successfully fired on the
subtree, “[ID o ID]” then the rule firing of fuse will results in the transformed tree,”[ID]”. When we first

COKO Parser

KOLA Query

Transformation

KOLA Query Parser

 C++ Code
Prewritten C++
Classes for COKO

Transformed KOLA query

enter the transformation, current tree is “[ID o ID ! 3]”. However, as we enter the matching part of the
rule fuse, the current tree becomes “[ID o ID]”. Similarly, by the time rule firing is completed, the current
tree is “[ID]”. By modifying and passing the current tree between transformations and between rewrite
rules, the result of rule firing and transformation is preserved.

3.2.2 Transformation

Transformations are the basic building blocks of COKO. A transformation consists of a set of KOLA
rewrite rules accompanied by a firing algorithm that specifies their firing. A COKO transformation is
specified by the keyword, “transformation” followed by the name of the transformation, optional
declarations and a main body. The declaration section consists of two parts: a rule declaration part
(“USES” part) and a property inference part (“OptInfer” part). “Uses” section defines KOLA rules that
can be fired in the body of the transformation. COKO properties are reviewed in chapter 4. The main body
includes a firing algorithm for the use of KOLA firing rules. The body of transformation is delineated by
the keywords, BEGIN and END.

In general, a COKO transformation has the following form:

TRANSFORMATION transformation-name

Uses declaration

OptInfer declaration

BEGIN

Stmts

End

Figure 3.2.2.1: General Transformation Structure
(Italics indicate optional parts.)

An example COKO transformation is shown in Figure 3.2.1.2. The “Uses” declaration section includes
lines 2 and 3 of Figure 3.2.1.2. Lines 4 to 6 of Figure 3.2.1.2 form the main body of the transformation.
Notice that line 3 is a KOLA rule, which gets fired in the main body (line 5). The “OptInfer” declaration
not used in this example will be reviewed in next chapter.

The transformation shown in Figure 3.2.1.2 applies the rule, fuse to an input query. For example,
successful rule firing of fuse on the tree, “[ID o ID]” will result in transformed query tree, “[ID]”.

1 Transformation Simple1
2 Uses
3 fuse: g o ID à g
4 Begin
5 fuse
6 End

Figure 3.2.2.2: Transformation Simple1

3.2.3 Uses

In this part of a transformation, one lists KOLA rewrite rules and/or other transformations used in the
transformation firing algorithm. This section is introduced by the keyword, “Uses” followed by one or
more KOLA rewrite rules and/or auxiliary COKO transformation names. Every rule must be proceeded by
a name and ‘:’. For example, “fuse” in line 3 of Figure 3.2.3.2 is a rule name, and “g o ID à g” is a rule.
When auxiliary transformation are declared in the section, only the name of the transformation is needed.
For example, “Simple1” on line 5 of Figure 3.2.3.2 is an auxiliary COKO transformation name. All the
identifiers used in a Uses section must be distinct. Also, notice that a comma separates each rule.

In general, the syntax of a “Uses” declaration section is as follows:

<USES Section> à USES <UseList>
<UsesList> à <UseList> , <Use>
<Use> à <Rule-Name> : <Rule>
<Use> à <Transformation-Name>

Figure 3.2.3.1: Uses section Syntax

such that <Rule-Name> and <Transformation-Name> are identifiers which indicates rule names or
auxiliary COKO transformation names.

1. Transformation Simple2
2. Uses
3. fuse: g o ID à g,
4. fuse2: ID o g à g,
5. Simple1
6. Begin
7. Simple1
8. End

Figure 3.2.3.2: Transformation Simple2

3.2.4 Main Body

A main body of a transformation includes a firing algorithm for controlling the firing of KOLA rules. For
example, line 5 of Figure 3.2.2.2 indicates that rule “fuse” gets fired on current KOLA tree. A main body
of a transformation consists of the keyword “Begin” followed by optional Stmts (statements) and the
keyword “End.” The success value of the body determines the success value of the transformation.

3.2.5 Rule Firings

A rule is of the form “E1 à E2,” where E1 and E2 are rule expressions denoting arbitrary KOLA
predicates, functions, Booleans, or objects. A rule expression is any KOLA expression (function
expression, predicate expression, Boolean expression, or object expression), potentially with variables and
anonymous variables (DON’T CAREs.) Notice that E1 and E2 are not KOLA expressions (KOLA is
variable-free algebra and KOLA expressions do not include any variables) but COKO expressions, which
include unification variables. The terms, pattern, COKO expression and rule expression can be used
interchangeably to denote same thing.

The left-hand side (head) of a rule (E1) is a matching part where variable unification between KOLA
trees and rule expressions occurs. The variables in rule expressions get matched with some subtree of the
current KOLA tree. As a result of unification, variable-to-KOLA tree bindings are built and stored in
COKO environment. The right-hand side (tail) of a rule (E2) is a building part where a transformed KOLA
query is built using the bindings stored in COKO environment. By replacing variables in right-hand side of
the rule to a matching subtrees, the transformed KOLA tree is built. COKO environment and variable-to-
KOLA tree bindings are explained fully in later sections.

3.2.6 Single Statements (Stmt)

A statement is a single action that affects a KOLA tree in place. Also, a statement returns a Boolean value
that indicates whether or not the statement was successful. A statement can be one of the following forms.

i. IDENT

IDENT names either a rule or a transformation. A named rule must be declared in the USES
section of the current transformation. A named transformation must be either the name of the
current transformation or a name of another transformation declared in the USES section. Only

rules named in the current transformation can be referenced in the body of the transformation. For
example, Transformation Bad1 of Figure 3.2.6.1 is not a legal transformation since fuse is not
defined in Transformation Bad1. Transformation Bad2 is not legal because fuse2 is not defined in
the USES section of the transformation.

Transformation Bad1
Uses
 Simple1
Begin
 fuse
End

Figure 3.2.6.1: Transformation Bad1

Transformation Bad2
Uses

 fuse: g o ID à g
Begin
 fuse2
End

Figure 3.2.6.2: Transformation Bad2

The semantics of a named statement is to transform the current KOLA tree according to the rule or
transformation named IDENT. If IDENT names a rule, a successful firing of the rule sets success
value of the statement to TRUE and has a side effect of changing the form of current KOLA tree.
An unsuccessful firing of the rule sets success value of the statement to FALSE and has no effect
on the current KOLA tree. If IDENT names an externally defined transformation, the statement’s
success value is equal to the success value of the external transformation named IDENT.

ii. IDENT (variable name)

This is almost same as statement type i., except that a rule or transformation named IDENT is not
applied to the current KOLA tree but a subtree of the current tree that is pointed by a variable
name. For example, the following transformation, Apply-fuse applies a rule fuse to the tree that is
matched with f. Suppose that the current tree is “[ID o ID ! 3]”. As a result of executing the
satement, “GIVEN f ! _O DO fuse(f)”, f is matched with the sub tree, “[ID o ID]”. (The
GIVEN statement will be fully explained later in this chapter.) By applying the rule fuse to f, f
will be replaced by “[ID]” and the current tree will be replaced by “[ID ! 3]”.

Transformation Apply-fuse
Uses
 fuse: g o ID à g
Begin
 GIVEN f ! _O DO fuse(f)
End

Figure 3.2.6.3: Transformation Apply-fuse

iii. [KOLA rewrite rule]

This is same as statement type i. where IDENT named a rule, except that the rule is expressed
directly within […]. For example, the following transformation is equivalent to transformation
simple1 in Figure 3.2.2.2.

Transformation Same-as-Simple1
Begin
 [g o ID à g]
End

Figure 3.2.6.4: Transformation Same-as-Simple1

A defined rule in a USES section works as a macro. By naming and defining a rule in the USES
section of a COKO transformation, one can use the same rule more that once without the need for
writing out the same rule every time one wants to use the rule. Even in a case where a defined rule
is used once in a body, it is preferred to use a named rule for readability. For example,
transformation CNF (Figure 3.2.6.5) is equivalent to transformation CNF-equivalent (Figure
3.2.6.6). It is not only much easier for COKO programmers to write transformation CNF than
transformation CNF-equivalent, but also easier for readers to understand transformation CNF than
transformation CNF-equivalent.

Transformation CNF
Uses
 involution: ~ (~ (p)) --> p,
 deMorgan1: ~ (p & q) --> ~ (p) | ~ (q),
 deMorgan2: ~ (p | q) --> ~ (p) & ~ (q),
 CNFSel
Begin
 TD {involution || deMorgan1 || deMorgan2};
 BU {involution};
 CNFSel
End

Figure 3.2.6.5: Transformation CNF

Transformation CNF-equivalent
Uses
 CNFSel
Begin
 TD {[~(~(p)) --> p]
 || [~(p & q) --> ~(p) | ~(q)]
 || [~(p | q) --> ~(p) & ~(q)]};
 BU {[~(~(p)) --> p]};
 CNFSel
End

Figure 3.2.6.6: Transformation CNF-equivalent

iv. [KOLA rewrite rule] (variable name)

This is same as statements of type ii., where IDENT named a rule, except that the rule is defined
directly within […].

v. IDENT INV

IDENT INV describes the “inverse” (i.e., right-to-left) firing of a rule. This statement is only legal
if IDENT names a rule. (i.e., Inverting a transformation is not allowed.) Also, rules can only be
fired inversely if variables used in the head (left-hand side) of a rule are also used in the tail (right-
hand side) of the rule. For any invertible rule r: Q --> Q', r INV is equivalent to the rule r': Q' -->
Q. For example, it is possible to invert rule1 in transformation Inverse of Figure 3.2.6.7. The
inverted form of rule1 is equivalent to rule3. However, it is not possible to invert rule2 because the
right-hand-side of the rule (tail of the rule) has only one variable (g) while left-hand-side of the
rule (head of the rule) has two (g and f).

Transformation Inverse
Uses

 rule1: g o ID à g,
 rule2: #1 ! [f, g] à f ,
 rule3: g à g o ID
Begin
 rule1 INV
End

Figure 3.2.6.7: Transformation Inverse

vi. IDENT INV (variable)

This is almost same as statements of type v.. The only difference is that a rule named IDENT is
not applied to the current KOLA tree but applied to a subtree of the tree that is pointed by a
variable name.

vii. Stmt: PRINT (variable / string / CURRTREE)

This statement is useful for debugging purposes only. The success value of this statement is
always true and execution of this statement has no effect on the current KOLA tree. PRINT V (V
is a variable) will print out a text representation of the KOLA tree that is bound to V. PRINT
CURRTREE will print out a text representation of the current KOLA tree. PRINT string will
print out explicitly named strings. To illustrate, if the current tree is “[ID o ID ! 3]”, the output
of the transformation,

Transformation Print-Statements
Begin
 PRINT “hello world\n”;
 GIVEN f ! _O DO PRINT f;
 PRINT “\n”
 PRINT CURRTREE
End

Figure 3.2.6.8: Transformation Print-Statements

will be

Hello world
ID o ID
ID o ID ! 3

viii. GIVEN Eqns DO Stmt

Rules and transformations need not to be fired on entire KOLA trees and can instead be fired on
isolated subtrees of KOLA trees. These subtrees are identified by matching patterns (COKO
expressions) to the current KOLA tree using the GIVEN statement. A pattern resembles a KOLA
expression, but can include pattern variables and anonymous variables that get bound by
matching. By naming variables as arguments in subsequent rule or transformation firings, the
subtrees bound to these variables can be selectively transformed. Variable matching occurs in
Eqns clause of the GIVEN statement. The semantics of the GIVEN statement is like this:

Process Eqns
If matching process of Eqns succeeded then execute Stmt.

The success value for the GIVEN statement is true if all equations in Eqns clause successfully
match and a subsequent statement (Stmt) succeed.

ix. TD Stmt / BU Stmt

Query trees can be traversed in bottom-up (postorder) or top-down (preorder) fashion. For any
statement S, “BU S” performs a bottom-up pass of the KOLA query tree executing S on every
subtree. (Analogously, “TD S” executes S on every subtree during a top-down pass of the KOLA
query tree.) Both traversal statements return a success value of true if S succeeds when fired on
some subtree visited during the traversal.

Unlike GIVEN statement, TD and BU can not be fired on isolated subtrees of the current
KOLA tree instead they are always fired on entire KOLA tree. For example, the following
statement is not a legal COKO statement. While first foo(f) is a legal statement, the second one is
an error.

GIVEN f ! _O, f = g o h DO {foo(f); TD foo(f) }

x. Stmt: TRUEv Stmt / FALSEv Stmt

This statement does nothing to the current tree but it sets return value of the statement. For any
statement S, “TRUEv S” always returns true regardless success or failure of S. Likewise,
“FALSEv S” always returns false. For example, statement “TRUEv TD GIVEN f ! _O, f = g o h
DO foo (f)” will always succeed regardless of input query. Similarly, “FALSEv TD GIVEN f !
_O, f = g o h DO foo (f)” will always fail regardless of the input query.

xi. Stmt: REPEAT Stmt

For any statement S, “REPEAT S” or “* S” will fire S repeatedly until S no longer succeeds. The
success value of REPEAT statement depends on the success value of the first firing of S. For
example, firing the following transformation on a KOLA tree, “[((((ID o ID) o ID) o ID) o
ID) ! 3]” will result in transformed KOLA tree, “[ID ! 3]”.

Transformation Repeat-Test
Uses

 fuse: g o ID à g
Begin
 GIVEN f ! _O DO * fuse(f)
End

Figure 3.2.6.9: Transformation Repeat-Test

3.2.7 Compound Statements (Stmts)

A compound statement (Stmts) consists of two statements (Stmt) combined in one of three ways.
• Two statements can be connected sequentially by semicolons. (Sequential Multi Statements)
• Two statements can be connected by conjunction. (Conjunctive Multi Statements)
• Two statements can be connected by disjunction. (Disjunctive Multi Statements)

i. Sequential Multi Statements (S1; S2)

Semicolons separate two statements that are to be executed in sequence. That is, the semantics of
the sequential compound statement, S1; S2 is:

Execute S1.
Execute S2.

The above compound statement has a success value semantics of true if any one of two statements
has a success value semantics of true.

ii. Conjunctive Multi Statements (S1 -> S2)

“->” (THEN) separates two statements that are to be executed conditionally on success of
preceding statements. That is, the semantics of the conjunctive compound statement, S1àS2 is:

Execute S1.
If S1 succeeds then
Execute S2.

A conjunctive compound statement, S1àS2 is true if S1 is true.

iii. Disjunctive Multi Statements (S1 || S2)

“||” separates statements that are to be executed conditionally on the failure of preceding
statements. That is, the semantics of the disjunctive compound statemen, S1 || S2 is:

Execute S1.
If S1 fails then
Execute S2.

The above statement has a success value of true if either S1 or S2 has success value of true.

3.2.8 Eqns

Eqns is a series of equations separated by comma. Eqns is true only when all the equations listed in Eqns
are true.

3.2.9 Equations

Equations are used for building environment for COKO. All equations are of the form, “variable = E,”
where E is a COKO expressions. Equations of the form, “E” should be treated as a special case and should
be interpreted as “(curr =) E” where curr is a default variable denoting current KOLA tree. The processing
of an equation results in an attempted match of E with the tree previously bound to variable. Successful
matching of an equation adds the variables appearing in E (and the subtrees that they match with) to the
environment and sets the equation’s success value to true. For example, the successful processing of Eqns
clause of the GIVEN statement of the following transformation will adds binding f, binding f1, binding f2
and binding g to the environment.

Transformation Equation-Example
Uses

 fuse: g o ID à g
Begin
 GIVEN f ! _O,
 f = f1 o f2,
 f2 = g o ID DO fuse (g)
End

Figure 3.2.9.1: Transformation Equation-Example

3.3 Variable Scoping for COKO

This section describes variable scoping rule for COKO language. This section includes two main
subsections. In the first half of the section, general scoping rule of COKO is explained while the second
half is dedicated for explaining one special case of the scoping rule.

3.3.1 General Case.

3.3.1.1 Transformation

• All the variables appear in a transformation are local to the transformation.
• All the variable appears first time in a transformation should be a fresh one.

For example, variable f in transformation foo of Figure 3.3.1.1 should not be visible in transformation boo
of Figure 3.3.1.2. In other word, f in transformation foo is not the same as f in transformation boo.

Transformation foo
Uses
 boo
Begin
 GIVEN f ! _O DO boo(f)
End

Figure 3.3.1.1: Transformation foo

Transformation boo
Uses

 fuse: g o ID à g
Begin
 GIVEN f o f1 DO fuse(f)
End

Figure 3.3.1.2: Transformation boo

3.3.1.2 Rule

• All the variables appear in a rule (in a Uses section) are local to the rule.
• All the variable appears first time in a rule should be a fresh one.
For example, f in the rule fuse (in the Uses section) of transformation Variable-Scope1 of Figure 3.3.1.3
should not be visible outside of the rule. In other word, f on line 3 is not the same as f on line 6. Moreover,
f in line 3 is not the same one as f in line 4.

1. Transformation Variable-Scope1
2. Uses
3. fuse: f o ID à f,
4. fuse2: ID o f à f
5. Begin
6. GIVEN f ! _O DO fuse(f)
7. End

Figure 3.3.1.3: Transformation Variable-Scope1

3.3.1.3 Statement & Equation

• Every variable newly appears in a body of the transformation is local to the body.
• A variable name appears in right-hand side of an equation has different meaning as one appears in left-

hand side. (A equation is either a form of A = B, or (curr =) B.)
• A variable appears in left-hand side of equation has to be always bounded to some part of KOLA tree

while a variable name appears in right-hand side is always treated as fresh one.
For example, in transformation Variable-Scope2 of Figure 3.3.1.4, f in line 5 is a fresh variable, which get
matched with a subtree of current KOLA tree. Since f is now bound with some subtree, it is permissible to
use f in left-hand side of the equation in line 6. If we change f in line 6 to f1, it will be flagged as an error
since f1 is not bound to anything and it is used in left-hand side of the equation.

1. Transformation Variable-Scope2
2. Uses
3. fuse: f o ID à f,
4. Begin
5. GIVEN f ! _O,
6. f = g1 o g2,
7. g1 = g3 o f2 DO fuse(f)
8. End

Figure 3.3.1.4: Transformation Variable-Scope2

A variable appeared in a body of transformation could be referred or used at later time in the transformation
until it gets invisible. A variable becomes invisible in two cases. When a rule or transformation is invoked
on a variable's ancestors, the variable becomes permanently invisible. When an already bounded variable
name is used as a fresh variable, old one becomes temporarily invisible until newer variable name becomes

permanently invisible. Notice that no rule or transformation can be invoked on the variable while it is
invisible. For example, variable f in line 6 of transformation Variable-Scope3 of Figure 3.3.1.5 is visible
until line 8.

1. Transformation Variable-Scope3
2. Uses
3. foo
4. boo
5. Begin
6. GIVEN f ! _O,
7. f = g1 o g2 DO
8. { foo;
9. GIVEN f ! _O,
10. f = <g1, g2> DO
11. boo }
12. End

Figure 3.3.1.5: Transformation Variable-Scope3

However, since foo is invoked on current tree, which is a parent of variable f, in line 8, f gets permanently
invisible. f in line 9 is a different one than one in line 6. For example, following transformation is illegal,
since f in line 9 is not bounded to anything. f gets invisible after line 8.

1. Transformation Variable-Scope4
2. Uses
3. fuse: f o ID --> f,
4. boo
5. Begin
6. GIVEN f ! _O,
7. f = g1 o g2 DO
8. { boo ;
9. fuse(f) }
10. End

Figure 3.3.1.6: Transformation Variable-Scope4

In transformation Variable-Scope5 of Figure 3.3.1.7, f in line 5 becomes temporarily invisible in line 7. A
fresh new f masks old f until new f becomes permanently invisible. In line 9, newer f becomes permanently
invisible and older f becomes visible again since f1, parent of new f is invoked on a rule fuse.

1. Transformation Variable-Scope5
2. Uses
3. fuse: f o ID --> f
4. Begin
5. GIVEN f ! _O,
6. f = f1 o f2,
7. f1 = f o g DO
8. { fuse(f);
9. fuse(f1);
10. fuse(f) }
11. End

Figure 3.3.1.7: Transformation Variable-Scope5

An already bound variable cannot be used twice in left-hand side of the equation while it's visible. This was
done to prevent any possible confusion resulting from variable updating and aliasing. For example, line 7
and 8 of the following transformation will cause a variable aliasing error.

1. Transformation Variable-Scope6
2. Uses
3. foo,
4. boo
5. Begin
6. GIVEN f ! _O,
7. f = g1 o g2,
8. f = g1 o g3 DO foo(f)
9. End

Figure 3.3.1.8: Transformation Variable-Scope6

3.3.1.4 TopDown and BottomUp statements

TD statement and BU statement have a unique variable scoping rule unlike other statements. TD and BU
has separated self-contained variable scope. No variable defined outside of TD or BU can be used in
subsequent statement of TD and BU. As it was stated in previous section, execution of “GIVEN f ! _O, f
= g o h DO {foo(f); TD foo(f) }” will cause “variable f is not defined” error. This error is caused due
to TD and BU’s unique variable scope.

However, foo(f) in the following example is legal. Since f was defined inside of TD statement (in
subsequent statement of TD), f is referable in TD. Only variables that can be used in subsequent statement
of TD and BU are the variables defined in the subsequent statement of TD and BU.

TD GIVEN f ! _O, f = g o h DO foo(f)

3.3.2 Special Case

Having multiple occurrence of same variable name in COKO expression is not always practical and even
introduces much confusion. However, COKO allows users to use same variable name more than once in
some cases of COKO expressions. This section describes when the multiple occurrence of same variable
name is allowed and when it is not.

3.3.2.1 Rule

It is possible to use variable name more than once in either sides of a rule, even though this feature of
COKO is rarely used. Note that the rules in following transformations are not algebraically correct.
However, they are used to demonstrate the usage of multiple variable occurrences.

Invoking transformation multiple-variable-occurrence1 of Figure 3.3.2.1 to “[ID o ID ! 3]” will
transform the query tree to “[(ID o ID) o (ID o ID) ! 3]”. Similarly, invoking transformation multiple-
variable-occurrence2 of Figure 3.3.2.2 to “[(ID o ID) o (ID o ID) ! 3]” will transform the query tree
to “[ID o ID ! 3]”.

Transformation multiple-variable-occurrence1
Uses
 fuse: g à g o g
Begin
 GIVEN f ! _O DO fuse(f)
End

Figure 3.3.2.1: Transformation multiple-variable-occurrence1

Transformation multiple-variable-occurrence2
Uses

 fuse: g o g à g
Begin
 GIVEN f ! _O DO fuse(f)
End

Figure 3.3.2.2: Transformation multiple-variable-occurrence2

3.3.2.2 Statement & Equation

It is not allowed to have more than one occurrence of the same variable name in statements or equations.
By disallowing multiple variable name occurrences, a possible confusion that introduced when a rule or
transformation is invoked on a variable with multiple occurrences is avoided. For example, in an equation,
“f = g o g”, two g’s are not the same object but they refer to the same COKO tree structure. Problem
occurs when a rule gets called on g in this case. It is not clear whether a rule should be invoked on first g,
second g or both. Current implementation of COKO prevents this confusion by simply disallowing multiple
occurrence of a variable in equations or statements. For example, the following transformation will result in
error.

Transformation multiple-variable-occurrence-error
Uses
 fuse: g o ID à g
Begin
 GIVEN f ! _O, f = g o g DO fuse(g)
End

Figure 3.3.2.3: Transformation multiple-variable-occurrence-error

3.4 Architecture

This section describes COKO language and the COKO compiler from a programmer’s point of view. All
the prewritten C++ classes as well as parser generated C++ classes are covered in this section. Each
subsection will include brief description of C++ classes as well as OMT like diagrams, which visually
demonstrates class hierarchies.

3.4.1 Transformation

Every transformation is compiled into a C++ class, which is a derived class of CRuleBlock class. For
example, when we compile transformation foo, COKO compiler will generate a C++ class foo, which is
derived from CRuleBlock. CRuleBlock class is a base class for all the transformations and has one
virtually defined method, Exec. Exec method is a trigger for KOLA query transformation. Calling Exec
method of each transformation class will trigger execution of the transformation on KOLA query.

3.4.2 Variable Dependency

Since it is allowed to redefine a variable in a GIVEN statement, it is necessary to keep track of their
dependency to insure the correctness of KOLA rewrite rules. As it was stated before, an equation is of the
form (curr =) E or variable name = E where E is any COKO expression and curr is a pointer to local root

CRuleBlock foo

DEPList

Ancestor List

Descendent List

of the KOLA tree. Note that curr is not the root of KOLA input query, but is a local root of the KOLA tree
in current state. Suppose the input KOLA query for the following transformations is “[(ID o ID) o (ID o
ID) ! 3]”. Invoking the first transformation on the input query will result in changes of the KOLA tree to
“[ID o ID ! 3]”, while invoking the second transformation on the query will result in “variable q2 is not
bound to anything yet” error. This is an expected result as described in previous section.
Variable dependency check is achieved by means of attaching two kinds of dependency lists, ancestor list
and descendent list, to every variable as well as curr. Since curr does not have any ancestor, only
descendent list (inverse dependency list) is required, while any COKO variable needs ancestor list
(dependency list) as well as descendent list (inverse dependency list). For example, curr in the first
transformation has f, g1 and g2 in its descendent list, while f has curr in its ancestor list and g1 and g2 in
its descendent list. Similarly, g1 and g2 has empty descendent list and has curr and f in their ancestor list.
C++ object class DEPList is used in programming to represents dependency list. Every COKO variable is
associated with ancestor and descendent list, which are derived classes from DEPList.

Transformation variable-dependency1
Uses
 foo: f o ID à f
Begin
 GIVEN f ! _O, f = g1 o g2 DO {foo(g2); foo(f)}
End

Figure 3.4.2.1: Transformation variable-dependency1

Transformation variable-dependency2
Uses
 foo: f o ID à f
Begin
 GIVEN f ! _O, f = g1 o g2 DO {foo(f); foo(g2)}
End

Figure 3.4.2.2: Transformation variable-dependency2

3.4.3 Environment and Identifier Search Stack

KOLA tree transformation is achieved by utilizing an environment class which holds information about the
current state of the COKO program and a environment stack (identifier search stack) which stores variable-
to-KOLA tree bindings.

CState is a class for abstraction of the state of COKO program. Usually execution of COKO statement
changes the current environment of the program and the result of all the statement executions is monitored
by means of passing and receiving CState. CState includes a pointer to the local root of KOLA tree (curr),
inverse dependency list for curr, a pointer to the environment stack, and a flag for specifying whether the
statement execution succeeded or not as its data member.

An environment stack is implemented as a stack of a stack. Using a doubly nested stack eases keeping
track of variable dependency and variable scoping. For example, consider the following transformation:

Transformation foo
Uses
 fuse: f o ID à f,
 fuse2: ID o g à g
Begin
 GIVEN f ! _O, f = g1 o g2, g2= f o g3 DO {fuse(f); fuse2(g2); fuse(f)}
End

Figure 3.4.3.1: Transformation foo

The following diagram will help visualizing changes made to the environment stack according to the
execution of the transformation. Each frame of outer stack is used to distinguish different variable scope

CState

and each frame of inner stack is used to hold variable-to-KOLA tree bindings. Every time the program
enters a new variable scope, an empty frame is inserted into outer stack. By executing the first equation of
the GIVEN statement, the variable f to some subtree of current KOLA tree bindings (binding f) will be put
into inner stack. Similarly, execution of second equation will put binding g1 and binding g2 into the inner
stack. Execution of the third equation will put a new binding f and binding g3 into the inner stack. Note that
this new binding f inserted into the inner stack masks old binding f. Since the stack is searched from top to
bottom, there is no need to specially mark old bindings as invisible. A new binding f masks old binding f
automatically and makes old one invisible until the new binding f gets permanently invisible. Execution of
rule fuse requires a new outer stack frame, since the scoping level of body of the transformation and the
scoping level of the rule is different. As it is stated earlier, any variable appears in a rule is local to the rule.
As a result of processing matching part of the rule fuse, another variable binding f will be added to the new
inner stack (a new second frame of the outer stack.) Since the building part of the rule only searches the top
frame of the outer stack, there is no difficulty in finding right binding f and the correctness of the rule
transformation is preserved. After execution of the rule fuse, all the variable bindings created by the rule
will be permanently lost. Since we are using a nested stack structure, there is no need to search for all the
variable bindings created by the rule and remove those bindings from the stack one by one. Instead, we can
simply pop off the top frame of the outer stack and achieve the same effect. An execution of fuse2 on a
variable g2 will add a new outer stack frame for the use of the rule fuse2 and mark the bindings of the
descendant variables of g2 as permanently invisible. As a result of marking a newer binding f invisible, the
older binding f will become visible again.

3.4.4 CPattern

CPattern class represents COKO expressions. This class includes a pointer to the actual COKO expression
tree as well as several methods for manipulating the tree. Two types of methods are worth noting. One is
match and the other is build. There are two different methods for matching. Since multiple occurrence of a
same variable name is only permitted for rules and not for the statements and equations, it is necessary to
have two different matching mechanism. While matchSTM method is used for statement matching, match
method is used for rule matching.

f

g2

g1

f

g2

g1

f

f

g3

f

f

g3

f

g2

g1

f

g

g3

f

g2

g1

f

f

g3

f

g2

g1

CPattern

3.4.5 Rule Matching and Statement Matching

Rule matching method of CPattern checks for match between a KOLA query tree and a pattern tree.
Remember that duplicated variable entry is allowed for a rule. Consider the following rule:

foo: à

 matching part building part

Assume that we apply this rule to a kola tree, "[ID o ID]". When unification occurs in a matching
part, first we store first g and ID pair into the environment stack. Then the next time we face another g
(second one), we search the stack for the matching pair with variable name g and simply check if the
matching pair in the stack has same structure as the matching pair we have. In this case, second pair is (g,
ID) as well and the rule gets fired successfully.

Now assume that we apply the same rule to a kola tree, "[ID o (ID o ID)]". In this case, the rule fails
since the second pair is (g, ID o ID), while the first pair is (g, ID). Note that even in a case of failure, the
rule itself is legal.

Like rule matching method, statement matching method of CPattern checks for match between a
KOLA query tree and a pattern tree. However, no duplicated variable entry is allowed for statement
matching. Consider the following statement:

GIVEN f ! _O,

f = This is an illegal statement (equation.)

 matching part

Assume that we have a query tree, "[ID o ID ! 3]". Variable f gets bounded to "[ID o ID]" and we
have to match "ID o ID" to "g o g" Matching "ID o ID" to "g o g" is perfectly legal in a rule section.
However, it is illegal in statement section of the program. Remember that every variable on the right hand
side of an equation must be a fresh one. However, after we match first g to ID, the second g is no longer
fresh variable. Therefore, checking a duplicated variable entry is additionally required in statement
matching methods.

3.4.6 Rule and Equation

CRule class stores information about KOLA rewrite rules. It includes two CPattern as its data member.
Each CPattern class represents left-hand and right-hand side of the rule respectively. Its Exec method is
used for rule invocation and InvExec method is used for inverse rule invocation. Its Exec method calls

CEqnCRule

g o g g o g

g o g

match method of the first CPattern (left-hand side of the rule) to build variable-to-KOLA tree bindings
and then calls build method of the second CPattern (right-hand side of the rule) to build transformed
query. Analogously, its InvExec method calls match method of the second CPattern (right-hand side of
the rule) and then calls build method of the first CPattern (left-hand side of the rule.)
CEqn class stores information about the equation. It includes a character pointer, which represents left-
hand side of the equation (variable name) and one CPattern, which represents right-hand side of the
equation (COKO expression). Its Exec method not only calls matchSTM method of the CPattern to carry
out matching process and to build up environment which holds variable-to-KOLA tree bindings but also
manipulates dependency list for variables appear in the equation.

3.4.7 Statement

Every COKO statement is implemented with its own C++ class. Each of these classes is a subclass of the
abstract class, CStmt, and is obligated to define a method Exec which takes an environment, CState,
which includes variable-to-KOLA tree bindings and local root of the KOLA tree, as input and produces a
transformed version of this environment as output.

i. CGIVENStmt

The GIVEN statement class includes a list of equations and another statement as its data
members. The Exec method for GIVEN adds variable-to-KOLA tree bindings to its input
environment by calling Exec methods of all equations. In a case of all Exec methods of equations
succeed, it invokes Exec of its statement member sending the newly constructed environment as
its argument.

ii. CMulStmtCon

The conjunctive multi statement (CMulStmtCon) class includes two statements as its data
members. Its Exec method invokes Exec of its first statement member, then invokes Exec of its
second statement member if the first call to Exec reported success. The success value of the
conjunctive multi statement depends on the success value of the first statement member. In other
words, if the call to the first statement reports success, the return value of the conjunctive multi
statement will be set to true regardless of return value of the second statement.

CStmt

CMulStmtCon

CMulStmtDis

CMulStmtSeq

CTopDownStmt CRuleInvokeStmt

CBottomUpStmt

CRepeatStmt

CRuleInvInvokeStmt

CPrintStmt

CFalseStmt

CTrueStmt

CGivenStmt

iii. CMulStmtDis

The disjunctive multi statement (CMulStmtDis) class includes two statements as its data
members. Its Exec method invokes Exec of its first statement member, then invokes Exec of its
second statement member if the first call to Exec reported failure. The success value of the
disjunctive multi statement is set to true when any one of two statements gets succeeded.

iv. CMulStmtSeq

The sequential multi statement (CMulStmtSeq) class includes two statements as its data
members. Its Exec method invokes Exec of its first statement member, then invokes Exec of its
second statement member regardless success or failure of the first statement. The success value of
the disjunctive multi statement is set to true when any one of two statements gets succeeded.

v. CRuleInvokeStmt

Actual rule invocation on a KOLA tree is executed by this statement. This statement includes a
pointer to a rule or transformation and a pointer to a variable as its data member. When its variable
member is not NULL, a rule or transformation is invoked on the subtree bounded to the variable
by calling Exec method of the rule or transformation. When the variable pointer is NULL, the rule
or transformation is invoked on current KOLA tree.

vi. CRuleInvInvokeStmt

Inverse rule invocation on a KOLA tree is executed by this statement. This statement includes a
pointer to a rule and a pointer to a variable as its data member. When its variable member is not
NULL, a rule is invoked on the subtree bounded to the variable by calling InvExec method of the
rule. When the variable pointer is NULL, the rule is invoked on current KOLA tree.

vii. CTopDownStmt

The TopDown statement includes a statement as its data member. Its Exec method invokes Exec
method of the statement member on all the subtrees rooted by every node of current KOLA tree.
The execution of the statement member on the current tree occurs as the tree is traversed in
preorder style. The TopDown statement is true when the execution of the statement member
succeeds on any of the subtrees.

viii. CBottomUpStmt

The BottomUp statement includes a statement as its data member. Its Exec method invokes Exec
method of the statement member on all the subtrees rooted by every node of current KOLA tree.
The execution of the statement member on the current tree occurs as the tree is traversed in
postorder style. The BottomUp statement is true when the execution of the statement member
succeeds on any of the subtrees.

ix. CRepeatStmt

The Repeat statement includes a statement as its data member. Its Exec method invokes Exec of
the statement member repeatedly until the execution of statement member fails on current
environment. Environment is updated each time the statement member is executed. The success
value of the Repeat statement is same as the success value of the first execution of the statement
member.

x. CTrueStmt

The True statement has a statement as its data member. Its Exec method invokes Exec on its
statement member. The return value of this statement is always true.

xi. CFalseStmt

The False statement has a statement as its data member. Its Exec method invokes Exec on its
statement member. The return value of this statement is always false.

xii. CPrintStmt

The Print statement has a string and an integer value as its data members. The integer value
indicates the type of print statement. When the integer value is 1, its string member represents a
variable name. In this case, its Exec method search for a variable-to-KOLA tree binding in the
environment stack with a variable name as a key then prints out the text representation of the
matching KOLA tree to standard output. When the integer value is 2, its string member represents
a text string. In this case, its Exec method simply prints out its string member to the standard
output. When the integer value is 3, its Exec method prints out the text representation of the
current KOLA tree to the standard output.

3.5 Interface

CLASS: CRuleBlock
SYNOPSIS: This class is an abstract base class for rule blocks. When the COKO parser generates C++
code for a transformation, it will make the transformation a derived class of CRuleBlock.

Data Member Description

Methods Description
virtual CState *Exec(CState *s) What to do when executed. It does nothing by

default.

CLASS: CRule
SYNOPSIS: This class is for KOLA rewrite rules.

Data Member Description
CPattern* _lhs Left-hand side of the rule
CPattern* _rhs Right-hand side of the rule

Methods Description
CRule (CPattern*, CPattern*) Constructor for rule representation. Takes two

arguments that are patterns of lhs and rhs,
respectively.

virtual ~CRule() Destructor (virtual)
virtual CState *Exec(CState*) Executes the rule.
CState *InvExec(CState*) Executes the rule "in reverse".

CLASS: CStmt
SYNOPSIS: This class is an abstract super class for COKO statements

Data Member Description

Methods Description
virtual ~CStmt(void) Destructor (virtual)
virtual CState *Exec(CState *s) What to do when executed
virtual CState* updateDEP (char*, CState*,
CIEnvStackDataType*, int)

updates variable dependency list

CLASS: CMulStmtCon
SYNOPSIS: This is a subclass of CStmt. It is used for multiple statements connected by conjunction.

Data Member Description
CStmt *_first Former statement
CStmt *_second Later Statement

Methods Description
CMulStmtCon(CStmt *, CStmt *) Constructor
~CMulStmtCon(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CMulStmtDis
SYNOPSIS: This is a subclass of CStmt. It is used for multiple statements connected by disjunction.

Data Member Description
CStmt *_first Former statement
CStmt *_second Later Statement

Methods Description
CMulStmtDis(CStmt *, CStmt *) Constructor
~ CMulStmtDis(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CMulStmtSeq
SYNOPSIS: This is a subclass of CStmt. It is used for multiple statements connected by sequential
execution semantics.

Data Member Description
CStmt *_first Former statement
CStmt *_second Later Statement

Methods Description
CMulStmtSeq(CStmt *, CStmt *) Constructor
~ CMulStmtSeq(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CTopDownStmt
SYNOPSIS: This is a subclass of CStmt.

Data Member Description
CStmt *_stmt

Methods Description
CTopDownStmt(CStmt *) Constructor
~CTopDownStmt(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CBottomUpStmt
SYNOPSIS: This is a subclass of CStmt.

Data Member Description
CStmt *_stmt

Methods Description
CBottomUpStmt(CStmt *) Constructor
~ CBottomUpStmt(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CTrueStmt
SYNOPSIS: This is a subclass of CStmt.

Data Member Description
CStmt *_stmt

Methods Description
CTrueStmt(CStmt *) Constructor
~CTrueStmt(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: C FalseStmt
SYNOPSIS: This is a subclass of CStmt.

Data Member Description
CStmt *_stmt

Methods Description
C FalseStmt(CStmt *) Constructor
~C FalseStmt(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CRepeatStmt
SYNOPSIS: This is a subclass of CStmt.

Data Member Description
CStmt *_stmt

Methods Description
CRepeatStmt(CStmt *) Constructor
~CRepeatStmt(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CPrintStmt
SYNOPSIS: This is a subclass of CStmt. This class is used for debugging purpose only.

Data Member Description
int _which_print What type of print command is it?
char * _iname Holds variable name or text string.

Methods Description
CPrintStmt(int, char *) Constructor
~CPrintStmt (void) Destructor

CState *Exec(CState *) What to do when executed

CLASS: CGivenStmt
SYNOPSIS: This is a subclass of CStmt. GivenStmt includes of one or more equations

Data Member Description
CEqn* _eqnList[MAXARG] equation list
CStmt *_stmt Given statement body
int _count Number of equations in the equation list.

Methods Description
CGivenStmt(CStmt* ...) Constructor
~CGivenStmt(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CRuleInvokeStmt
SYNOPSIS: This is a subclass of CStmt. It is used for rule invoking statements.

Data Member Description
CRule *_first_r A pointer to a rule.
CRuleBlock *_first_rb A pointer to a transfromation.

Since we can invoke a rule or transformation, we
need two different pointers (one for a rule and
another for transformation.) At any given time, just
one of those two fields is used.

char * _second The variable name we are going to invoke a rule or
a transformation with.

Methods Description
CRuleInvokeStmt(CRuleBlock*, char *) Constructor for transformation invoke
CRuleInvokeStmt(CRule*, char *) Constructor for rule invoke
~CRuleInvokeStmt(void) Destructor
CState *Exec(CState *) What to do when executed

CLASS: CRuleInvInvokeStmt
SYNOPSIS: This is a subclass of CStmt. It is used for inverse rule invoking statements.

Data Member Description
CRule *_first A pointer to a rule.
char * _second The variable name we are going to invoke a rule

with.

Methods Description
CRuleInvInvokeStmt(CRule*, char *) Constructor
~CRuleInvInvokeStmt(void) Destructor
CState *Exec(CState *) What to do when executed.

CLASS: DEPNode
SYNOPSIS: Class for Dependency List.

Data Member Description
char * _value Holds variable names.
DEPNode * _next

Methods Description
DEPNode(char * a) Constructor
~DEPNode(void) Destructor

CLASS: DEPList
SYNOPSIS: Class for Dependency List.

Data Member Description
DEPNode * _iterator An iterator used for traversing the list.
DEPNode * _head A head of the list

Methods Description
DEPList(void) Constructor
~DEPList(void) Destructor
DEPNode * find(const char* a) Find a node with _value = a
void insert(char* a) Insert a new node with _value = a to the list
char* pop(void) Pop off a front node from the list. Return a copy of

_value.
int empty(void) Is the list empty?
void initIterator(void) Initialize _iterator. This method should be used with

getValue method
char* getValue(void) Returns _value of the node that _iterator is pointing

to. After a call to this method, _iterator will point to
the next node. One can call this method repeatly to
get the _value of all the nodes. However, initIterator
has to be called before the initial call to this method.

CLASS: EqnNode
SYNOPSIS: Class for Equation List.

Data Member Description
CEqn * _value Holds an equation.
EqnNode * _next

Methods Description
EqnNode (CEqn * a) Constructor
~ EqnNode (void) Destructor

CLASS: EqnList
SYNOPSIS: Class for Equation List.

Data Member Description
EqnNode * _iterator An iterator used for traversing the list.
EqnNode * _head A head of the list
EqnNode * _tail A tail of the list

Methods Description
EqnList (void) Constructor
~ EqnList (void) Destructor
DEPNode * find(const char* a) Find a node with _value = a
void insert(CEqn* a) Insert a new node with _value = a to the list
CEqn* top(void) Returns _value of the top node
int pop(void) Pop off a front node from the list. Return success

value of the pop.

int empty(void) Is the list empty?
void initIterator(void) Initialize _iterator. This method should be used with

getValue method
CEqn* getValue(void) Returns _value of the node that _iterator is pointing

to. After a call to this method, _iterator will point to
the next node. One can call this method repeatly to
get the _value of all the nodes. However, initIterator
has to be called before the initial call to this method.

CEqn* iteratorValue(void) Returns _value of the node that _iterator is pointing
to. This one is different from getValue in that this
one does not advance _iterator after its call.

CLASS: CEqn
SYNOPSIS: Class for equations

Data Member Description
char * _lhs Stores left hand side of an equation (variable name)
CPattern * _rhs Stores right hand side of an equation (pattern)
int _evalFlag Indicates whether an equation has been evaluated or

not. If an equation is not evaluated then _evalFlag is
0. Otherwise, _evalFlag is 1. We need _evalFlag to
undo any changes that caused by evaluating
equations. We need to know which equation is
evaluated and which is not.

Methods Description
void SetEF(void) Set _evalFlag (_evalFlag = 1)
void UnsetEF(void) Unset _evalFlag (_evalFlag = 0)
CEqn(char*, CPattern*) Constructor
~CEqn(void) Destructor
CState* undoDEP(CState *) Undo any changes on dependency list
void endOfEval(void) Evaluation of equation ended. Unset _evalFlag as it

was.
CState* Exec(CState *) What to do when executed

CLASS: CPattern
SYNOPSIS: Class for COKO expressions

Data Member Description
NonType* rrclass A pointer to an actual COKO expression tree.
CIEnvStackDataType* _savedStackTop Save the position of stack top. This is used for

current pattern only.

Methods Description
CPattern (NonType *) Constructor for pattern representation
virtual ~CPattern(void) Destructor
virtual CState* match(CState*) This method is for rule matching only. Duplicated

variable entry is allowed here.
virtual CState* matchSTM(CState*) This match method is used for statement matching.

No duplicated variable entry is allowed.
CState* DepListCheck(char*, CState*) Dependency List Check.
CState* undoDEP(char*, CState*) Undo any changes made to dependency list.
virtual void SetStackPointer(CIEnvStackDataType*
stackPt)

Sets a stack pointer. This one is used to remember
current stack top.

virtual CState* build(CState*) This method is for building a transformed KOLA
query.

virtual CState* buildCurrent(CState*) This calls buildFromHere methods.
virtual CState* buildFromHere(CState*,
CIEnvStackDataType*)

Instead of searching a environment stack from the
top frame to build transformed query, this method
searches the environment stack from the given
point.

NonType* getNT() Returns a pointer to rrclass. This method is only
used for debugging purpose.

CLASS: CIdent
SYNOPSIS: This class actually wraps triple, (_Parent, _Child, _Which). _Parent points to the parent of
_Child, and _Which specifies which child of the _parent. Actually _Parent field is not used for now. It is
always NULL. Only _Child and _Which is used for COKO compiler. However, _Parent field is kept for
possible future usage.

Data Member Description
NonType *_Parent Pointer to the Parent.
NonType *_Child Pointer to the top node of a KOLA subtree which

the variable matches.
int _Which Which child of the parent?

Methods Description
CIdent(void) Parameterless Constructor
CIdent(NonType *, int) Constructor with child and which
CIdent(NonType *, NonType *, int) Constructor with parent, child and which
~CIdent(void) Destructor
NonType *Child(void) Returns a copy of _Child.
NonType *Child_Look_Up(void) Returns a pointer to _Child.
int Which(void) Returns _Which

CLASS: CIEnvValueType
SYNOPSIS: _key corresponds to the name of the identifier, and _content stores CIdent type entry
matching the _key.

Data Member Description
char *_key Identifier name string
CIdent * _content The content
DEPList * _DEPList Dependency list
DEPList * _InvDEPList Inverse dependency list
CPattern * _pattern Pattern associated with the variable. We need this

for reconstructing job after invoking any rule to the
variable.

Methods Description
int insertDepList(char * a) Insert an item into the dependency list
int cleanDepList(void) Delete all item from the dependency list
int emptyDepList(void) Is dependency list empty?
int findDepList(const char*) Is item in the dependency list?
char* popInvDepList(void) Pop an item from inverse dependency list and return

it
int insertInvDepList(char * a) Insert entry into the inverse dependency list
int cleanInvDepList(void) Delete all item from the inverse dependency list
int emptyInvDepList(void) Is inverse dependency list empty?

int findInvDepList(const char*) Is item in the inverse dependency list?
const char * GetKey(void) Returns _key
CIdent * GetContent(void) Returns _content
DEPList * GetList(void) Returns _DEPList
DEPList * GetInvList(void) Returns _InvDEPList
CPattern * GetPattern(void) Returns _pattern
void SetKey(char *) _key modifier
void SetContent(CIdent *) _content modifier
void SetPattern(CPattern*) _pattern modifier
CIEnvValueType(const char *, CIdent *) Constructor with _key and _content
~CIEnvValueType(void) Destructor

CLASS: CIEnvNodeType
SYNOPSIS: CIEnvValueType's will be stored as linked list. CIEnvNodeType defines structure of each
node in the stack.

Data Member Description
CIEnvValueType * _data The real data item
CIEnvNodeType *_pre
CIEnvNodeType *_next

Methods Description
CIEnvNodeType(void) Parameterless constructor
CIEnvNodeType(CIEnvValueType * data) Constructor for a node with data
~CIEnvNodeType(void) Destructor
CIEnvValueType * GetData(void) Returns _data
void SetData(CIdent*) _data modifier
int insertDepList(char* a) Insert an item into the dependency list of _data.
int emptyDepList(void) Is dependency list of _data empty?
char* popInvDepList(void) Pop an item from inverse dependency list of _data

and return it.
int findDepList(const char*) Is item in the dependency list of _data?
int insertInvDepList(char* a) Insert entry into the inverse dependency list of

_data.
int emptyInvDepList(void) Is inverse dependency list of _data empty?
int findInvDepList(const char*) Is item in the inverse dependency list of _data?
CPattern* GetPattern(void) Get _pattern of _data.
void SetPattern(CPattern*) Modify _pattern of _data.
void initIteratorDEP(void) Call initIterator method of _DEPList of _data.
char* getValueDEP(void) Call getValueDEP method of _DEPList of _data.

CLASS: CIEnv
SYNOPSIS: The wrapping class for the identifier search stack.

Data Member Description
CIEnvNodeType *_head
CIEnvNodeType *_tail

Methods Description
CIEnvNodeType *_findNode(const char *key) Internal search function for modify function
CIdent * find(const char *key) Search function for a given key
CIEnv(void) Parameterless constructor
~CIEnv(void) Destructor
CIEnvValueType * first(void) Returns the top node value

void insert(CIEnvValueType * data) Inserts a given node value into the stack
void erase(const char * key) Find a node with a given key then delete it from the

stack.
void modify(char*, CIdent*) Modifies a given node value in the stack.

CLASS: CIEnvStackDataType
SYNOPSIS: A class for definition of each element in the stack. (Stack is implemented as a linked list.)

Data Member Description
CIEnv *_item _item is also another stack structure
CIEnvStackDataType *_next Next stack element

Methods Description
CIEnvStackDataType(CIEnv *) Constructor
~CIEnvStackDataType(void) Destructor

CLASS: CIEnvStack
SYNOPSIS: Stack class

Data Member Description
CIEnvStackDataType *_data Pointer to the top element in the stack

Methods Description
CIEnvStack(void) Constructor
~CIEnvStack(void) Destructor
void push(CIEnv *) The "Push" operation on the stack.
void pop(void) The "Pop" operation on the stack.
CIEnv * top(void) Returns the top element.
CIEnvStackDataType * getData() Returns _data.
CIEnvNodeType* findNodeDeep(const char*) Search for the entire stack starting from the top.
CIEnvNodeType* findNodeFromHere(const char*,
CIEnvStackDataType*)

Search the stack from the given starting point.

void deleteNodeDeep(const char*) Find a node and delete it.
Search for entire stack starting from the top.

CLASS: CState
SYNOPSIS: CState is a class for abstraction of the state of program. The result of the statement executions
is recorded by passing and receiving CState.

Data Member Description
NonType *_Store A pointer to a current KOLA tree (local root)
CIEnvStack * _IEnv Identifier search stack
DEPList * _InvDEPList Inverse dependency list for current.

Current only needs inverse dependency list.
Dependency list for current is meaningless. (current
has no ancestor)

CPattern *_CurrPattern Pattern in the last matching statement
int _Success Return flag

Methods Description
CState(NonType *, CIEnvStack *, int) Constructor
~CState(void) Destructor
NonType *Store(void) Returns _Store
CIEnvStack *IEnv(void) Returns _IEnv

int ISuccess(void) Returns _Success
void SetStore(NonType *) Modifier for _Store
void SetSuccess(int) Modifier for _Success
CIdent * IFind(const char *) Search only for the top frame (another stack type) of

the stack
int IInsert(const char*, CIdent*) Identifier inserter (inserts into the top frame of the

stack.
void INew(void) Pushes an empty frame (another stack type) into the

stack
void IOld(void) Pop up the top element of the stack
void IModify(char *, NonType *, int) Modifier for a particular identifier
void IDeleteDeep(char *) Delete identifier from the stack.

Search for the entire stack.
CIdent * IFindDeep(char *) Search for the entire stack.
CIdent * IFindFromHere(char *,
CIEnvStackDataType*)

Search for entire stack starting from the indicated
point to down.

CIEnvValueType * IFirst(void); Returns the root node value of identifier search tree.
void IModifyFromHere(char*, NonType*, int,
CIEnvStackDataType*)

Same as IModify but this one searches the entire
stack starting from the indicated point to down.

void SetCurrentPattern(CPattern *) Modifier for _CurrPattern
CPattern * CurrentPattern(void) Returns _CurrPattern
int IInsertDep(const char* key, char* a) Find a node with key then insert a to its dependency

list
int IInsertInvDep(const char*, char*) Find a node with key then insert a to its inverse

dependency list
void IDeleteInvDep(const char*) Find a node with key then retrieve the entire key

values in its inverse dependency list. With all the
retrieved key values, search and delete all the
entries from the stack.

int IEmptyInvDep(const char*) First search the stack with a given key. Is an inverse
dependancy list stored in the found node empty?

void SetPatternDeep(const char * key, CPattern * p) First search the stack with a given key. Modify a
pattern stored in the found node.

CPattern* GetPatternFromHere(const char*,
CIEnvStackDataType*)

First search the stack with a given key. Start
searching from the startingPt. Searching from the
starting point instead of the top of the stack makes
code more efficient. Return a pattern stored in the
found node.

void CInsertInvDep(char*) Insert a char* entry into the _InvDEPList
void CDeleteInvDep(void) Retrieve all the key values from _InvDEPList. With

all the retrieved key values, search and delete all the
entries from the stack.

int CEmptyInvDep(void) Is _InvDEPList empty?
void CCleanInvDep(void) Clean _InvDEPList. Make _InvDEPList as it was

first created. To do so, just delete old _InvDEPList
and assign new DEPList to _InvDEPList.

DEPList* GetInvDep(void) Returns _InvDEPList
void SetInvDep(DEPList* a) Modify _InvDEPList
void DelInvDep(void) Delete _InvDEPList

4. COKO with Semantics

This chapter describes semantic-based extensions to COKO. Our goal is to permit algebraic optimization
transformation to be conditioned on the semantics of the data and queries to which they might be applied.
While this is possible by adding supplemental rule conditions (properties) expressed in code as in Starburst
or Exodus, the intention of this work is to avoid compromising the theorem prover verifiability of rules that
KOLA supports. This is accomplished with extensions to COKO that:
• permit firing of conditioned rewrite rules that are predicated on declarative expressed properties of

queries and data, and
• permit definitions of these properties by way of declarative inference rules.
Thus, instead of using code, COKO properties are expressed with Prolog-like terms that identify
relationships between identified KOLA subtrees. More detailed explanation about the semantic
optimization in COKO can be found in chapter 5 of [Che97].

4.1 Design Overview

The following diagram shows how the extended COKO transformation works. Three different parsers are
used for the extended COKO compiler. First one is a KOLA parser that parses KOLA query in text
representation form into KOLA object tree. Second one is a COKO transformation parser that parses
COKO transformations into C++ classes. Last one is a COKO property parser that parses COKO properties
into series of Prolog rules and facts. Those Prolog rules and facts as well as generated C++ classes together
with prewritten C++ classes and a built-in-rule and schema file are used on KOLA query tree to invoke and
execute KOLA tree transformation.

4.2 Grammar

4.2.1 COKO Transformations

4.2.1.1 OptInfer

This is a section in which one can list COKO properties. This section is determined by a keyword,
“INFERS” followed by one or more COKO property names separated by comma. Every COKO properties
listed in this section is first compiled with COKO property parser to generate Prolog source codes and then
compiled with Prolog engine to produce .ql (extension for Prolog object file) files.

COKO
Parser

KOLA
Query

Transformation

KOLA Query
Parser

 C++
Code Prewritten C++

Classes for
COKO

Transformed KOLA
query

Property COKO Property
Parser

Prolog
Code

built-in-rule and schema
file (btr_schema.pl)

4.2.1.2 Preconditioned Rule

A COKO rule is extended to include preconditioned rules. A preconditioned rule is a form of “precondition
list :: E1 à E2,”where E1 and E2 are COKO expressions. For example, “rd” in line 3 of Figure 4.2.1.1 is a
rule name and “type(A, {_T}), injective(f)” is a precondition list.
1. Transformation Injective
2. Uses
3. rd: type(A, {_T}), injective(f) ::
4. set o iterate(p, f) ! A à iterate(p,f) ! A
5. Infers
6. Injective
7. Begin
8. rd
9. End

Figure 4.2.1.1 Transformation Injective

1. Transformation Injective2
2. Uses
3. rd: type(A, {_T}), injective(f) ::
4. set o iterate(p, g) ! A à iterate(p,f) ! A
5. Infers
6. Injective
7. Begin
8. rd
9. End

Figure 4.2.1.2 Transformation Injective2

A precondition list consists of one or more preconditions separated by comma. Each precondition is a
form of “IDENT (Z1, … , Zn)” where Zi is a COKO expression . Those preconditions are used with Prolog
engine to carry out extra unification needed for constructing right-hand side of the preconditioned rules.

The invocation of a preconditioned rule can be subdivided into three parts. The left-hand side of a rule
(E1) is a matching part where variable-to-KOLA tree bindings are built and stored in COKO environment.
Those bindings stored in the environment are used to construct the right-hand side of the rule later on. The
precondition list is a querying part. Each precondition is used as a Prolog query on a built-in-rule and
schema file together with generated Prolog rules and facts from properties in Infers section. The result of
the unification of preconditions is used for providing extra variable binding which can be used for
construction of the right-hand side of the rule. The right-hand side of a rule (E2) is a building part where a
transformed KOLA query is built using the bindings stored in COKO environment and the bindings
returned from the unification process of precondition list.

For example, processing the left-hand side of the rule rd of Figure 4.2.1.2 will add binding p, binding g
and binding A to the environment. However, we need one more variable binding (binding f) to construct
right-hand side of the rule. We can get this extra variable binding from the result of processing
preconditioned rules.

Not only the preconditions return extra variable bindings but they also have important role deciding the
success value of the rule. For example, all the necessary variable bindings for constructing right-hand side
of the rule “rd” in Figure 4.2.1.1 are built and stored in left-hand side of the rule. Construction of the right-
hand side of “rd” does not require any extra variable bindings from the preconditions. However,
unsuccessful unification of the preconditions sets success value of the rule as false and prevents KOLA tree
transformation from occurring.

4.2.2 COKO Properties

4.2.2.1 Property

A property consists of a set of inference rules. A COKO property is made up of a word, “PROPERTY”
followed by a name for the property, optional OptInfer declaration section and a main body.

In general, a COKO property has the following form:

PROPERTY property-name

OptInfer declaration

BEGIN

PStmt. PStmt. …

END

Figure 4.2.2.1: General COKO Property Structure
(Italics indicate optional parts.)

4.2.2.2 OptInfer

This is a section in which one can list other external properties. This section is made up of word,
“INFERS” followed by one or more COKO property names separated by comma. Every COKO properties
listed in this section is first compiled with COKO property parser to generate Prolog source codes and then
compiled with Prolog engine to produce .ql (extension for Prolog object file) files.

4.2.2.3 Main Body

A main body of a property consists of one or more property statements (inference rules) separated by
period.

4.2.2.4 Property Statement (Inference Rule)

COKO property inference rules are either the form “p.” or “E ==> p.” such that p is a property term (e.g.,
is_injective (f o g)) and E is a logical expression of property terms (e.g., is_injective(f) /\ is_injective(g)).
Compilation of the first form of the rule generates the Prolog fact, “p.” such that p is the Prolog translation

of the property term p. Compilation of the second form of the rule generates the Prolog rule, “p :- Ē.” such

that Ē is the Prolog translation of the logical expression E.
Property terms, which generally have the form,

ident (Z1,…Zn)

such that each ki is a KOLA pattern, are translated into Prolog terms,

ident(¨1,…. ¨n)

where the translation, ¨i of KOLA pattern Zi

• prepends KOLA’s unification variables with an upper case “V” (this is required as Prolog requires all
variables to begin with a capital letter(, and

• translates KOLA’s formers into prefix notation. For example, the function pattern, f o g is translated
into the string compose (Vf, Vg) while invocation (f ! A) is translated into the string invoke (Vf, VA).

Translation of logical expressions into Prolog expressions translates property terms as described above, and
maps:
• conjunctive expressions “p1 /\ p2” to “p1, p2”

• disjunctive expressions “p1 \/ p2” to “p1; p2”

• negation expressions “not (p1)” to “not (p1)”

• equations “p1 = p2” to “p1 = p2”

PROPERTY Injective
BEGIN
 injective(ID).
 key(f) ==> injective (f).
 injective(f) /\ injective(g) ==> injective(f o g).
 injective(f) \/ injective(g) ==> injective(<f, g>).
 injective(f) ==> injective(iterate (_P, f)).
END

Figure 4.2.2.2: Property Injective

For example, the result of compiling property Injective is the set of Prolog rules and facts shown below:

injective(id).
injective(Vf) :- key(Vf).
injective(compose(Vf, Vg)) :- injective(Vf), injective(Vg).
injective(plus(Vf, Vg)) :- injective(Vf); injective(Vg).
injective(iterate(_, Vf)) :- injective(Vf).

4.3 Architecture

4.3.1 Built-in-rule and Schema file

Every transformation that uses preconditioned rule requires a Prolog file, which can act as a database for
Prolog query. This file is called “built-in-rule and schema” file.

4.3.2 CPreCondRule

This is a subclass of CRule class. This class includes a precondition list (CPreCond) in addition to two
CPattern classes, which represent left and right-hand side of the rule. Its Exec method first calls match
method of the left-hand side of the rule and then calls Exec method of CPreCond member. If the matching
process of the left-hand side of the rule and Prolog unification process of the precondition list succeed then
it calls build method on right-hand side of the rule.

4.3.3 CPreCond

This is a class in which Prolog querying process occurs. First we convert all the preconditions stored in
precondition list to an appropriate Prolog query commend. Then we issue the query on a built-in-rule and
schema file and Prolog rules and facts generated by property parser. The unification result from issuing the
query will be parsed and selectively stored into the environment. For example, processing preconditions in
Figure 4.2.1.1 will return binding A and binding f. However, those binding are ignored and not stored into
the environment since there are already binding A and binding f stored in the environment as a result of
matching process of the left-hand side of the rule. Similarly, processing preconditions in Figure 4.2.1.2 will
return binding A and binding f. In this case, binding f will be stored into the environment since it is a new
binding and will be used to construct right-hand side of the rule.

4.4 Interface

CLASS: CPreCondRule
SYNOPSIS: This is a subclass of CRule class. This class represents preconditioned rules.

Data Member Description
CPreCond* _precond precondition list class

CRule CPreCondRule

Methods Description
CPreCondRule (CPreCond*, CPattern*, CPattern*) Constructor
~CPreCondRule(void) Destructor
CState *Exec(CState*) What to do when executed

CLASS: CPreCond
SYNOPSIS: This class is for precondition list. Actual Prolog querying process and result parsing process
occurs in this class.

Data Member Description
char* _RuleBlockName Transformation name in which this precondition list

is defined.
int _id An integer used for differentiating each Prolog

query. For example, a transformation can have more
than one preconditioned rule defined in its USES
section. In this case, _id is used as index number for
different queries created by different preconditioned
rules. The query from the first preconditioned rule
will be named query0. The query from the second
preconditioned rule will be named query1, and so
on.

CondList* _condList precondition class list

Methods Description
CPreCond(char* a ...) Constructor
~CPreCond(void) Destructor
CState *Exec(CState *, NonType*) What to do when executed

CLASS: CCond
SYNOPSIS: This class is for a precondition.

Data Member Description
char* _condName Stores precondition name
NonTypeList* _varList Variable list
int _varcount # of variables in this precondition
int _built_varcount # of processed variables

Methods Description
CCond(char * a ...) Constructor
~CCond (void) Destructor
int allDone(void) Are all variables built yet?
CState* build(CState*,NonType*) build environment
CState *Exec(CState *) What to do when executed

CLASS: CondNode
SYNOPSIS: Class for Condition List

Data Member Description
CCond * _value value
CondNode * _next

Methods Description
CondNode(CCond * c) Constructor
~CondNode(void) Destructor

CLASS: CondList
SYNOPSIS: Class for Condition List

Data Member Description
CondNode * _iterator An iterator used for traversing the list.
CondNode * _head head of the list
CondNode * _tail tail of the list

Methods Description
CondList(void) Constructor
~CondList(void) Destructor
void insert(CCond* a) Insert a new node with _value = a to the list
int pop(void) Returns _value of the top node.
CCond* top(void) Returns _value of the top node.
int empty(void) Is the list empty?
void initIterator(void) Initialize _iterator. This method is used with

getValue method.
CCond* getValue(void) Returns _value of the node that _iterator is pointing

to. After a call to this method, _iterator will point to
the next node. One can call this method repeatly to
get the _value of all the nodes. However, initIterator
has to be called before the initial call to this method.

CLASS: NonTypeNode
SYNOPSIS: Class for NonType List

Data Member Description
NonType * _value value
NonTypeNode * _next

Methods Description
NonTypeNode(NonType * c) Constructor
~NonTypeNode(void) Destructor

CLASS: NonTypeList
SYNOPSIS: Class for NonType List

Data Member Description
NonTypeNode * _iterator An iterator used for traversing the list.
NonTypeNode * _head head of the list
NonTypeNode * _tail tail of the list

Methods Description
NonTypeList(void) Constructor
~NonTypeList(void) Destructor
void insert(NonType* a) Insert a new node with _value = a to the list
int pop(void) Returns _value of the top node.
NonType* top(void) Returns _value of the top node.
int empty(void) Is the list empty?
void initIterator(void) Initialize _iterator. This method is used with

getValue method.
NonType* iteratorValue(void) Returns _value of the node that _iterator is pointing

to.

NonType* getValue(void) Returns _value of the node that _iterator is pointing
to. After a call to this method, _iterator will point to
the next node. One can call this method repeatly to
get the _value of all the nodes. However, initIterator
has to be called before the initial call to this method.

5. Tdraw

Tdraw is a graphical user interface for KOLA query transformation. Even thought there is no written
documentation about this program, any programmer with fair knowledge about Motif and UNIX
programming can easily understand tdraw program. (It is written by a Ph.D. student in Computer Science
Department at Brown University.)

Assume that the compilation of the following transformation results in transformation executable
named testRepeat. One can run this executable with a query file to see how the query is transformed as a
result of invocation of transformation repeat-test on input query. However, since COKO is a command line
based program, it is hard for a user to visualize input query tree as well as transformed result query tree by
looking at the text representations of the KOLA trees.

Transformation repeat-test
Uses

 foo: (p oplus f) oplus g à p oplus (f o g)
Begin
 GIVEN p ? _O DO * foo (p)
End

Figure 5.1.1.1 Transformation repeat-test

Tdraw graphically displays KOLA query trees and helps user to visualize actual KOLA tree
transformation. It first displays input query tree and then displays transformed query tree as the COKO
transformation occurs. To run tdraw program, type tdraw followed by a transformation executable name
and a query file name at the commend line. For example, by running tdraw program with testRepeat on a
query input “((pred(p, NULL) oplus Fun(f, NULL, NULL)) oplus Fun(g, NULL, NULL)) oplus
Fun(h, NULL, NULL) ? 3”, one can see the input query tree graph and result query tree graph. The
followings are screen-captured pictures for the repeat-test example.

Input KOLA query tree Transformed KOLA query tree

6. Directory

Since there are a number of files involving the COKO compiler project and they are spread over a number
of directories, it is advised to anyone who deals with this project to become familiar with the directory
hierarchy and all the related files before starting to work on the project.

When one first starts to work with KOLA/COKO related project, there are one main directory one
might want to take a very careful look at. /pro/oodb/cokokola/ directory and its all sub-directories have all
the project related files. These directories have a stable version of the project and should be remained stable
all the time. One should not make any changes in those directories unless every source code modification
made to the files in these directory is bug free and does not conflict with existing projects.

All the KOLA/COKO files have RCS directories and RCS files related to them. Using RCS is a way of
preventing possible conflict among a group of people working on the same file. First thing needs to be
done, when one begins to modify KOLA/COKO files, is making one’s own working directory that have
same directory hierarchy as /pro/oodb/cokokola/src. Then one have to make RCS links in the working
directory referring to the original RCS directories.

After modifying working files, one should make sure that the codes are working and bug free. Any
files checked back in original RCS directories must be a final bug free version.

Followings are short description of the directories.

• /pro/oodb/cokokola – COKO/KOLA project main directory
• /pro/oodb/cokokola/bin – COKO/KOLA related Programs (executable files)
• /pro/oodb/cokokola/src – Source codes
• /pro/oodb/cokokola/released – Released version of programs (compressed and tar’d files)
• /pro/oodb/cokokola/doc – documentation
• /pro/oodb/cokokola/data – transformation examples

7. References

[Che97] Mitch Cherniack. Building Query Optimizers With Combinators. Dissertation Proposal, Brown
University Department of Computer science, December 1997.

[CZ96] Mitch Cherniack and Stan Zdonik. Rule Languages and Internal Algebras for Rule-Based
Optimizers. Proceedings of the ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, June 1996.

[CZ98a] Mitch Cherniack and Stan Zdonik. Inferring Function Semantics to Optimize Queries. Submitted
to VLDB '98.

 [CZ98b] Mitch Cherniack and Stan Zdonik. Changing the Rules: Transformations for Rule-Based
Optimizers. Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle,
WA, June 1998. (To Appear)

