Design Documentation — COKO Compiler

Joon Suk Lee

May, 1998

1. Introduction

Since the processing times between two equivalent queries can vary and users of the database system
usualy input aquery that is not in the most efficient form, it is the responsibility of the system to transform
the input query into an equivalent query that can be computed more efficiently. Query-to-query
transformation is a query optimization technique that is widely used in object databases as well as relational
databases. However, not all transformations preserve the equivalency between two queries (input query and
output query) and produce more efficient output queries. Correctness and efficiency are the metric, which
determine the usefulness of transformations.

Rule-based optimizers and optimizer generators use rules to specify transformations of queries. Rules
act directly on query representations, which typically are based on query algebras. KOLA is a combinator-
based a gebra rather than a variable-based algebra. While variable-based algebras use variables to name
manipulated data, combinator-based does not use variables. Combinator-based algebras have several
advantages over variable-based algebras. Optimizers that use variable-based algebras require
supplementary codes to express rules and these code fragments make rules difficult to understand and
prove correct (correctness of the rules depend on the correctness of the code fragments.) Details of the
KOLA algebra and its advantages over variable-based algebras are described in [CZ96].

Rewrite rules are declarative expressions of transformations. Rewrite rules consist of matching part
where variable unification occurs and building part where transformed queries are constructed. COKO isa
language with which to express transformations that transform KOLA queries. A COKO transformation is
aset of KOLA rewrite rules as well as afiring algorithm controlling their firing. The COKO compiler
described here can compile COK O transformations and generate C/C++ code, which then can be compiled
and executed to carry out actual transformations of KOLA queries. This documentation describes the
details of COKO and COKO compiler.

2. Background
2.1 KOLA

KOLA isavariable-free query representation for rule optimizers. By removing variables from query
representations, KOLA avoids the problems that variable-based algebras introduced. KOLA query
representations do not require supplementary code fragments for rewrite rules and therefore do not impede
the formation of declarative rules. The KOLA operators are listed in the following table. Most parts of the
table are taken straightly from the paper [Che97]. (A few more KOLA operators are added.) A more
detailed description of KOLA and the KOLA data model can be found on section 3 of the paper [Che97].

Operator [Description

Basi ¢ Function Primtives

ID identity

#1 projection (1)
#2 projection (2)
SHI FTL Shift Left

SHI FTR Shift Right
TW ST twi st operator

| Senanti cs
id! X=X
#1 1 [Xy]=X
#2 1 [Xy]l=y

shiftl | [x[y,Z]] =[[x Y], 2]
shiftr v [[xy],2 =[x[Y, 2]
twist ! [xy]l=[y,X]

Int and Fl oat

Function Primtives

(i and j denote integers or floats)

ABS absol ute val ue
ADD addi tion

M NUS subtraction
MUL mul tiplication
DI V di vi si on

MOD nmodul us

SQUARE squaring

I NVERSE reci procal

abs ! i=|i|

add ! [i,]j]=i+]
mnus ! [i,j]=i-j
mul ! i, j]=i%*]
div ! [i,j]=il]
mod ! [i,j]=imod |
square ! I=i*i
inverse | ==

String Function Primtives
(s and t denote strings (array of chars))

AT string indexing
CONCAT string concatenation
PREFI X string prefixing
SUBSTR substring

at ! [s,i]=4i]

concat ! [sit]=s||t
prefix ! [s,i]=91.i]
substr ! [s]i, j]]=4di...]]

Bag Function Primtives
(A and B denote bags. X denotes a bag of bags. For any type t,

[[t]ldenotes the type of bags whose el ements are all of type t)

ELT el enent extraction
SINGLETON singl eton

SET duplication renoval
FLATTEN bag flattening

PW pair with

CARTPROD cartesi an product

UNI bag uni on

I NT bag i ntersection
D F bag difference

I NS insertion

elt 1 [¥=x

singl eton ! x=||x||
set 1 A={x|xl A
flatten ! X = ”(X)A(X)'X(A) [xT A AT X”

pw ! [X, B] :”([X, y])B(y) |yT B”
cartprod !

[AB]=|([x y])*** |xI Ayl B

uni ! [A B]:”(X)A‘X)*B‘y) [xT AXI B||

int ! [A B]=||(x)mi”(A‘X)'B‘y)) [xT AXI B||
dif 1 [A B]=||(x)max(A‘X)'B‘y)'°) |xT A XxI B||
ins ! [X,Al=uni ! [||X||A]

Qper at or

| Descri ption

| Senanti cs

Basi ¢ Function Forners

PCON

conposition
pai ri ng

product s

constant function
curried function

condi tional function

partial conditional
function

(fog) ! x=f 1 (g ! X
(f,g)r x=[f! x,g! X

(f = gtixyl=[ftx gty

K, (01 y=x
C,(f,x)ry="f 1 [xV]

i flx if p?x
con(p, f,g)! x = %g!x, else

il fix|l, if p?x
pcon (P 1)t xll= i "y

Query Function Formers
(* Ais assuned to be commut ative and associ ative and the expression,
XA vyis equivalent to A! [XY].)

| TERATE
| TER

JON

LSJAO N

RSJAO N

NJO N

UNNEST

PFOLD

FOLD

iteration

iteration2

join

. semjoin

r. semjoin

nest join

unnest

partial aggregate

total aggregate

iterate(p, f)1 A=|[(F1x)*® |xI A p?X||
iter (p,f)![xB]=

(DYDY [yT B, pAx V|l
join(p,f)!'[AB]=

[(FIIx YD) B0 | xT Ayl B, p7x V]|l
Isjoin(p,f)![AB]=

1 (F1)* | xT A p?x,Bl ||

rsjoin(p, f)! [AB]=

(i)™ [yl B, pAy, ALl
njoin(p,g,h)! [AB]=

{Dh 1@y [yl B, pAx y1IIxT A
unnest (f,g)! A=

ICFx yD 2O |xT AB=(g!x),yl B
pfold(f,A)! A=

i (fIx)A.A(flx)

fsuch that A=]|x,,....x, [l n31 *

fold(x,)! A=
. ! f
P AL DAL (1)

i R

= | P

Operator [Description | Senanti cs

Basic Predicate Primtive
(x and y are the sanme type)

EQ equal ity eq ? =

(pA 1)?2x=pAT! %)

& conj unction (p&q)?x=(p?x) U(q?x)
| di sj unct i on (Pla)?x=(p?x) U(q?x)
~ negation ~(p)?X=3(p?x)
| NV i nver se inv(p)Ax yl=p7y, X
’ product s (p” 9)7x Y] =(p?x)U(q?y)
Kp constant predicate Kp(b)'?XZb
C, curried predicate Cp(p, X)?y = p7AX, Y]
Query Predicate Forners
exi st s $ exi sts (p)?A=$x(xI AUPp?x)
forall " forall (p)?A="x(xI AP p?x)
ex $, ex (p) 7% B] =$y(yl BUp7x y])
fa " fa(p)?xB]="y(yl BP p?xyl)

Tablel: KOLA Operators

2.2 COKO

A rewriteruleisof theform K1 b K2 such that both K1 and K2 are KOLA expressions supplemented with
unification variables. Note that these variables are not query variables. They stand for arbitrary KOLA
subexpressions and are part of the rule language rather than the query language. The term COKO
expression will be used to denote rule language variables together with KOLA expressions.

While arewrite rule applies to a particular subtree of a query expression, it is often necessary to
express amore global technique for transforming queries. For example, we might want to apply a given
rewrite to all possible subtreesin a given expression, or we might want to express a technique for
unnnesting correlated subqueries. In each of these cases, something more than rewrite rulesis required. In
order to explicitly program, algorithms for expressing complex transformations, COK O was devel oped.
COKO uses rules as primitives and surrounds their firing with built-in control structures, making rule
sequencing very directed and efficient.

2.3 COKO Compiler
We have implemented a compiler for COKO that generates C++ classes from COK O transformations.

Objects of these generated classes manipulate KOLA trees according to the firing algorithm of the
compiled COKO transformation. The compiler’s design is purely object-oriented. The current version of

the compiler used several UNIX tools including Lex/Y acc (Bison/Flex), STL and Sicstus Prolog in its
development.

3. COKO without Semantics
3.1 Design Overview

The following diagram shows the context within which COKO transformations are used. A KOLA parser

parses a KOLA textual query into a KOLA parsetree. A notation“[1D o ID]” will be used to denote a

parse tree equivalent of “I D o | D’ through out this documentation. For example, a KOLA textual query,
“IDoID! 3 isparsedinto“[IDo ID! 3]” by the KOLA parser. The COKO compiler parses COKO

transformations into C++ classes. Computation of these C++ classes then act on the parse treesto

mani pulate them into derived forms.

KOLA Query | 3| KOLA Query Parser

Prewritten C++
Transformation p| COKO Parser C++ Code Classes for COKO

Transformed KOLA query

3.2 Grammar
3.21 SuccessValueand Current Tree

As stated before, rewrite rules are declarative expressions of transformations. By applying these rewrite
rules successively to a query, one can achieve a desired query-to-query transformation. A single action of
applying arewrite rule to aquery is called rule firing. While each rewrite ruleis treated as alemmathat is
assumed to be always true, each rule firing has a success value. The success value tells whether arulefiring
is succeeded or not. For example, firingarule“f o g 2 g” onaKOLA tree, “[1D o 10" will resultina
successful transformation of the input tree to the output tree, “[1 00 . In this case, the success value of the
rule firing is set to be true. Note that even in a case, which the ruleitself is algebraically absurd, the
correctness of the rule has no effect on determining the success value of the rule firing. The correctness of
rules can be verified by the theorem prover. (A more detailed explanation of the rule firing will be stated in
later section.)

KOLA transformations are achieved by utilizing and manipulating the current tree (curr). The current
treeisentirelocal KOLA tree. More accurately, curr isadefault unification variable that always gets
matched with alocal root of KOLA tree. For example, suppose that we have an input KOLA tree, “[1D o
ID! 3]” and aCOKO transformation which includes arule called fuse. If fuseis successfully fired on the
subtree, “[1D o 1 D" then the rule firing of fuse will resultsin the transformed tree,”[1 O 7. When we first

enter the transformation, current treeis“[1ID o 1D ! 3]”. However, aswe enter the matching part of the
rule fuse, the current tree becomes“[ID o 10 ". Similarly, by the time rulefiring is completed, the current
treeis“[10 ". By modifying and passing the current tree between transformations and between rewrite
rules, the result of rule firing and transformation is preserved.

3.2.2 Transformation

Transformations are the basic building blocks of COKO. A transformation consists of a set of KOLA
rewrite rules accompanied by afiring algorithm that specifies their firing. A COKO transformation is
specified by the keyword, “transformation” followed by the name of the transformation, optional
declarations and a main body. The declaration section consists of two parts: a rule declaration part
(“USES’ part) and a property inference part (“Optlnfer” part). “Uses’ section defines KOLA rules that
can be fired in the body of the transformation. COK O properties are reviewed in chapter 4. The main body
includes afiring algorithm for the use of KOLA firing rules. The body of transformation is delineated by
the keywords, BEGIN and END.

In general, a COKO transformation has the following form:

TRANSFCRMATI ON t r ansf or mat i on- nane
Wses decl aration
ot Infer declaration

BEG N

End

Figure 3.2.2.1: General Transformation Structure
(Italics indicate optional parts.)

An example COKO transformation is shown in Figure 3.2.1.2. The “Uses” declaration section includes
lines 2 and 3 of Figure 3.2.1.2. Lines 4 to 6 of Figure 3.2.1.2 form the main body of the transformation.
Notice that line 3isa KOLA rule, which gets fired in the main body (line 5). The “Optinfer” declaration
not used in this example will be reviewed in next chapter.

The transformation shown in Figure 3.2.1.2 applies the rule, fuse to an input query. For example,
successful rule firing of fuse onthetree, “[1D o 10" will result in transformed query tree, “[100 ”.

Transfornation S npl el
Wses

fuse: go D> g
Begi n

fuse
End

OUTAhW NP

Figure 3.2.2.2: Transformation Simplel
323 Uses

In this part of atransformation, one lists KOLA rewrite rules and/or other transformations used in the
transformation firing algorithm. This section isintroduced by the keyword, “Uses’ followed by one or
more KOLA rewrite rules and/or auxiliary COK O transformation names. Every rule must be proceeded by
anameand ‘:’. For example, “f use” inline 3 of Figure 3.2.3.2isarulename, and“g o ID - g" isarule.
When auxiliary transformation are declared in the section, only the name of the transformation is needed.
For example, “S npl e1” on line 5 of Figure 3.2.3.2 is an auxiliary COKO transformation name. All the
identifiers used in a Uses section must be distinct. Also, notice that a comma separates each rule.

In general, the syntax of a“Uses’ declaration section is as follows:

<USES Section> = USES <Useli st >
<WsesList> 2 <lselList> , <Use>
<se> 2 <Rul e-Nanme> : <Rul e>
<Use> = <Transfor mati on- Nane>

Figure 3.2.3.1: Uses section Syntax

such that <Rule-Name> and <Transformation-Name> are identifiers which indicates rule names or
auxiliary COK O transformation names.

Transfornati on S npl e2
Uses
fuse: goID = g,
fuse2: IDog =2 g,
S npl el
Begi n
S npl el
End

NG~ W N

Figure 3.2.3.2: Transformation Simple2
3.24 Main Body

A main body of atransformation includes a firing algorithm for controlling the firing of KOLA rules. For
example, line 5 of Figure 3.2.2.2 indicates that rule “f use” getsfired on current KOLA tree. A main body
of atransformation consists of the keyword “Begin” followed by optional Stmts (statements) and the
keyword “End.” The success value of the body determines the success value of the transformation.

3.25 RuleFirings

A ruleisof theform “E1 - E2,” where E1 and E2 are rule expressions denoting arbitrary KOLA
predicates, functions, Booleans, or objects. A rule expression isany KOLA expression (function
expression, predicate expression, Boolean expression, or object expression), potentially with variables and
anonymous variables (DON’T CARESs.) Notice that E1 and E2 are not KOLA expressions (KOLA is
variable-free algebra and KOLA expressions do not include any variables) but COKO expressions, which
include unification variables. The terms, pattern, COKO expression and rule expression can be used
interchangeably to denote same thing.

The left-hand side (head) of arule (E1) isamatching part where variable unification between KOLA
trees and rule expressions occurs. The variables in rule expressions get matched with some subtree of the
current KOLA tree. Asaresult of unification, variable-to-KOLA tree bindings are built and stored in
COKO environment. The right-hand side (tail) of arule (E2) isabuilding part where a transformed KOLA
guery is built using the bindings stored in COKO environment. By replacing variables in right-hand side of
the rule to a matching subtrees, the transformed KOLA tree is built. COKO environment and variable-to-
KOLA tree bindings are explained fully in later sections.

3.2.6 Single Statements (Stmt)
A statement is a single action that affectsa KOLA tree in place. Also, a statement returns a Boolean value
that indicates whether or not the statement was successful. A statement can be one of the following forms.
i IDENT

IDENT names either arule or atransformation. A named rule must be declared in the USES

section of the current transformation. A named transformation must be either the name of the
current transformation or a name of another transformation declared in the USES section. Only

rules named in the current transformation can be referenced in the body of the transformation. For
example, Transformation Badl of Figure 3.2.6.1 isnot alegal transformation since fuseis not
defined in Transformation Badl. Transformation Bad2 is not legal because fuse? is not defined in
the USES section of the transformation.

Transf or mat i on Badl
Uses
S npl el
Begi n
fuse
End

Figure 3.2.6.1: Transformation Badl

Tr ansf or nat i on Bad2
Uses

fuse: goID=>g
Begi n

fuse2
End

Figure 3.2.6.2: Transformation Bad2

The semantics of a named statement is to transform the current KOLA tree according to the rule or
transformation named IDENT. If IDENT names arule, a successful firing of the rule sets success
value of the statement to TRUE and has a side effect of changing the form of current KOLA tree.
An unsuccessful firing of the rule sets success value of the statement to FAL SE and has no effect
on the current KOLA tree. If IDENT names an externally defined transformation, the statement’s
success value is equal to the success value of the external transformation named IDENT.

ii. IDENT (variable name)

Thisis amost same as statement type i., except that arule or transformation named IDENT is not
applied to the current KOLA tree but a subtree of the current tree that is pointed by a variable
name. For example, the following transformation, Apply-fuse applies arule fuse to the tree that is
matched with f. Suppose that the current treeis“[ID o ID ! 3]”. Asaresult of executing the
satement, “QVEN f | _O DO fuse(f)”, fismatched withthesubtree, “[ID o 10 ". (The
GIVEN statement will be fully explained later in this chapter.) By applying the rule fuseto f, f
will bereplaced by “[1 0} ” and the current tree will bereplaced by “[ID ! 3] ”.

Transfornati on Appl y-fuse

Uses

fuse: go D> g
Begi n

AVENTf | _ODOfuse(f)
|End

Figure 3.2.6.3: Transformation Apply-fuse
iii. [KOLA rewriterule]
Thisis same as statement type i. where IDENT named arule, except that the rule is expressed

directly within [...]. For example, the following transformation is equivalent to transformation
simplel in Figure 3.2.2.2.

Transfornati on Sane-as-S npl el
Begi n

[go D= g]
End

Figure 3.2.6.4: Transformation Same-as-Simplel

A defined rule in a USES section works as a macro. By naming and defining arule in the USES
section of a COKO transformation, one can use the same rule more that once without the need for
writing out the same rule every time one wants to use the rule. Even in a case where a defined rule
isused oncein abody, it is preferred to use a named rule for readability. For example,
transformation CNF (Figure 3.2.6.5) is equivalent to transformation CNF-equivalent (Figure
3.2.6.6). It is not only much easier for COKO programmers to write transformation CNF than
transformation CNF-equivalent, but also easier for readers to understand transformation CNF than
transformation CNF-equivalent.

Transf ormati on ONF

Uses
involution: ~ (~(p) -->0p,
deMrganl: ~(p &q) -->~(p) | ~ (q),
deMrgan2: ~(p| q -->~(p) &~ (q),
ONFSel

Begi n

TD {involution || deMorganl || deMrgan?};
BU {i nvol uti on};
O\FSel

End

Figure 3.2.6.5: Transformation CNF

Transfor nati on O\F- equi val ent
Uses
O\FSel
Begi n
T {[~(~(p)) -->p]
(AR R R R ¥
au (oD - B3 |
O\FSel

End

Figure 3.2.6.6: Transformation CNF-equivalent
iv. [KOLA rewriterule] (variable name)

Thisis same as statements of typeii., where IDENT named arule, except that the rule is defined
directly within[...].

V. IDENT INV

IDENT INV describes the “inverse” (i.e., right-to-l€eft) firing of arule. This statement is only legal
if IDENT namesarule. (i.e., Inverting atransformation is not allowed.) Also, rules can only be
fired inversely if variables used in the head (left-hand side) of arule are also used in the tail (right-
hand side) of the rule. For any invertibleruler: Q --> Q', r INV isequivaent to theruler': Q' -->
Q. For example, it is possible to invert rulel in transformation Inverse of Figure 3.2.6.7. The
inverted form of rulel is equivalent to rule3. However, it is not possible to invert rule2 because the
right-hand-side of the rule (tail of the rule) has only one variable (g) while left-hand-side of the
rule (head of the rule) has two (g and f).

Transfornmati on | nver se
Uses

rulel: golID=> g,
rule2: #1! [f, g 2> f ,
rued g=>golD
Begi n
rulel NV
End

Figure 3.2.6.7: Transformation Inverse

vi. IDENT INV (variable)

Thisis amost same as statements of type v.. The only differenceisthat arule named IDENT is
not applied to the current KOLA tree but applied to a subtree of the tree that is pointed by a
variable name.

Vii. Stmt: PRINT (variable/ string/ CURRTREE)

This statement is useful for debugging purposes only. The success value of this statement is
always true and execution of this statement has no effect on the current KOLA tree. PRINT V (V
isavariable) will print out atext representation of the KOLA treethat isbound to V. PRINT
CURRTREE will print out atext representation of the current KOLA tree. PRINT string will
print out explicitly named strings. To illustrate, if the current treeis“[1D o ID ! 3] ", the output
of the transformation,

Transfornmation Print-Satenents
Begi n
PR NT “hel l o world\n”;
QVENf | ODOPRNT f;

PRNT “\n”

PR NT QURRTREE
End

Figure 3.2.6.8: Transformation Print-Statements
will be

Hell o world
IDo ID
IDoID! 3
viii. GIVEN Egns DO Stmt

Rules and transformations need not to be fired on entire KOLA trees and can instead be fired on
isolated subtrees of KOLA trees. These subtrees are identified by matching patterns (COKO
expressions) to the current KOLA tree using the GIVEN statement. A pattern resembles a KOLA
expression, but can include pattern variables and anonymous variables that get bound by
matching. By naming variables as arguments in subsequent rule or transformation firings, the
subtrees bound to these variables can be selectively transformed. Variable matching occursin
Eqgns clause of the GIVEN statement. The semantics of the GIVEN statement islike this:

Process Egns
If mat ching process of Egns succeeded then execute Stnt.

The success value for the GIVEN statement istrueif al equationsin Eqns clause successfully
match and a subsequent statement (Stmt) succeed.

iX. TD Stmt / BU Stmt

Query trees can be traversed in bottom-up (postorder) or top-down (preorder) fashion. For any
statement S “BU S’ performs a bottom-up pass of the KOLA query tree executing Son every
subtree. (Analogoudy, “TD S’ executes S on every subtree during a top-down pass of the KOLA
query tree.) Both traversal statements return a success value of true if S succeeds when fired on
some subtree visited during the traversal.

Unlike GIVEN statement, TD and BU can not be fired on isolated subtrees of the current
KOLA treeinstead they are always fired on entire KOLA tree. For example, the following
statement is not alegal COK O statement. Whilefirst foo(f) is alega statement, the second oneis
an error.

AQVENf ! Q f =go hDO{foo(f); TDfoo(f) }
X. Stmt: TRUEv Stmt / FAL SEv Stmt

This statement does nothing to the current tree but it sets return value of the statement. For any
statement S “TRUEv S’ aways returns true regardless success or failure of S Likewise,
“FALSEv S’ aways returns false. For example, statement “TRUEv TD GIVENf! _O,f=goh
DO foo (f)” will always succeed regardless of input query. Similarly, “FALSEv TD GIVEN f !
_O,f=gohDO foo (f)” will alwaysfail regardless of the input query.

Xi. Stmt: REPEAT Stmt

For any statement S “REPEAT S’ or “* S’ will fire Srepeatedly until Sno longer succeeds. The
success value of REPEAT statement depends on the success value of the first firing of S. For
example, firing the following transformation on aKOLA tree, “[((((IDo ID o ID o 1D o
1D ! 3]” will result in transformed KOLA treg, “[ID ! 3]".

Transf or nati on Repeat - Test

Uses

fuse: go D> g
Begi n

AQVENTf ! _ODO* fuse(f)
End

Figure 3.2.6.9: Transformation Repeat-Test

3.2.7 Compound Statements (Stmts)

A compound statement (Stmts) consists of two statements (Stmt) combined in one of three ways.
Two statements can be connected sequentially by semicolons. (Sequential Multi Statements)
Two statements can be connected by conjunction. (Conjunctive Multi Statements)

Two statements can be connected by digunction. (Digunctive Multi Statements)

i. Sequential Multi Statements (S;; S)

Semicolons separate two statements that are to be executed in sequence. That is, the semantics of
the sequential compound statement, S;; S; is:

Execute S,.
Execute S,.

The above compound statement has a success value semantics of true if any one of two statements
has a success value semantics of true.

ii. Conjunctive Multi Statements (S, -> S;)

“->" (THEN) separates two statements that are to be executed conditionally on success of
preceding statements. That is, the semantics of the conjunctive compound statement, $,2 S, is:

Execute S,.
If S succeeds then
Execute S,.

A conjunctive compound statement, S,2> S istrueif S, istrue.

iii. Digunctive Multi Statements (S, ||)

“|I" separates statements that are to be executed conditionally on the failure of preceding
statements. That is, the semantics of the digunctive compound statemen, S, || S; is:

Execute S,.
If S fails then
Execute S,.

The above statement has a success value of trueif either S; or S, has success value of true.
3.28 Eqgns

Eqgnsisaseries of equations separated by comma. Egnsis true only when all the equations listed in Eqns
aretrue.

3.29 Equations

Equations are used for building environment for COKO. All equations are of the form, “variable = E,”
where E is a COK O expressions. Equations of the form, “E” should be treated as a specia case and should
be interpreted as“(curr =) E” where curr isadefault variable denoting current KOLA tree. The processing
of an equation results in an attempted match of E with the tree previously bound to variable. Successful
matching of an equation adds the variables appearing in E (and the subtrees that they match with) to the
environment and sets the equation’ s success value to true. For example, the successful processing of Eqns
clause of the GIVEN statement of the following transformation will adds binding f, binding f1, binding f2
and binding g to the environment.

Transf or nati on Equat i on- Exanpl e

Uses
fuse: goID=>g
Begi n
QVENf | Q
f =flof2
f2=golID DO fuse (Qg)
End

Figure 3.2.9.1: Transformation Equation-Example
3.3 Variable Scoping for COKO
This section describes variable scoping rule for COKO language. This section includes two main
subsections. In the first half of the section, general scoping rule of COKO is explained while the second
half is dedicated for explaining one specia case of the scoping rule.
331 General Case.

3.3.1.1 Transformation

All the variables appear in atransformation are local to the transformation.
All the variable appearsfirst time in a transformation should be a fresh one.

For example, variable f in transformation foo of Figure 3.3.1.1 should not be visible in transformation boo
of Figure 3.3.1.2. In other word, f in transformation foo is not the same as f in transformation boo.

Transfornati on foo
Uses
boo
Begi n
AQVENf ! _O DO boo(f)
End

Figure 3.3.1.1: Transformation foo

Tr ansf or nat i on boo
Uses

fuse: goID=>g
Begi n

AVENf o f1 DO fuse(f)
End

Figure 3.3.1.2: Transformation boo
3.3.1.2 Rule

All the variables appear in arule (in a Uses section) are local to the rule.

All the variable appearsfirst timein arule should be a fresh one.
For example, f in the rule fuse (in the Uses section) of transformation Variable-Scopel of Figure 3.3.1.3
should not be visible outside of the rule. In other word, f on line 3 is not the same asf on line 6. Moreover,
finline 3isnot the sameoneasf inline 4.

1. Transformation Vari abl e- Scopel
2. Wses

3. fuse: f o ID=> f,

4. fuse2: IDof > f

5. Begin

6. AQVENTf | _ODOfuse(f)

7. BEnd

Figure 3.3.1.3: Transformation Variable-Scopel
3.3.1.3 Statement & Equation

Every variable newly appearsin abody of the transformation islocal to the body.

A variable name appears in right-hand side of an equation has different meaning as one appears in | eft-

hand side. (A equation is either aform of A = B, or (curr =) B.)

A variable appearsin left-hand side of equation has to be always bounded to some part of KOLA tree

while a variable name appears in right-hand side is always treated as fresh one.
For example, in transformation Variable-Scope2 of Figure 3.3.1.4, f in line 5 is a fresh variable, which get
matched with a subtree of current KOLA tree. Since f is now bound with some subtreg, it is permissible to
usef in left-hand side of the equation in line 6. If we changef in line 6 to f1, it will be flagged as an error
since f1is not bound to anything and it is used in left-hand side of the equation.

1. Transformation Vari abl e- Scope2
2. UWses

3. fuse: f oID=>f,

4. Begin

5. QVENf ! _Q

6. f =gl o g2,

7. gl =g3 o0 f2 DO fuse(f)
8. Bd

Figure 3.3.1.4: Transformation Variable-Scope2

A variable appeared in a body of transformation could be referred or used at later time in the transformation
until it getsinvisible. A variable becomes invisible in two cases. When arule or transformation is invoked
on avariable's ancestors, the variable becomes permanently invisible. When an aready bounded variable
name is used as a fresh variable, old one becomes temporarily invisible until newer variable name becomes

permanently invisible. Notice that no rule or transformation can be invoked on the variable whileit is
invisible. For example, variable f in line 6 of transformation Variable-Scope3 of Figure 3.3.1.5isvisible
until line 8.

1. Transformation Variabl e- Scope3
2. ses

3. f oo

4. boo

5. Begin

6. AVVENTf I _Q

7. f =gl o g2 DO

8. { foo;

9. AVENTf I _Q

10. f = <gl, g2> DO
11. boo }

12. BEnd

Figure 3.3.1.5: Transformation Variable-Scope3

However, since foo is invoked on current tree, which is a parent of variablef, in line 8, f gets permanently
invisible. f in line 9 is a different one than one in line 6. For example, following transformation isillegal,
sincef inline 9 is not bounded to anything. f getsinvisible after line 8.

1. Transformation Variabl e- Scoped
2. ses

3 fuse: f oID-->f,

4, boo

5. Begin

6 AVENTf I _Q

7 f =gl o g2 DO

8 { boo ;

9. fuse(f) }

10. BEnd

Figure 3.3.1.6: Transformation Variable-Scope4

In transformation Variable-Scopeb of Figure 3.3.1.7, f in line 5 becomes temporarily invisibleinline 7. A
fresh new f masks old f until new f becomes permanently invisible. In line 9, newer f becomes permanently
invisible and older f becomes visible again since f1, parent of new f isinvoked on arule fuse.

Transfornati on Vari abl e- Scopeb

1.

2. ses

3. fuse: f o ID-->f
4. Begin

5. QVENf | _Q

6. f = flof2
7. fl1=f og DO
8. { fuse(f);

9. fuse(fl);
10. fuse(f) }
11. BEnd

Figure 3.3.1.7: Transformation Variable-Scopeb

An aready bound variable cannot be used twice in | eft-hand side of the equation whileit's visible. Thiswas
done to prevent any possible confusion resulting from variable updating and aliasing. For example, line 7
and 8 of the following transformation will cause a variable aliasing error.

1. Transformation Vari abl e- Scope6
2. UWses

3. foo,

4. boo

5. Begin

6. AWVHANf ! _Q

7. =gl o g2,

8. f =gl o g3 DOfoo(f)
9. End

Figure 3.3.1.8: Transformation Variable-Scope6
3.3.1.4 TopDown and BottomUp statements

TD statement and BU statement have a unique variable scoping rule unlike other statements. TD and BU
has separated self-contained variable scope. No variable defined outside of TD or BU can be used in
subsequent statement of TD and BU. Asit was stated in previous section, executionof “QVEN f | _Q f
=g o h DO{foo(f); TDfoo(f) }” will cause “variablef isnot defined” error. This error is caused due
to TD and BU’ s unique variable scope.

However, foo(f) in the following exampleislegal. Since f was defined inside of TD statement (in
subsequent statement of TD), f isreferablein TD. Only variables that can be used in subsequent statement
of TD and BU are the variables defined in the subsequent statement of TD and BU.

TDAVENf ! Q f =g o h DOfoo(f)
3.3.2 Special Case

Having multiple occurrence of same variable name in COKO expression is not always practical and even
introduces much confusion. However, COKO allows users to use same variable name more than oncein

some cases of COKO expressions. This section describes when the multiple occurrence of same variable
nameis allowed and when it is not.

3.3.21 Rule

It is possible to use variable name more than once in either sides of arule, even though this feature of
COKO israrely used. Note that the rules in following transformations are not algebraically correct.
However, they are used to demonstrate the usage of multiple variable occurrences.

Invoking transformation multiple-variable-occurrencel of Figure 3.3.2.1t0“[ID o ID! 3]” will
transform the query treeto“[(IDo ID) o (IDo ID ! 3]”. Similarly, invoking transformation multiple-
variable-occurrence? of Figure 3.3.2.2t0“[(IDo ID o (IDo ID ! 3]” will transform the query tree
to“[IDo ID! 3]".

Transfornati on nul tipl e-vari abl e- occurrencel

Uses

fuse: g 2 gog
Begi n

AQVENTf | _ODOfuse(f)
End

Figure 3.3.2.1: Transformation multiple-variable-occurrencel

Transfornati on nul tipl e-vari abl e- occurr ence2

Uses

fuse: gog=2>g
Begi n

AVENTf | _ODOfuse(f)
End

Figure 3.3.2.2: Transformation multiple-variable-occurrence?

3.3.2.2 Statement & Equation

It is not allowed to have more than one occurrence of the same variable name in statements or equations.
By disallowing multiple variable name occurrences, a possible confusion that introduced when arule or
transformation is invoked on a variable with multiple occurrences is avoided. For example, in an equation,
“f =g o g”,two g sarenot the same object but they refer to the same COK O tree structure. Problem
occurswhen arule gets called on g in thiscase. It is not clear whether arule should be invoked on first g,
second g or both. Current implementation of COK O prevents this confusion by simply disallowing multiple
occurrence of avariable in equations or statements. For example, the following transformation will result in
error.

Transfornati on nul ti pl e-vari abl e- occur r ence-error

Uses

fuse: go D> g

Begi n

AQVENf ! Q f =g o g DOfuse(g)
End

Figure 3.3.2.3: Transformation multiple-variable-occurrence-error
3.4 Architecture
This section describes COK O language and the COK O compiler from a programmer’s point of view. All
the prewritten C++ classes as well as parser generated C++ classes are covered in this section. Each
subsection will include brief description of C++ classes aswell as OMT like diagrams, which visually
demonstrates class hierarchies.

34.1 Transformation

CRuleBlock < ... foo

Every transformation is compiled into a C++ class, which is a derived class of CRuleBlock class. For
example, when we compile transformation foo, COK O compiler will generate a C++ class foo, which is
derived from CRuleBlock. CRuleBlock classisabase classfor al the transformations and has one
virtually defined method, Exec. Exec method is atrigger for KOLA query transformation. Calling Exec
method of each transformation class will trigger execution of the transformation on KOLA query.

3.4.2 Variable Dependency

Ancestor List

DEPList

Descendent List

Sinceit is alowed to redefine avariable in a GIVEN statement, it is necessary to keep track of their
dependency to insure the correctness of KOLA rewrite rules. As it was stated before, an equation is of the
form (curr =) E or variable name = E where E is any COKO expression and curr isa pointer to local root

of the KOLA tree. Note that curr is not the root of KOLA input query, but isalocal root of the KOLA tree
in current state. Suppose the input KOLA query for the following transformationsis“[(1D o ID o (IDo
ID ! 3]".Invoking the first transformation on the input query will result in changes of the KOLA treeto
“[IDo ID! 3]", whileinvoking the second transformation on the query will result in “variable g2 is not
bound to anything yet” error. Thisis an expected result as described in previous section.

Variable dependency check is achieved by means of attaching two kinds of dependency lists, ancestor list
and descendent list, to every variable aswell as curr. Since curr does not have any ancestor, only
descendent list (inverse dependency list) is required, while any COKO variable needs ancestor list
(dependency list) as well as descendent list (inverse dependency list). For example, curr in thefirst
transformation has f, g1 and g2 in its descendent list, while f has curr in itsancestor list and gl and g2 in
its descendent list. Similarly, g1 and g2 has empty descendent list and has curr and f in their ancestor list.
C++ object class DEPL ist is used in programming to represents dependency list. Every COKO variable is
associated with ancestor and descendent list, which are derived classes from DEPLst.

Transfornati on vari abl e- dependencyl

Uses

foo: f oID—> f
Begi n

AQVENf ! Q f =gl o g2 DO{foo(g2); foo(f)}
End

Figure 3.4.2.1: Transformation variable-dependency1

Transfornati on vari abl e- dependency?

Uses

foo: f oID—> f
Begi n

AQVENf ! Q f =91 o g2 DO{foo(f); foo(g2)}
End

Figure 3.4.2.2: Transformation variable-dependency2

3.4.3 Environment and ldentifier Search Stack

CState

KOLA treetransformation is achieved by utilizing an environment class which holds information about the
current state of the COKO program and a environment stack (identifier search stack) which stores variable-
to-KOLA tree bindings.

CStateisaclassfor abstraction of the state of COKO program. Usually execution of COKO statement
changes the current environment of the program and the result of all the statement executions is monitored
by means of passing and receiving CState. CState includes a pointer to the local root of KOLA tree (curr),
inverse dependency list for curr, a pointer to the environment stack, and a flag for specifying whether the
statement execution succeeded or not as its data member.

An environment stack isimplemented as a stack of a stack. Using a doubly nested stack eases keeping
track of variable dependency and variable scoping. For example, consider the following transformation:

Transfornati on foo
Uses
fuse: f o ID=> f,
fuse2. IDog 2> g
Begi n
gVENf ! Q f =glog?2 g2=f og3 DO{fuse(f); fuse2(g2); fuse(f)}
En

Figure 3.4.3.1: Transformation foo

The following diagram will help visualizing changes made to the environment stack according to the
execution of the transformation. Each frame of outer stack is used to distinguish different variable scope

and each frame of inner stack is used to hold variable-to-KOLA tree bindings. Every time the program
enters a new variable scope, an empty frame isinserted into outer stack. By executing the first equation of
the GIVEN statement, the variable f to some subtree of current KOLA tree bindings (binding f) will be put
into inner stack. Similarly, execution of second equation will put binding g1 and binding g2 into the inner
stack. Execution of the third equation will put a new binding f and binding g3 into the inner stack. Note that
this new binding f inserted into the inner stack masks old binding f. Since the stack is searched from top to
bottom, there is no need to specially mark old bindings asinvisible. A new binding f masks old binding f
automatically and makes old one invisible until the new binding f gets permanently invisible. Execution of
rule fuse requires a new outer stack frame, since the scoping level of body of the transformation and the
scoping level of theruleis different. Asit is stated earlier, any variable appearsin aruleislocal to therule.
Asaresult of processing matching part of the rule fuse, another variable binding f will be added to the new
inner stack (a new second frame of the outer stack.) Since the building part of the rule only searches the top
frame of the outer stack, thereis no difficulty in finding right binding f and the correctness of the rule
transformation is preserved. After execution of the rule fuse, all the variable bindings created by the rule
will be permanently lost. Since we are using a nested stack structure, there is no need to search for all the
variable bindings created by the rule and remove those bindings from the stack one by one. Instead, we can
simply pop off the top frame of the outer stack and achieve the same effect. An execution of fuse2 on a
variable g2 will add a new outer stack frame for the use of the rule fuse2 and mark the bindings of the
descendant variables of g2 as permanently invisible. As aresult of marking a newer binding f invisible, the
older binding f will become visible again.

f g f
93 93 g3 73
f f f f
92 92 g2 g2 ora
gl gl gl gl gl
f f f f f f

3.4.4 CPattern

CPattern

CPattern class represents COKO expressions. This class includes a pointer to the actual COKO expression
tree as well as several methods for manipulating the tree. Two types of methods are worth noting. Oneis
match and the other is build. There are two different methods for matching. Since multiple occurrence of a
same variable name is only permitted for rules and not for the statements and equations, it is necessary to
have two different matching mechanism. While matchSTM method is used for statement matching, match
method is used for rule matching.

345 RuleMatching and Statement Matching

Rule matching method of CPattern checks for match between a KOLA query tree and a pattern tree.
Remember that duplicated variable entry is allowed for arule. Consider the following rule:

foo: | 9090 > | 909

v v

matching part building part

Assume that we apply thisruleto akolatree, "[1 D o 10 ". When unification occursin a matching
part, first we store first g and ID pair into the environment stack. Then the next time we face another g
(second one), we search the stack for the matching pair with variable name g and simply check if the
matching pair in the stack has same structure as the matching pair we have. In this case, second pair is (g,
ID) aswell and the rule gets fired successfully.

Now assume that we apply the same ruleto akolatree, "[I1D o (1D o I D)]". Inthiscase, therulefails
since the second pair is (g, ID o ID), while the first pair is (g, ID). Note that even in a case of failure, the
ruleitself islegal.

Like rule matching method, statement matching method of CPattern checks for match between a
KOLA query tree and a pattern tree. However, no duplicated variable entry is allowed for statement
matching. Consider the following statement:

GIVENf! O,
f=| 909 ... p Thisisanillegal statement (equation.)
matching part

Assume that we have aquery tree, "[ID o ID ! 3]". Variablef getsboundedto"[ID o 10" and we
havetomatch"ID o 1D'to"g o g" Matching"ID o 1 D'to"g o g" isperfectly legal in arule section.
However, it isillega in statement section of the program. Remember that every variable on the right hand
side of an equation must be a fresh one. However, after we match first g to ID, the second g is no longer
fresh variable. Therefore, checking a duplicated variable entry is additionally required in statement
matching methods.

34.6 Ruleand Equation

CRule CEgn

CRule class stores information about KOLA rewrite rules. It includes two CPatter n as its data member.
Each CPattern class represents |eft-hand and right-hand side of the rule respectively. Its Exec method is
used for rule invocation and I nvExec method is used for inverse rule invocation. 1ts Exec method calls

match method of the first CPattern (left-hand side of the rule) to build variable-to-KOLA tree bindings
and then calls build method of the second CPattern (right-hand side of the rule) to build transformed
guery. Analogously, its I nvExec method calls match method of the second CPattern (right-hand side of
the rule) and then calls build method of the first CPattern (left-hand side of the rule.)

CEqn class stores information about the equation. It includes a character pointer, which represents | eft-
hand side of the equation (variable name) and one CPatter n, which represents right-hand side of the
equation (COK O expression). Its Exec method not only calls matchSTM method of the CPatter n to carry
out matching process and to build up environment which holds variable-to-KOLA tree bindings but also
mani pulates dependency list for variables appear in the equation.

347 Statement

CStmt
[| |
CMulStmtCon CTopDownStmt CRulel nvokeStmt
CMulStmtDis CBottomUpStmt CRulelnvinvokeStmt
CMulStmt
o, CRepeatStmt CFalseStmt
CPrintStmt
CTrueStmt
CGivenStmt

Every COKO statement isimplemented with its own C++ class. Each of these classes is a subclass of the
abstract class, CStmt, and is obligated to define a method Exec which takes an environment, CState,
which includes variable-to-KOLA tree bindings and local root of the KOLA tree, as input and produces a
transformed version of this environment as outpuit.

i. CGIVENStmt

The GIVEN statement class includes a list of equations and another statement as its data
members. The Exec method for GIVEN adds variable-to-KOLA tree bindings to its input
environment by calling Exec methods of all equations. In a case of all Exec methods of equations
succeed, it invokes Exec of its statement member sending the newly constructed environment as
its argument.

ii. CMulStmtCon

The conjunctive multi statement (CM ulStmtCon) class includes two statements as its data
members. Its Exec method invokes Exec of itsfirst statement member, then invokes Exec of its
second statement member if the first call to Exec reported success. The success value of the
conjunctive multi statement depends on the success value of the first statement member. In other
words, if the call to the first statement reports success, the return value of the conjunctive multi
statement will be set to true regardless of return value of the second statement.

vi.

Vii.

viii.

CMulStmtDis

The digunctive multi statement (CMulStmtDis) class includes two statements as its data
members. Its Exec method invokes Exec of its first statement member, then invokes Exec of its
second statement member if the first call to Exec reported failure. The success value of the
digunctive multi statement is set to true when any one of two statements gets succeeded.

CMulStmtSeq

The sequential multi statement (CMulStmtSeq) class includes two statements as its data
members. Its Exec method invokes Exec of its first statement member, then invokes Exec of its
second statement member regardless success or failure of the first statement. The success value of
the digunctive multi statement is set to true when any one of two statements gets succeeded.

CRulel nvokeStmt

Actua ruleinvocation on a KOLA treeis executed by this statement. This statement includes a
pointer to arule or transformation and a pointer to a variable as its data member. When its variable
member is not NULL, arule or transformation is invoked on the subtree bounded to the variable
by calling Exec method of the rule or transformation. When the variable pointer isNULL, the rule
or transformation is invoked on current KOLA tree.

CRulel nvinvokeStmt

Inverse rule invocation on a KOLA tree is executed by this statement. This statement includes a
pointer to arule and a pointer to a variable as its data member. When its variable member is not
NULL, aruleisinvoked on the subtree bounded to the variable by calling I nvExec method of the
rule. When the variable pointer isNULL, the ruleisinvoked on current KOLA tree.

CTopDownStmt

The TopDown statement includes a statement as its data member. Its Exec method invokes Exec
method of the statement member on all the subtrees rooted by every node of current KOLA tree.
The execution of the statement member on the current tree occurs as the treeis traversed in
preorder style. The TopDown statement is true when the execution of the statement member
succeeds on any of the subtrees.

CBottomUpStmt

The BottomUp statement includes a statement as its data member. 1ts Exec method invokes Exec
method of the statement member on all the subtrees rooted by every node of current KOLA tree.
The execution of the statement member on the current tree occurs as the treeis traversed in
postorder style. The BottomUp statement is true when the execution of the statement member
succeeds on any of the subtrees.

CRepeatStmt

The Repeat statement includes a statement as its data member. Its Exec method invokes Exec of
the statement member repeatedly until the execution of statement member fails on current
environment. Environment is updated each time the statement member is executed. The success
value of the Repeat statement is same as the success value of the first execution of the statement
member.

X. CTrueStmt

The True statement has a statement as its data member. Its Exec method invokes Exec on its
statement member. The return value of this statement is always true.

Xi. CFalseStmt

The False statement has a statement as its data member. 1ts Exec method invokes Exec on its
statement member. The return value of this statement is always false.
Xii. CPrintStmt
The Print statement has a string and an integer value asits data members. The integer value
indicates the type of print statement. When the integer valueis 1, its string member represents a
variable name. In this casg, its Exec method search for a variable-to-KOLA tree binding in the
environment stack with a variable name as a key then prints out the text representation of the

matching KOLA tree to standard output. When the integer value s 2, its string member represents
atext string. In this case, its Exec method simply prints out its string member to the standard

output. When the integer value is 3, its Exec method prints out the text representation of the

current KOLA tree to the standard output.
3.5 Interface

CLASS: CRuleBlock

SYNOPSIS: Thisclassis an abstract base class for rule blocks. When the COK O parser generates C++
code for atransformation, it will make the transformation a derived class of CRuleBlock.

Data Member

| Description

M ethods

Description

virtual CState * Exec(CState *s)

What to do when executed. It does nothing by
default.

CLASS: CRule
SYNOPSIS: Thisclassisfor KOLA rewriterules.

Data M ember Description

CPattern* _|hs L eft-hand side of therule
CPattern* _rhs Right-hand side of therule
Methods Description

CRule (CPattern*, CPattern*)

Constructor for rule representation. Takes two
arguments that are patterns of lhs and rhs,
respectively.

virtual ~CRule()

Destructor (virtual)

virtual CState * Exec(CState*)

Executestherule.

CState * InvExec(CState*)

Executestherule"in reverse”.

CLASS: CStmt

SYNOPSIS: Thisclassis an abstract super class for COKO statements

Data Member

| Description

Methods Description
virtual ~CStmt(void) Destructor (virtual)
virtual CState * Exec(CState *s) What to do when executed

virtual CState* updateDEP (char*, CState*,
ClEnvStackDataType*, int)

updates variable dependency list

CLASS: CMulStmtCon

SYNOPSI'S: Thisisasubclass of CStmt. It is used for multiple statements connected by conjunction.

Data Member Description

CStmt *_first Former statement

CStmt *_second Later Statement

Methods Description
CMulStmtCon(CStmt *, CStmt *) Constructor
~CMulStmtCon(void) Destructor

CState * Exec(CState *) What to do when executed

CLASS: CMulStmtDis

SYNOPSIS: Thisisasubclass of CStmt. It is used for multiple statements connected by digunction.

Data M ember Description

CStmt *_first Former statement

CStmt *_second Later Statement

Methods Description
CMulStmtDis(CStmt *, CStmt *) Constructor

~ CMulStmtDis(void) Destructor

CState * Exec(CState *) What to do when executed

CLASS: CMulStmtSeq

SYNOPSIS: Thisisasubclass of CStmt. It is used for multiple statements connected by sequential

execution semantics.

Data Member Description

CStmt *_first Former statement

CStmt *_second Later Statement

Methods Description
CMulStmtSeq(CStmt *, CStmt *) Constructor

~ CMulStmtSeq(void) Destructor

CState * Exec(CState *) What to do when executed
CLASS: CTopDownStmt

SYNOPSI'S: Thisisasubclass of CStmit.

Data M ember Description

CStmt *_stmt

Methods Description
CTopDownStmt(CStmt *) Constructor
~CTopDownStmt(void) Destructor

CState * Exec(CState *) What to do when executed

CLASS: CBottomUpStmt
SYNOPSIS: Thisis asubclass of CStmt.

Data Member Description

CStmt *_stmt

Methods Description
CBottomUpStmt(CStmt *) Constructor

~ CBottomUpStmt(void) Destructor

CState * Exec(CState *) What to do when executed
CLASS: CTrueStmt

SYNOPSI'S: Thisisasubclass of CStmit.

Data Member Description

CStmt *_stmt

Methods Description
CTrueStmt(CStmt *) Constructor
~CTrueStmt(void) Destructor

CState * Exec(CState *) What to do when executed
CLASS: C FalseStmt

SYNOPSI'S: Thisisasubclass of CStmit.

Data Member Description

CStmt *_stmt

Methods Description

C FalseStmt(CStmt *) Constructor

~C FalseStmt(void) Destructor

CState * Exec(CState *) What to do when executed
CLASS: CRepeatStmt

SYNOPSI'S: Thisisasubclass of CStmit.

Data M ember Description

CStmt *_stmt

Methods Description
CRepeatStmt(CStmt *) Constructor
~CRepeatStmt(void) Destructor

CState * Exec(CState *) What to do when executed

CLASS: CPrintStmt

SYNOPSI'S: Thisisasubclass of CStmt. This classis used for debugging purpose only.

Data M ember Description

int _which print What type of print command isit?
char * _iname Holds variable name or text string.
Methods Description

CPrintStmt(int, char *) Constructor

~CPrintStmt (void) Destructor

CState * Exec(CState *)

| What to do when executed

CLASS: CGivenStmt

SYNOPSI'S: Thisisasubclass of CStmt. GivenStmt includes of one or more equations

Data Member Description

CEgn* _egnLisfMAXARG] equation list

CStmt *_stmt Given statement body

int _count Number of equationsin the equation list.
Methods Description

CGivenStmt(CStmt* ...) Constructor

~CGivenStmt(void) Destructor

CState * Exec(CState *) What to do when executed

CLASS: CRulelnvokeStmt

SYNOPSI'S: Thisisasubclass of CStmt. It is used for rule invoking statements.

Data Member

Description

CRule* first r

A pointer to arule.

CRuleBlock *_first_rb

A pointer to atransfromation.

Since we can invoke arule or transformation, we
need two different pointers (one for arule and
another for transformation.) At any given time, just
one of those two fieldsis used.

char * _second

The variable name we are going to invoke arule or
atransformation with.

M ethods

Description

CRulel nvokeStmt(CRuleBlock*, char *)

Constructor for transformation invoke

CRulelnvokeStmt(CRule*, char *)

Constructor for rule invoke

~CRulelnvokeStmt(void)

Destructor

CState * Exec(CState *)

What to do when executed

CLASS: CRulelnvinvokeStmt

SYNOPSI'S: Thisisasubclass of CStmt. It is used for inverse rule invoking statements.

Data Member

Description

CRule* first

A pointer to arule.

char * _second

The variable name we are going to invoke arule
with.

Methods Description
CRulelnvinvokeStmt(CRule*, char *) Constructor
~CRulelnvlnvokeStmt(void) Destructor

CState * Exec(CState *) What to do when executed.
CLASS: DEPNode

SYNOPSIS: Class for Dependency List.

Data M ember Description

char * vaue Holds variable names.

DEPNode* next

Methods Description
DEPNode(char * a) Constructor
~DEPNode(void) Destructor
CLASS: DEPLIst

SYNOPSIS: Class for Dependency List.

Data Member Description
DEPNode * _iterator An iterator used for traversing the list.
DEPNode* head A head of thelist
Methods Description
DEPList(void) Constructor
~DEPList(void) Destructor

DEPNode * find(const char* a)

Find anodewith value=a

void insert(char* a)

Insert anew node with value = ato thelist

char* pop(void)

Pop off afront node from the list. Return a copy of
_value.

int empty(void)

Isthe list empty?

void initlterator(void)

Initialize _iterator. This method should be used with
getValue method

char* getVaue(void)

Returns _value of the node that _iterator is pointing
to. After acall to this method, _iterator will point to
the next node. One can call this method repestly to
get the _value of all the nodes. However, initlterator
has to be called before theinitial call to this method.

CLASS: EgnNode

SYNOPSIS: Class for Equation List.

Data M ember Description
CEgn* vaue Holds an equation.
EgnNode * _next

Methods Description
EgnNode (CEgn* a) Constructor

~ EgnNode (void) Destructor
CLASS: EgnList

SYNOPSIS: Class for Equation List.

Data Member Description
EgnNode * _iterator An iterator used for traversing the list.
EgnNode * _head A head of thelist
EgnNode * _tail A tail of thelist
Methods Description
EqgnList (void) Constructor

~ EgnList (void) Destructor

DEPNode * find(const char* a)

Find anodewith value=a

void insert(CEgn* a)

Insert anew node with _value = ato thelist

CEqgn* top(void)

Returns_value of the top node

int pop(void)

Pop off afront node from the list. Return success
value of the pop.

int empty(void)

Isthe list empty?

void initlterator(void)

Initialize _iterator. This method should be used with
getValue method

CEqgn* getVaue(void)

Returns _value of the node that _iterator is pointing
to. After acall to this method, _iterator will point to
the next node. One can call this method repestly to
get the _value of all the nodes. However, initlterator
has to be called before theinitial call to this method.

CEqgn* iteratorVaue(void)

Returns _value of the node that _iterator is pointing
to. Thisoneis different from getValue in that this
one does not advance _iterator after its call.

CLASS: CEgn

SYNOPSIS: Class for equations

Data M ember Description

char * |hs Stores left hand side of an equation (variable name)

CPattern* _rhs Stores right hand side of an equation (pattern)

int _evalFlag Indicates whether an equation has been evaluated or
not. If an equation is not evaluated then _evalFlagis
0. Otherwise, _evalFlagis1. Weneed _evalFlagto
undo any changes that caused by evaluating
equations. We need to know which equation is
evaluated and which is not.

Methods Description

void SetEF(void) Set _evalFlag (_evalFlag=1)

void UnsetEF(void) Unset _evalFlag (_evalFlag =0)

CEqgn(char*, CPattern*) Constructor

~CEqgn(void) Destructor

CState* undoDEP(CState *) Undo any changes on dependency list

void endOfEval (void) Evaluation of equation ended. Unset _evalFlag asiit

was.

CState* Exec(CState *) What to do when executed
CLASS: CPattern

SYNOPSIS: Class for COKO expressions

Data Member Description

NonType* rrclass

A pointer to an actual COKO expression tree.

ClEnvStackDataType* _savedStackTop

Save the position of stack top. Thisis used for
current pattern only.

Methods Description
CPattern (NonType *) Constructor for pattern representation
virtual ~CPattern(void) Destructor

virtual CState* match(CState*)

This method is for rule matching only. Duplicated
variable entry is allowed here.

virtual CState* matchSTM (CState*)

This match method is used for statement matching.
No duplicated variable entry is alowed.

CState* DeplistCheck(char*, CState*)

Dependency List Check.

CState* undoDEP(char*, CState*)

Undo any changes made to dependency list.

virtual void SetStackPointer(ClEnvStackDataT ype*
stackPt)

Sets a stack pointer. This oneis used to remember
current stack top.

virtual CState* build(CState*)

This method is for building a transformed KOLA
query.

virtual CState* buildCurrent(CState*)

This calls buildFromHere methods.

virtual CState* buildFromHere(CState*,

ClEnvStackDataType*)

Instead of searching a environment stack from the
top frame to build transformed query, this method
searches the environment stack from the given
point.

NonType* getNT()

Returns a pointer to rrclass. This method is only
used for debugging purpose.

CLASS: Cldent

SYNOPSI'S: This class actually wrapstriple, (_Parent, _Child, _Which). _Parent points to the parent of
_Child, and _Which specifies which child of the _parent. Actually _Parent field is not used for now. It is
always NULL. Only _Child and _Which is used for COKO compiler. However, Parent field is kept for

possible future usage.

Data Member

Description

NonType *_Parent

Pointer to the Parent.

NonType *_Child

Pointer to the top node of a KOLA subtree which
the variable matches.

int_Which Which child of the parent?
Methods Description
Cldent(void) Parameterless Constructor

Cldent(NonType *, int)

Constructor with child and which

Cldent(NonType *, NonType *, int)

Constructor with parent, child and which

~Cldent(void)

Destructor

NonType * Child(void)

Returns a copy of _Child.

NonType * Child_L ook _Up(void)

Returns a pointer to _Child.

int Which(void)

Returns _Which

CLASS: CIEnvVaueType

SYNOPSI'S: _key corresponds to the name of the identifier, and _content stores Cldent type entry

matching the _key.

Data Member Description

char *_key I dentifier name string
Cldent * _content The content
DEPList* DEPList Dependency list

DEPList * _InvDEPList

Inverse dependency list

CPettern * _pattern

Pattern associated with the variable. We need this
for reconstructing job after invoking any rule to the
variable.

M ethods

Description

int insertDepList(char * a)

Insert an item into the dependency list

int cleanDepL ist(void)

Delete all item from the dependency list

int emptyDepL ist(void)

Is dependency list empty?

int findDepL ist(const char*)

Isitem in the dependency list?

char* poplnvDepList(void)

Pop an item from inverse dependency list and return
it

int insertinvDepL ist(char * a)

Insert entry into the inverse dependency list

int cleanlnvDepL ist(void)

Delete al item from the inverse dependency list

int emptylnvDepL ist(void)

Isinverse dependency list empty?

int findinvDepL ist(const char*)

Isitem in the inverse dependency list?

congt char * GetKey(void)

Returns _key

Cldent * GetContent(void)

Returns _content

DEPList * GetList(void)

Returns DEPList

DEPList * GetlnvList(void)

Returns _InvDEPList

CPattern * GetPattern(void) Returns _pattern
void SetKey(char *) _key modifier
void SetContent(Cldent *) _content modifier
void SetPattern(CPattern*) _pattern modifier

ClEnvVaueType(const char *, Cldent *)

Constructor with _key and _content

~CIEnvVaueType(void)

Destructor

CLASS: CIEnvNodeType

SYNOPSI'S: CIEnvValueType's will be stored as linked list. CIEnvNodeType defines structure of each

node in the stack.

Data Member

Description

ClIEnvwWalueType* data

Thereal dataitem

CIEnvNodeType* pre

CIEnvNodeType * _next

Methods

Description

CIEnvNodeType(void)

Parameterl ess constructor

CIEnvNodeType(CIEnvVaueType * data)

Constructor for a node with data

~CIEnvNodeType(void) Destructor
ClEnvValueType * GetData(void) Returns _data
void SetData(Cldent*) _datamodifier

int insertDepList(char* a)

Insert an item into the dependency list of _data.

int emptyDepL ist(void)

Is dependency list of _data empty?

char* poplnvDepList(void)

Pop an item from inverse dependency list of _data
and return it.

int findDepL ist(const char*)

Isitem in the dependency list of _data?

int insertinvDepList(char* a)

Insert entry into the inverse dependency list of
_data.

int emptylnvDepL ist(void)

Isinverse dependency list of _data empty?

int findinvDepL ist(const char*)

Isitem in the inverse dependency list of _data?

CPattern* GetPattern(void)

Get _pattern of _data.

void SetPattern(CPattern*)

Modify _pattern of _data.

void initlteratorDEP(void)

Call initlterator method of DEPList of data.

char* getValueDEP(void)

Call getVaueDEP method of DEPList of _data

CLASS: CIEnv

SYNOPSI'S: The wrapping class for the identifier search stack.

Data M ember Description

CIEnvNodeType * _head

CIEnvNodeType * _tail

Methods Description

CIEnvNodeType * _findNode(const char *key) Internal search function for modify function
Cldent * find(const char *key) Search function for a given key
ClEnv(void) Parameterless constructor

~ClEnv(void) Destructor

ClEnvValueType * first(void)

Returns the top node value

void insert(CIEnvValueType * data)

Inserts a given node value into the stack

void erase(const char * key)

Find a node with a given key then delete it from the
stack.

void modify(char*, Cldent*)

Modifies a given node value in the stack.

CLASS: CIEnvStackDataType

SYNOPSIS: A classfor definition of each element in the stack. (Stack isimplemented as alinked list.)

Data Member

Description

CIEnv *_item

_item is also another stack structure

ClEnvStackDataType * _next

Next stack el ement

Methods Description
ClEnvStackDataType(CIEnv *) Constructor
~ClEnvStackDataType(void) Destructor
CLASS: CIEnvStack

SYNOPSI'S: Stack class

Data M ember Description

ClEnvStackDataType * _data

Pointer to the top element in the stack

Methods Description
ClEnvStack(void) Constructor
~ClEnvStack(void) Destructor

void push(CIEnv *)

The "Push” operation on the stack.

void pop(void)

The "Pop" operation on the stack.

CIEnv * top(void)

Returns the top element.

ClEnvStackDataType * getData()

Returns _data.

CIEnvNodeType* findNodeDeep(const char*)

Search for the entire stack starting from the top.

CIEnvNodeType* findNodeFromHere(const char*,
ClEnvStackDataType*)

Search the stack from the given starting point.

void deleteNodeDeep(const char*)

Find anode and deleteiit.
Search for entire stack starting from the top.

CLASS: CState

SYNOPSIS: CStateis aclass for abstraction of the state of program. The result of the statement executions

isrecorded by passing and receiving CState.

Data Member

Description

NonType*_Store

A pointer to a current KOLA tree (local root)

ClIEnvStack * _|Env

Identifier search stack

DEPList * _InvDEPList

Inverse dependency list for current.

Current only needs inverse dependency list.
Dependency list for current is meaningless. (current
has no ancestor)

CPattern * _CurrPattern

Pattern in the last matching statement

int _Success Return flag
Methods Description
CState(NonType *, CIEnvStack *, int) Constructor
~CState(void) Destructor
NonType * Store(void) Returns _Store
ClEnvStack *IEnv(void) Returns _|1Env

int 1Success(void)

Returns _Success

void SetStore(NonType *)

Modifier for _Store

void SetSuccess(int)

Modifier for Success

Cldent * IFind(const char *)

Search only for the top frame (another stack type) of
the stack

int IInsert(const char*, Cldent*)

Identifier inserter (inserts into the top frame of the
stack.

void INew(void)

Pushes an empty frame (another stack type) into the
stack

void 10ld(void)

Pop up the top element of the stack

void IModify(char *, NonType *, int)

Modifier for a particular identifier

void IDeleteDeep(char *)

Delete identifier from the stack.
Search for the entire stack.

Cldent * IFindDeep(char *)

Search for the entire stack.

Cldent * IFindFromHere(char *,
ClEnvStackDataType*)

Search for entire stack starting from the indicated
point to down.

ClEnvValueType * IFirst(void);

Returns the root node value of identifier search tree.

void IModifyFromHere(char*, NonType*, int,
ClEnvStackDataType*)

Same as IModify but this one searches the entire
stack starting from the indicated point to down.

void SetCurrentPattern(CPattern *)

Modifier for _CurrPattern

CPattern * CurrentPattern(void)

Returns _CurrPattern

int 1InsertDep(const char* key, char* a)

Find a node with key then insert ato its dependency
list

int IInsertinvDep(const char*, char*)

Find a node with key then insert ato itsinverse
dependency list

void IDeletel nvDep(const char*)

Find a node with key then retrieve the entire key
valuesin itsinverse dependency list. With all the
retrieved key values, search and delete all the
entries from the stack.

int IEmptylnvDep(const char*)

First search the stack with agiven key. Isan inverse
dependancy list stored in the found node empty?

void SetPatternDeep(const char * key, CPattern * p)

First search the stack with a given key. Modify a
pattern stored in the found node.

CPattern* GetPatternFromHere(const char*,
ClEnvStackDataType*)

First search the stack with a given key. Start
searching from the startingPt. Searching from the
starting point instead of the top of the stack makes
code more efficient. Return a pattern stored in the
found node.

void CInsertlnvDep(char*)

Insert achar* entry into the InvDEPList

void CDeletelnvDep(void)

Retrieve all the key values from _InvDEPList. With
all the retrieved key values, search and delete all the
entries from the stack.

int CEmptylnvDep(void)

Is_InvDEPList empty?

void CCleanlnvDep(void)

Clean InvDEPList. Make InvDEPList asit was
first created. To do so, just delete old _InvDEPLIist
and assign new DEPList to _InvDEPL L.

DEPList* GetlnvDep(void)

Returns _InvDEPList

void SetlnvDep(DEPList* a)

Modify InvDEPList

void DellnvDep(void)

Delete_InvDEPList

4. COKO with Semantics

This chapter describes semantic-based extensionsto COKO. Our goal is to permit algebraic optimization
transformation to be conditioned on the semantics of the data and queries to which they might be applied.
While thisis possible by adding supplemental rule conditions (properties) expressed in code as in Starburst
or Exodus, the intention of thiswork isto avoid compromising the theorem prover verifiability of rules that
KOLA supports. This is accomplished with extensions to COKO that:
permit firing of conditioned rewrite rules that are predicated on declarative expressed properties of
gueries and data, and
permit definitions of these properties by way of declarative inference rules.
Thus, instead of using code, COKO properties are expressed with Prolog-like terms that identify
rel ationships between identified KOLA subtrees. More detailed explanation about the semantic
optimization in COKO can be found in chapter 5 of [Che97].

4.1 Design Overview

The following diagram shows how the extended COKO transformation works. Three different parsers are
used for the extended COK O compiler. First oneisa KOLA parser that parses KOLA query in text
representation form into KOLA object tree. Second oneis a COK O transformation parser that parses
COKO transformations into C++ classes. Last one isa COKO property parser that parses COKO properties
into series of Prolog rules and facts. Those Prolog rules and facts as well as generated C++ classes together
with prewritten C++ classes and a built-in-rule and schemafile are used on KOLA query tree to invoke and
execute KOLA tree transformation.

KOLA > KOLA Query
Query Parser built-in-rule and schema

file (btr_schema.pl)

Transformation —» COKO
Parser

Code Prewritten C++
Classes for
COKO

Property Y COKO Property
Parser

4.2 Grammar

Transformed KOLA

421 COKO Transformations
4.2.1.1 Optinfer

Thisisasection in which one can list COKO properties. This section is determined by a keyword,
“INFERS’ followed by one or more COKO property names separated by comma. Every COKO properties
listed in this section is first compiled with COK O property parser to generate Prolog source codes and then
compiled with Prolog engine to produce .ql (extension for Prolog object file) files.

4.2.1.2 Preconditioned Rule

A COKO ruleis extended to include preconditioned rules. A preconditioned rule is aform of “precondition
list:: E1 & E2,”where E1 and E2 are COKO expressions. For example, “rd” inline 3 of Figure4.2.1.1isa
rulenameand “type(A {_T}), injective(f)” isapreconditionlist.

Transfornati on I njective
Uses

rd: type(A {_T}), injective(f) ::

set oiterate(p, f) ' A > iterate(p,f) ! A

Infers

I njective
Begi n

rd
End

©WooNoUA WNhE

Figure 4.2.1.1 Transformation Injective

Transfornation I njective2
Uses

rd: type(A {_T}), injective(f) ::

set oiterate(p, g ! A > iterate(p,f) ! A

Infers

I njective
Begi n

rd
End

©WooNUA WNE

Figure 4.2.1.2 Transformation Injective2

A precondition list consists of one or more preconditions separated by comma. Each precondition is a
form of “IDENT (Zy, ... , Z,)” where Z; isa COKO expression . Those preconditions are used with Prolog
engine to carry out extra unification needed for constructing right-hand side of the preconditioned rules.

The invocation of a preconditioned rule can be subdivided into three parts. The left-hand side of arule
(E1) isamatching part where variable-to-KOLA tree bindings are built and stored in COKO environment.
Those bindings stored in the environment are used to construct the right-hand side of the rule later on. The
precondition list is a querying part. Each precondition is used as a Prolog query on a built-in-rule and
schema file together with generated Prolog rules and facts from propertiesin Infers section. The result of
the unification of preconditionsis used for providing extra variable binding which can be used for
construction of the right-hand side of the rule. The right-hand side of arule (E2) is abuilding part where a
transformed KOLA query is built using the bindings stored in COK O environment and the bindings
returned from the unification process of precondition list.

For example, processing the left-hand side of the rule rd of Figure 4.2.1.2 will add binding p, binding g
and binding A to the environment. However, we need one more variable binding (binding f) to construct
right-hand side of the rule. We can get this extra variable binding from the result of processing
preconditioned rules.

Not only the preconditions return extra variable bindings but they also have important role deciding the
success value of the rule. For example, al the necessary variable bindings for constructing right-hand side
of therule“rd” in Figure 4.2.1.1 are built and stored in left-hand side of the rule. Construction of the right-
hand side of “rd” does not require any extra variable bindings from the preconditions. However,
unsuccessful unification of the preconditions sets success value of the rule as false and prevents KOLA tree
transformation from occurring.

422 COKO Properties
4221 Property
A property consists of a set of inference rules. A COKO property is made up of aword, “PROPERTY”

followed by a name for the property, optional Optlnfer declaration section and a main body.
In general, a COKO property has the following form:

PRCPERTY pr opert y- nane

ot Infer declaration
BEG N

PSnm. P3nt.

Figure 4.2.2.1: General COK O Property Structure
(Italics indicate optional parts.)

4.2.2.2 Optlnfer

Thisisasection in which one can list other external properties. This section is made up of word,
“INFERS’ followed by one or more COKO property names separated by comma. Every COKO properties
listed in this section is first compiled with COK O property parser to generate Prolog source codes and then
compiled with Prolog engine to produce .ql (extension for Prolog object file) files.

4.2.2.3 Main Body

A main body of a property consists of one or more property statements (inference rules) separated by
period.

4.2.2.4 Property Statement (Inference Rule)

COKO property inference rules are either the form “p.” or “E ==> p.” such that p is a property term (e.g.,
is_injective (f 0 g)) and E isalogical expression of property terms (e.g., is_injective(f) /\ is_injective(g)).
Compilation of the first form of the rule generates the Prolog fact, “p.” such that p isthe Prolog transation
of the property term p. Compilation of the second form of the rule generates the Prolog rule, “p :- E.” such

that E is the Prolog trangation of the logical expression E.
Property terms, which generally have the form,

ident (Zy,...Z,)

such that each ki isa KOLA pattern, are trand ated into Prolog terms,
ident(Zy,.... Zy)

where the trangation, Z; of KOLA pattern Z;

prepends KOLA’s unification variables with an upper case “V” (thisisrequired as Prolog requires all

variables to begin with a capital letter(, and

translates KOLA' s formers into prefix notation. For example, the function pattern, f o g istrandlated

into the string compose (Vf, Vg) while invocation (f ! A) istrandated into the string invoke (Vf, VA).
Trandation of logical expressions into Prolog expressions trand ates property terms as described above, and
maps.
- conjunctive expressions “p; \ py” to “py, p2”
digunctive expressions “p; VV py” to “py; p2”
negation expressions “not (p,)” to “not (p,)”

equations “p; = p,” 10 “py = Py’

PRCPERTY | nj ecti ve

BEG N
injective(lD).
key(f) ==> injective (f).
inective(f) /\ injective(g) ==> injective(f o g).
inective(f) \/ inective(g) ==> injective(<f, g>).
inective(f) ==> injective(iterate (_P, f)).

Figure 4.2.2.2: Property Injective

For example, the result of compiling property Injective is the set of Prolog rules and facts shown below:

i njective(id).
inective(M) :- key(\W).

i nj ecti ve(conpose(M, Vg)) :- injective(M), injective(\y).
injective(plus(M, Vg)) :- injective(M); 1njective(\Vg).
inective(iterate(_, Vf)) :- injective(\f).

4.3 Architecture
4.3.1 Built-in-ruleand Schemafile

Every transformation that uses preconditioned rule requires a Prolog file, which can act as a database for
Prolog query. Thisfileiscalled “built-in-rule and schema’ file.

432 CPreCondRule

CRule CPreCondRule

Thisisasubclass of CRule class. This classincludes a precondition list (CPreCond) in addition to two
CPattern classes, which represent left and right-hand side of the rule. I1ts Exec method first calls match
method of the left-hand side of the rule and then calls Exec method of CPreCond member. If the matching
process of the left-hand side of the rule and Prolog unification process of the precondition list succeed then
it calls build method on right-hand side of the rule.

433 CPreCond

Thisisaclassin which Prolog querying process occurs. First we convert al the preconditions stored in
precondition list to an appropriate Prolog query commend. Then we issue the query on a built-in-rule and
schema file and Prolog rules and facts generated by property parser. The unification result from issuing the
query will be parsed and selectively stored into the environment. For example, processing preconditionsin
Figure 4.2.1.1 will return binding A and binding f. However, those binding are ignored and not stored into
the environment since there are already binding A and binding f stored in the environment as a result of
matching process of the left-hand side of the rule. Similarly, processing preconditions in Figure 4.2.1.2 will
return binding A and binding f. In this case, binding f will be stored into the environment since it is a new
binding and will be used to construct right-hand side of the rule.

4.4 Interface

CLASS: CPreCondRule
SYNOPSI'S: Thisisasubclass of CRule class. This class represents preconditioned rules.

Data Member Description

CPreCond* _precond precondition list class

Methods Description
CPreCondRule (CPreCond*, CPattern*, CPattern*) | Constructor
~CPreCondRule(void) Destructor

CState * Exec(CState*) What to do when executed

CLASS: CPreCond

SYNOPSIS: Thisclassisfor precondition list. Actual Prolog querying process and result parsing process

occursin this class.

Data Member

Description

char* _RuleBlockName

Transformation name in which this precondition list
is defined.

int_id

An integer used for differentiating each Prolog
query. For example, atransformation can have more
than one preconditioned rule defined in its USES
section. Inthiscase, _idisused asindex number for
different queries created by different preconditioned
rules. The query from the first preconditioned rule
will be named queryO. The query from the second
preconditioned rule will be named queryl, and so
on.

CondList* condList

precondition class list

Methods Description
CPreCond(char* a...) Constructor
~CPreCond(void) Destructor

CState * Exec(CState *, NonType*) What to do when executed
CLASS: CCond

SYNOPSIS: Thisclassisfor a precondition.

Data Member Description

char* _condName Stores precondition name
NonTypelList* varList Variablelist

int _varcount

of variablesin this precondition

int _built_varcount

of processed variables

Methods Description
CCond(char * a ...) Constructor
~CCond (void) Destructor

int allDone(void)

Are all variables built yet?

CState* build(CState*,NonType*)

build environment

CState * Exec(CState *) What to do when executed
CLASS: CondNode

SYNOPSI'S: Class for Condition List

Data M ember Description

CCond* vaue value

CondNode* next

Methods Description
CondNode(CCond * ¢) Constructor
~CondNode(void) Destructor

CLASS: CondList
SYNOPSIS:; Classfor Condition List

Data M ember Description

CondNode * _iterator An iterator used for traversing the list.
CondNode* head head of the list

CondNode * _tail tail of thelist

Methods Description

CondList(void) Constructor

~CondList(void) Destructor

void insert(CCond* a)

Insert anew node with value = ato thelist

int pop(void) Returns _value of the top node.
CCond* top(void) Returns _value of the top node.
int empty(void) Isthe list empty?

void initlterator(void)

Initialize _iterator. This method is used with
getValue method.

CCond* getValue(void)

Returns _value of the node that _iterator is pointing
to. After acall to this method, _iterator will point to
the next node. One can call this method repestly to
get the _value of all the nodes. However, initlterator
has to be called before theinitial call to this method.

CLASS: NonTypeNode
SYNOPSIS: Classfor NonType List

Data M ember Description
NonType* value value
NonTypeNode * _next

Methods Description
NonTypeNode(NonType * ¢) Constructor
~NonTypeNode(void) Destructor
CLASS: NonTypeList

SYNOPSIS: Classfor NonType List

Data M ember Description
NonTypeNode * _iterator An iterator used for traversing the list.
NonTypeNode * _head head of the list
NonTypeNode * _tail tail of thelist
Methods Description
NonTypeList(void) Constructor
~NonTypeL ist(void) Destructor

void insert(NonType* a)

Insert anew node with _value = ato thelist

int pop(void) Returns _value of the top node.
NonType* top(void) Returns _value of the top node.
int empty(void) Isthe list empty?

void initlterator(void)

Initialize _iterator. This method is used with
getValue method.

NonType* iteratorVaue(void)

Returns _value of the node that _iterator is pointing
to.

NonType* getVaue(void) Returns _value of the node that _iterator is pointing
to. After acal to thismethod, _iterator will point to
the next node. One can call this method repeatly to

get the _value of all the nodes. However, initlterator
has to be called before theinitia call to this method.

5. Tdraw

Tdraw isagraphical user interface for KOLA query transformation. Even thought there is no written
documentation about this program, any programmer with fair knowledge about Motif and UNIX
programming can easily understand tdraw program. (It iswritten by a Ph.D. student in Computer Science
Department at Brown University.)

Assume that the compilation of the following transformation results in transformation executable
named testRepeat. One can run this executable with a query file to see how the query istransformed as a
result of invocation of transformation repeat-test on input query. However, since COKO isacommand line
based program, it is hard for a user to visualize input query tree as well as transformed result query tree by
looking at the text representations of the KOLA trees.

Transfornati on repeat -t est
Uses

foo: (p oplus f) oplus g 2> p oplus (f o @)
Begi n

AVENp ? _ODO* foo (p)
End

Figure 5.1.1.1 Transformation repest-test

Tdraw graphically displays KOLA query trees and helps user to visualize actual KOLA tree
transformation. It first displays input query tree and then displays transformed query tree as the COKO
transformation occurs. To run tdraw program, type tdraw followed by a transformation executable name
and a query file name at the commend line. For example, by running tdraw program with testRepeat on a
query input “((pred(p, NAL) oplus Fun(f, NUL, NULL)) oplus Fun(g, NULL, NULL)) oplus
Fun(h, NULL, NULL) ? 3", onecan seetheinput query tree graph and result query tree graph. The
followings are screen-captured pictures for the repeat-test example.

Input KOLA query tree

Transformed KOLA query tree

6. Directory

Since there are a number of files involving the COKO compiler project and they are spread over a number
of directories, it is advised to anyone who deals with this project to become familiar with the directory
hierarchy and al the related files before starting to work on the project.

When one first starts to work with KOLA/COKO related project, there are one main directory one
might want to take a very careful look at. /pro/oodb/cokokola/ directory and its all sub-directories have all
the project related files. These directories have a stable version of the project and should be remained stable
all the time. One should not make any changes in those directories unless every source code modification
made to the files in these directory is bug free and does not conflict with existing projects.

All the KOLA/COKO files have RCS directories and RCS files related to them. Using RCSis away of
preventing possible conflict among a group of people working on the same file. First thing needs to be
done, when one begins to modify KOLA/COKO files, is making one's own working directory that have
same directory hierarchy as /pro/oodb/cokokola/src. Then one have to make RCS linksin the working
directory referring to the original RCS directories.

After modifying working files, one should make sure that the codes are working and bug free. Any
files checked back in original RCS directories must be afinal bug free version.

Followings are short description of the directories.

/pro/oodb/cokokola— COKO/KOLA project main directory

/pro/oodb/cokokola/bin — COKO/KOLA related Programs (executabl e files)
/pro/oodb/cokokola/src — Source codes

/pro/oodb/cokokola/released — Released version of programs (compressed and tar’ d files)
/pro/oodb/cokokola/doc — documentation

/pro/oodb/cokokol a/data — transformation examples

7. References

[Che9d7] Mitch Cherniack. Building Query Optimizers With Combinators. Dissertation Proposal, Brown
University Department of Computer science, December 1997.

[CZ96] Mitch Cherniack and Stan Zdonik. Rule Languages and Internal Algebras for Rule-Based
Optimizers. Proceedings of the ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, June 1996.

[CZ98a] Mitch Cherniack and Stan Zdonik. Inferring Function Semantics to Optimize Queries. Submitted
to VLDB '98.

[CZ98b] Mitch Cherniack and Stan Zdonik. Changing the Rules: Transformations for Rule-Based
Optimizers. Proceedings of the ACM SIGMOD International Conference on Management of Data, Sedttle,
WA, June 1998. (To Appear)

