To appear in Volume 3, Foundations of the Pure Sciences, in History and

Philosophy of Science for Science Students Committed to Africa,

Helen Lauer (Editor), Ghana University Press, Lagon, Ghana.
Chapter

49

An Introduction to Classical Propositional Logic:

Syntax, Semantics, Sequents
by

RAJEEV GORE

1 Introduction
2 Syntax

3 Semantics of Classical Propositional Logic
3.1 Truth Values, Interpretations, and Truth Tables.
3.2 Satisfiability, Validity and Logical Consequence

4 The Sequent Calculus SK

5 Soundness and Completeness of SK
5.1 Soundnessof SK L.
5.2 Completeness of SK
5.3 Deductions and Logical Consequence
5.4 Algorithmic Aspects of SK'.,

6 Gentzen’s Original Sequent Calculus LK
7 Applications of Sequent Calculi
8 History

9 Concluding Remarks

23

31
32
34
37
38

39

41

43

45

Figure 1 from page 11.
Truth Tables for the Semantics of Classical Propositional Logic

Table 1(b)
Table 1(a) p Y endeVe [p—d ey
| - t[t] t t t t
t f t | f f t f f
f t flt f t t f
flf] f f t t

Figure 2 from page 24.
Sequent Calculus SK for Classical Propositional Logic

(Id) T, = ¢, A

B F7—|g0:>A T F:>_|QP’A
Lo,y = A N=p,A I'= 9y, A

AN) —rr— AN

(A) Dpony = A (Ar) = oAy, A
Ne=A TI,¢v=A I'= p,y,A

l - rr’=

(VD) ovy = A (vr) = ¢pVvy A
I'=p,A Tv=A Iey= 1y, A

(=) (=)

e —9v=A Ir=¢p—-y A

F:>¢7¢7A F7<)07¢:>A

(=D T.oop— A

Le—=v¢v,A T¢v=¢A
=y —yp,A

(=)

1 Introduction

For over 2000 years we have tried to understand and model how we reason.
An important aspect of human reasoning is our ability to distinguish good
arguments from bad ones, and our ability to deduce new information from
our current knowledge. One of the most significant theories of deduction
is based upon the Western traditions initiated by Aristotle and is called
Classical Propositional Logic. This chapter is a very elementary introduction
to classical propositional logic assuming some very rudimentary knowledge
of sets and high school algebra.

There are many schools of thought that decry formal logic as a model for
human reasoning for it is not at all clear that we actually do use formal logic
in our brains [JL83]. Indeed, we often make logical mistakes, but we see these
mistakes most clearly when the explanation makes use of logic. Although
classical propositional logic is not widely accepted as a theory of human
intelligence, it has proved extremely useful in many areas where a formal
description of a situation is required, particularly in areas like Hardware
Verification and Software Verification where computers are used to verify
that digital circuits or computer programs meet their intended purpose.

Classical propositional logic originated from attempts to distill the logical
rigour inherent in a certain finite collection of natural language expressions
like “and”, “or”, “not”, “if _ then 7, and “_ if and only if _” which we
use to tie together simpler (English) expressions into larger arguments or
narratives. Consider, for example, the following two arguments:

(1) Hindus are vegetarians and if Rajeev is a Hindu then he is a vegetarian.
(2) Hindus are vegetarians and if Rajeev is a vegetarian then he is a Hindu.

The first makes logical sense as it is not possible to find a way for Rajeev to
be both a Hindu and a non-vegetarian. The second is suspect, for Rajeev
might be a vegetarian because he does not like the way animals are farmed
for meat, or even because he does not like the taste of meat. Thus there is a
way for Rajeev to be a vegetarian non-Hindu. Classical propositional logic
is an attempt to give a rigorous method for expressing such reasoning.

If we want to insist on rigour then most natural languages like English are
not suitable as a formalism because they are too long-winded, imprecise and
sometimes even ambiguous. Consider, for example, the following sentence
“If statement one is true and if statement one is true then statement two is
true is true then statement two is true.”. Can you tell whether the quoted
sentence is true or false? If you answered “true” then you are well on your
way to understanding logic, but if you answered “false” or “I don’t know”
then it is probably because you became entangled in the words. As another
example consider the two sentences “He is a kind man.” and “He is not an
unkind man.”. Do the two sentences have the same meaning? It depends

upon whether you believe that kindness is a black and white quality or
whether there are degrees of kindness.

After some two thousand years of study we have found three important
aspects of any logic:

Syntax: the syntax of a logic is a formal unambiguous language, distinct
from natural language, which specifies the legal expressions of the logic.
By using a separate syntax we can intermingle logical expressions with
(English) prose without causing confusion.

Semantics: the semantics of a logic is a method for assigning meanings to
the expressions that can be built using the logical syntax. The most
important role of such a semantics is to define the notion of logical
consequence, telling us when a particular given expression follows
logically from a collection of given expressions.

Calculi: a calculus for a logic is a purely syntactic method for defining the
notion of a deduction, telling us when a given expression is deducible
from a collection of given expressions. By “purely syntactic” we mean
that the rules of the calculus must manipulate only the symbols from
the syntax, and possibly some other special symbols, without explicitly
using the meaning assigned to these symbols by the semantics.

If we have a syntax and a semantics then the logic is said to be defined
semantically. If we have a syntax and a calculus then the logic is said to
be defined syntactically. If we have all three, then it is imperative to check
that an expression is a logical consequence of a collection of given expressions
exactly when there is a deduction of it from the same expressions, thereby
guaranteeing that these semantic and syntactic aspects of the logic agree. If,
in addition, the semantic or the syntactic aspect can be implemented on a
computer, then we can determine whether or not a given expression follows
logically from a given collection of expressions automatically.

This chapter is an introduction to an existing logic called Classical
Propositional Logic. In Section 2 we will see its syntax. In Section 3 we will
see its semantics. In Section 4 we will see a (sequent) calculus for calculating
whether or not there is a deduction of a given expression from a collection of
logical expressions. In Section 5 we will see that a given expression is a logi-
cal consequence of a given set of expressions exactly when there is deduction
of the given expression from the given set of expressions. In Section 5.4 we
shall also see that the calculus does indeed give an algorithm for computing
logical consequence in classical propositional logic on a computer automati-
cally. In Section 6 we discuss sequent calculi and in Section 7 we show how
they can be used to prove results about classical propositional logic itself.

Once you have grasped these various aspects of classical propositional
logic, you might want to think about how well it captures human reasoning,
but while learning it, you are asked to accept it as it is.

2 Syntax

In this section we shall give a recipe for constructing legal expressions in the
formal language of classical propositional logic. As in English, the language
is made up of words and these are formed into sentences. In English, we form
sentences from words by writing them according to the grammar of English.
We shall do the same using the grammar of our logic once it is defined, but
instead of building words from the twenty-six letters of the English alphabet,
we shall use a very specific (infinite) set of predefined words. Let us begin.

Each member of the infinite list pg,p1,p2,ps3, -+ is an atomic word.
The list is infinite because the dots are supposed to stand for all the other
atomic words that can be formed by attaching any natural number as a
subscript to the English letter p, since we cannot possibly list them all in
this book. These atomic words are the words of our logical language and
the adjective “atomic” means that we are not allowed to break down these
words any further (into letters). The atomic word pg is pronounced as “p
zero”, the atomic word p; as “p one”, and so on.

Example 2.1. So py4 is an atomic word since it would appear in the list
if we were to expand the dots. But p (without a subscript) and ¢5 and
kangaroo and elephants are not atomic words since they can never appear
in this list, no matter how far we expand the dots.

In English we form words into sentences using connecting words like
“and” and “or”. In classical logic we use special symbols for a particular
collection of such connecting words and use these special symbols to form
sentences from our predefined collection of atomic words. Each member of
the finite list A, V, 7, —, <> is a logical connective, or connective for short.

A similar situation arises in simple arithmetic where we form expressions
of arithmetic like 1 x ((—3) + 2) from natural numbers (words) like 0, 1, 2,
-+ using arithmetic connectives like +, x and —, where the dots in this case
stand for the infinite sequence of natural numbers. In arithmetic we know
that each of x, — and + usually takes two arguments, one before the sign
and one after. We also know that — can be added just before an expression
to make its argument negative as in (—3). But we know that both (2x) and
(x3) are not legal arithmetic expressions.

We now give the grammatical rules, or formation rules, for construct-
ing logical sentences from our atomic words using our logical connectives.
But instead of calling them sentences, we shall call them formulae. We
also use the parentheses “(” and “)” to disambiguate the extent of smaller
formulae just as we do in arithmetic.

Atomic Formulae: Every atomic word is an atomic formula. For example
both p13 and po7 are atomic formulae since each of p13 and po7 are

atomic words: each would appear in our list of atomic words if we
expanded the dots far enough.

Negated Formulae: A negated formula is formed by writing — immedi-
ately to the left of a formula. The connective — is an attempt to
capture the logical content of “not” so —pg is pronounced “not py”.

Conjunctive Formulae: A conjunctive formula is formed by writing A
between two formulae. The connective A is an attempt to capture the
logical content of “and” so pg A p; is pronounced “pg and p;”.

Disjunctive Formulae: A disjunctive formula is formed by writing V be-
tween two formulae. The connective V is an attempt to capture the
logical content of “or” so pg V p1 is pronounced “pg or pi”.

Conditional Formulae: A conditional formula is formed by writing —
between two formulae. The connective — is an attempt to capture
the logical content of “if _ then 7 so pg — pj is pronounced “if pg then
p1”. It is also referred to as implication with the reading that py — p1
stands for “pg implies p;”.

Bi-Conditional Formulae: A bi-conditional formula is formed by writing
< between two formulae. The connective « is an attempt to capture
the logical content of “_ if and only if 7 so py < p;1 is pronounced “pg
if and only if p;”. It is also referred to as “logical equivalence” with
po < p1 read as “pg is logically equivalent to p;”.

Example 2.2. The expressions Aps7 and pi3— and pi3 A Aper are not for-
mulae because:

Apor does not have a formula as a left component for the A connective;

p13— has the negation sign to the right of a formula whereas it must appear
to the left of a formula;

P13 A Apgr contains A connectives which are not sandwiched between two
formulae since neither pi3A nor Aps; are formulae.

The examples given above like py A p; all have atomic formulae to the
right and left of the connectives, but the rules also allow us to build arbitrary
complex formulae like (p13 A (p13 — p27)) — ——par. Notice that we use the
parentheses “(” and “)” to disambiguate the extent of smaller formulae just
as we do in arithmetic.

Exercise 2.1. Compare and contrast the following different formulae:

1. (p13A(p1s — por)) — ——pa7 is a conjunctive formula where p13A(p13 —
po7) is the left component and ——po7 is the right component.

2. p13 A (p13 — (p27r — ——pay)) is a conjunctive formula where p;3 is the
left component and pi3 — (p2y — ——p27) is the right component.

3. p13 A ((p13 — p27) — ——p27) is a conjunctive formula where p;3 is the
left component and (pi13 — p27) — ——p27 is the right component.

4. (p13 A p13) — (p27 — ——p27) is a conditional formula where pi3 A p13
is the left component and ps7 — ——po7 is the right component.

5. ((p13 A p13) — p27) — ——por is a conditional formula where (p13 A
p13) — por is the left component and ——py7 is the right component.

Example 2.3. The formulae (pg A p1) A p2 and pg A (p1 A p2) are different
purely because of the placement of the parentheses.

Every non-atomic formula can be categorised into one and only one of the
five non-atomic formula categories: negative formula, conjunctive formula,
disjunctive formula, conditional formula, and bi-conditional formula. The
connective that determines the category of a formula is called its main
connective.

Exercise 2.2. Find the main connective of each formula from Exercise 2.1.

The same formula may be written in many different ways by using spu-
rious parentheses.

Example 2.4. The formulae (po A p1) A p2 and ((po) A (p1)) A (p2) are the
same formula since their main connective is A and the two right components
po2 and (p2) are clearly the same formula and the two left components py A py
and (po) A (p1) are also clearly the same formula.

Example 2.5. The expression p13 A p13 — p2y — ——p2y is ambiguous since
it cannot be categorised uniquely: there are five different ways to categorise
it by utilising parentheses; see Exercise 2.1.

In the rest of this chapter, we will often wish to refer to a formula of
a particular shape, for example one having the A connective as its main
connective. We could use the term conjunctive formula in this particular
case, but we may also want to refer to the formulae to the right and left of
the A connective. To make this task easier we shall use the Greek letters ¢
and v, pronounced as “phi” and “psi” respectively, as names for arbitrary
formulae. Then we can refer to an arbitrary conjunctive formula as the
shape ¢ A 9 since this conveys precisely that the main connective of this
formula is A, that the (name of the) formula to the left is ¢, and that the
(name of the) formula to the right is ¢». We do not know, nor care, what ¢

and 1 actually look like. Sometimes we need more than just the two names
o and ¥ so we shall add subscripts and use names like 1 and ;.

Sometimes we shall want to refer to an arbitrary atomic formula. We
will simply use p or ¢ or r to stand for (the names of) such atomic formulae.

In general, we say just “formula ¢” instead of the more pedantic “for-
mula with name ¢” and say “atomic formula p” instead of the more pedantic
“atomic formula with name p”. It may seem as if we are now contradict-
ing Example 2.1 where we said that p itself was not an atomic word and
hence not a formula. But there is no contradiction, for p is the name of an
unspecified atomic formula, it is not an atomic formula itself.

Example 2.6. The formula (with shape) p A ¢ cannot contain further con-
nectives since p and ¢ must be (names for) atomic formulae. On the other
hand, the formula (with shape) ¢ A 1) can contain further connectives since
the formula (with name) ¢ could be (p; V p2) — ps3 and the formula (with
name) ¢ could be =—ps5 so that then the formula @ A1 would be ((p1Vp2) —

p3) A "pss.

Using this new notation, the previous formation rules can be replaced
by one single formation rule: each atomic formula p is a formula, and if ¢
and v are formulae, then so are each of =(¢), (@) A (¥), (©)V(¥), (¢) — (¥),
and (i7) < (1).

The new notation allows us to add the parentheses in the formation rule
itself rather than as an ancillary device. But too many parentheses tend
to clutter the formula and make it unreadable: compare the two ways of
writing the same formula below:

(P13 A (p13 — p27)) — =2z ((p13) A ((P13) — (p27))) — (=(=(p27)))-

We therefore try to keep the use of parentheses to a minimum.

Exercise 2.3. Compare this succinct version with the formation rules we
gave previously to ensure that they specify the same collection of formulae.

Subformulae: The strict subformulae of a formula ¢ are all the for-
mulae from which ¢ is built up. The subformulae of ¢ are all its strict
subformulae plus ¢ itself. We say that ¢ is an immediate subformula of
—p, and that ¢ and ¥ are both immediate subformulae of each of v A,

eV, o — 1 and p Y.

Example 2.7. For the formula (py A (pp — p1)) — pi1: the strict sub-
formulae are py A (po — p1), Po — p1, po and pi; the subformulae are

(po A (po — p1)) — p1, Po A (Po — P1), Po — P1, po and pq; and the immedi-
ate subformulae are py A (pg — p1) and p;.

Formula Length: Every atomic formula has length 1. If ¢ has length n
then —¢ has length n 4+ 1. If ¢ has length n and v has length m then each
of p Ay and ¢ V¢ and ¢ — ¥ and ¢ < 9 has length n + m 4+ 1. Thus
the length of a formula is simply the number of symbols from which it is
composed, without counting parenthesis.

Example 2.8. The length of (pg A (po — p1)) — p1is 7.

We have just defined the syntax (language) of classical propositional
logic: it is simply the set of all formulae we can form using the formation
rules. The syntax we have chosen is fairly standard but here are some alter-
native symbols that are sometimes used instead of the symbols we have used:

Our symbol - A \% — >
Alternatives | ~ ‘ - & | ‘ + D ‘ = = ‘ &

Some authors use the letters A, B and C' as names for formulae instead of
our ¢ and 1, and use P and () as names for atomic formulae instead of our
p and ¢. The formula (—(p V ¢)) — p, for example, might appear in some
books as (~ (A+ B)) = Q.

Some authors also allow two special atomic symbols called the verum
and falsum constants into the syntax, and typically use T or tt and L or ff
respectively as symbols for these constants. Then, expressions like 1 — T
are also formulae. We have not included this slight complication as it makes
no difference at our level of study of classical propositional logic.

But we still do not have a way to give these formulae any meaning. For
example, what exactly does the formula (p13 A (p13 — pa7)) — ——por mean?
In the next section, we shall see one way to give meanings to formulae.

3 Semantics of Classical Propositional Logic

In the previous section we saw how to invent a very particular formal lan-
guage which defined the class of formulae of classical propositional logic. In
this section we shall first see how we can give a meaning to the individual
symbols that make up that language. Then we shall move on to deeper
semantic notions like satisfiability, validity and logical consequence.

3.1 Truth Values, Interpretations, and Truth Tables

The meaning of the symbols is built up by giving meanings to the atomic
formulae of our syntax and using our intuitions about the meaning of the
linguistic connectives “not”, “and”, “or”, “if _ then _”, and “_if and only if
_” to build up the meanings of larger formulae. Thus there are two parts to
the semantics of classical propositional logic: the first part is an assignment

of meanings to the atomic formulae, and the second part is a recipe for
calculating the meaning of larger formulae from those of smaller formulae.

But the meaning of an atomic formula like p; is completely subjective.
One person might interpret p; to mean “it is raining” while another person
might interpret p; to mean “I have a sister”. Indeed, every person on Earth
could interpret p; in a completely different way! So how can we possibly
judge whether a certain given formula follows logically from another given
collection of formulae?

The trick is to notice that most subjective interpretations will allow a
person to assign a truth value to p;. For example, if I interpret p; to mean
“I have a sister” then I will assign a truth value of “true” to p; since I do
indeed have a sister. On the other hand, if I interpret p; to mean “it will rain
tomorrow” then I will assign a truth value of “unknown” to p; since I do not
currently know whether or not it will rain tomorrow. Of course, there are
many other possible truth values we could think of: “possibly”, “probably”,
“maybe”, “indeterminate” to name a few. There are also interpretations
where no truth value is given to pi: for example if I interpret p; as the
request “please close the door” then it has no obvious truth value. How can
we possibly take all these alternatives into account?

The simple answer is that we cannot. So, in classical propositional logic,
we make the following two simplifying assumptions:

Law of the Excluded Middle: each formula is “true” or “false”.
Law of Non-Contradiction: no formula is both “true” and “false”.

The law of the excluded middle means that there are only two legal truth
values: “true” and “false”. Other intermediate truth values like “unknown”
or “maybe” or “neither” are simply forbidden. The law of non-contradiction
means that the truth value of each atomic formula is either “true” or else it is
“false”, never both. The result of these two laws is that each atomic formula
of classical propositional logic has one of only two truth values under any
one (person’s) interpretation. Interpretations like “please close the door”
which do not impart one of the truth values “true” or “false” to an atomic
formula are simply forbidden. Note however that the interpretation of p; as
“it will rain tomorrow” is allowed, but its truth value is restricted to either
“true” or “false” rather than some other third value like “unknown”.

So even if every person on Earth interpreted p; differently from every
other person, in classical logic, there would be only two distinct classes of
people: those whose interpretation of p; made it take the value “true”, and
those whose interpretation of p; made it take the value “false”. Thus the
multitude of actual subjective interpretations of p; are collapsed into two:
“true” or “false”. We now make these intuitions precise.

We use the extra symbols t and f to stand for the truth values “true”
and “false” respectively. These extra symbols are not part of our syntax, so

10

Table 1(b)
Table 1(a) el erd]evi]e—v] ooy
o] -p t]t] ¢ t t t
t] f t [f| f t f f
| t flt| f t t f
flf| f f t t

Figure 1: Truth Tables for the Semantics of Classical Propositional Logic.

expressions like f V t and t A pg are not formulae.

An interpretation is a (meaning) function which assigns one and only
one of t and f to each atomic formula. Since our list of atomic formulae
is infinite, every interpretation can be viewed as an infinite list of truth
values with the first truth value in the list being the value for pg, the second
value in the list being the value for p; and so on, for ever. In real life,
and especially in this chapter, we usually only need to speak about a finite
number of atomic formulae, we therefore list their truth values explicitly.

Example 3.1. The interpretation t, t, f, f, f, - - - where the dots represent
an infinite list of f symbols assigns a truth value of t to py and to pq, and
assigns a truth value of f to all other atomic formulae.

But if we were interested only in the truth values of po | p1| p2| ps3
Po, P1, P2 and ps then we could write this interpreta- t |t | f|f
tion simply as shown at right with the assumption

that all atomic formulae not shown explicitly take on the truth value f (say).

Recall that we are trying to give a meaning to arbitrary formulae of
classical propositional logic. So how can a simple interpretation function
that tells us the truth value of each atomic formula possibly tell us the truth
values of all arbitrary formulae? Figure 1 shows the relationship between
the truth values of larger formulae and their smaller constituents in classical
propositional logic. We explain this truth table on a case by case basis, try
to justify these semantics in terms of their linguistic origins, and mention
some of the shortcomings of the semantics.

Negation: The truth value of = is t when the truth value of ¢ is f, and
the truth value of - is f when the truth value of ¢ is t.

Note that we can use Table 1(a) in two directions: one to calculate the
truth value of —¢ from the truth value of ¢, and the other to calculate the
truth value of ¢ from the truth value of —p.

The meaning of the negation symbol — can be read off easily from its
intended meaning as the linguistic connective “not”: if ¢ is “true” then —¢
must be “false”, and vice versa. So if we were to interpret py as “He is a
kind man.” then classical propositional logic forces us to interpret —pg as

11

“He is an unkind man” showing that classical propositional logic forces us
to interpret kindness as a purely black and white notion: it does not allows
us to say that there are degrees of kindness.

Conjunction: The truth value of the conjunction @A is t when the truth
values of ¢ and 1 are both t, and the truth value of ¢ A ¢ is f otherwise.

We can always compute the truth value of p A ¢ given the truth values
of ¢ and v by using Table 1(b), but we cannot use Table 1(b) the other way
in all cases. If we know, for example, that the truth value of ¢ A4 is f, then
there are three possible ways to give truth values to ¢ and 1 according to
the third column of Table 1(b): all we can say is that at least one of the
truth values of ¢ and ¢ must be f.

The meaning of the conjunction symbol A can be read off easily from
its intended meaning as the linguistic connective “and”: that is, “p is true”
and “y is true” exactly when “p and v is true”.

If we interpret pg as “it is raining”, for example, and interpret p; as “it
is hot” then pg A p1 says “it is hot and raining”.

Disjunction: The truth value of the disjunction ¢V is t when the truth
value of at least one of ¢ and v is t, and the truth value of ¢ VvV ¢ is f
otherwise.

Again, we can always compute the truth value of ¢ V 9 given the truth
values of ¢ and 1 using Table 1(b), but we cannot use this table the other
way in all cases. If we know, for example, that the truth value of V¢ is t,
then there are three possible ways to give truth values to ¢ and ¥ according
to the fourth column of Table 1(b): all we can say is that at least one of the
truth values of ¢ and ¥ must be t.

The meaning of the disjunction symbol V can be read off easily from its
intended meaning as the linguistic connective “or”: that is, “p is true” or
“» is true” exactly when “p or ¢ is true”. But it is not quite as easy as it
was for conjunction, for there are two ways to read “p or 1 is true”: namely
as “inclusive or” or as “exclusive or”.

For example, if I am asked “Would you like tea or coffee?” then I would
choose between “tea” and “coffee” since this “or” is exclusive: I can have
one or the other but not both. But if am asked “Would you like milk or
sugar” then I would answer “both” as this “or” is inclusive: I can have one
or the other or both.

In classical propositional logic we define “or” to be “inclusive or”. The
easiest way to say this is to define the truth value of a disjunction to be
“false” exactly when both components of the disjunction are “false”.

Conditional: The truth value of the conditional ¢ — 1 is t if the truth
value of ¢ is f or the truth value of ¥ is t or both, and the truth value of

12

p — 1 is f otherwise.

Knowing the truth values of ¢ and ¢ allows us to compute the truth
value of ¢ — . But knowing the truth value of ¢ — 1 does not uniquely
determine the truth values of ¢ and .

The conditional connective — is one of the hardest to explain from an
intuitive sense in a totally satisfactory manner given its intended meaning
of “if ¢ is true then v is true” or as “@ implies 9)”.

It is fairly easy to see that ¢ — 1 should be “false” when ¢ is “true”
and ¢ is “false”. It is also easy to see that ¢ — 1 should be “true ” when
p is “true” and v is “true”. But what should we do when ¢ is “false”?

Some philosophers have argued that in this case, the formula ¢ — ¥
should take an “unknown” or “indeterminate” value. Since these truth
values are forbidden by the Law of Excluded Middle, we must assign either
“true” or “false” to ¢ — 1 even when ¢ is “false”. In classical propositional
logic we put ¢ — ¥ to “true” in the two cases where ¢ is “false”.

If, for example, we interpret pg as “you will eat your dinner” and interpret
p1 as “you will get dessert” then pyg — pi1 says “if you will eat your dinner
then you will get dessert”: a conditional that most children easily bypass
by making enough noise to get the dessert without eating dinner. On the
other hand, if we interpret py as “the moon is made of green cheese” and
interpret p; as “pigs can fly”, then pg — p; says “if the moon is made of
green cheese then pigs can fly”, a statement that tells us nothing since we
know the moon is not made of green cheese.

Bi-Conditional: The truth value of the bi-conditional ¢ < 1 is t when
the truth values of the formulae ¢ and v are the same, and the truth value
of ¢ <> ¢ is f when they are different.

Knowing the truth values of ¢ and ¥ allows us to compute the truth
value of ¢ < . But knowing the truth value of ¢ < 1 does not uniquely
determine the truth values of ¢ and .

The bi-conditional ¢ < 1t simply says that the formulae ¢ and ¥ must
take the same truth value, whichever of t and f it is.

If, for example, we interpret pg as “you will eat your dinner” and interpret
p1 as “you will get dessert” then py < p; says “you will eat your dinner if
and only if you will get dessert”. Unlike pg — p1, no amount of noise will
allow a child to bypass pg < p1 since it states that the truth values of “you
will eat your dinner” and “you will get dessert” must be the same.

Example 3.2. Let us compute the possible truth values for the formula
(=pop) V p1 under an interpretation where py and p;
(= po) V p are both given a truth value of t. We write t under
t t each of them as shown at left to indicate that py has
truth value t and p; has truth value t. The formula
—po has the shape = if we let be the (name for the) formula py. Table 1(a)

13

of Figure 1 tells us that the truth value of —¢ is f when the truth value of
@ is t. That is, the truth value of —pg is f when the
truth value of pg is t, so we extend the picture by
writing f under the — connective as shown at left to
indicate that —pg is f. The formula (—pg) V p; has the same shape as the
formula ¢ V 1) if we let ¢ be —py and 1 be p;. Table 1(b) tells us that the
formula ¢ V4 has truth value t if one or both of ¢ and 1 has truth value t.
That is, the formula (—pg) V p1 has truth value t if one or both of —py and
p1 has truth value t. As p; has truth value t, we
therefore know that (—pg)Vp; has truth value t, which
we write by putting a t under the V connective as
shown at left. Thus when both py and p; have truth value t, we know that
(=po) V p1 has truth value t.

(= po) V p1
f t t

(= po) V m
f t t t

Exercise 3.1. Repeat this exercise for the other three cases (rows) below:

(= po) V m
f t t t
? t ?7 f
? f 7 t
? f 7 f

In this way, any given interpretation can be extended to give a truth
value to any formula of classical propositional logic.

We now need to ensure that these semantics do indeed obey the Law of
the Excluded Middle and the Law of Non-Contradiction. To indicate that
this property is of fundamental importance we call it a theorem and give a
proof for it in English prose.

Theorem 3.1. Under any given interpretation,
Excluded Middle: every formula takes the value t or the value f

Non-Contradiction: no formula takes the value t and f.

Proof: Consider any interpretation and consider any formula. Since we
know nothing about the formula, we proceed by considering all the various
shapes it could take.

atomic: If the formula is atomic, then the given interpretation must assign
it a truth value of either t or f, but not both since this is precisely
what interpretations do by their very definition. Thus, under this
given interpretation, both the Law of the Excluded Middle and the
Law of Non-Contradiction are satisfied for all atomic formulae.

14

non-atomic: If the formula is non-atomic then it must have one of the
shapes —@, p A, o Vb, ¢ — ¢, ¢ < 1, for strict subformulae ¢
and 1, since these are the only legal shapes for formulae. We next
show that, under this given interpretation, the theorem holds for each
formula shape if it holds for its immediate subformulae. We therefore
have to consider each of these cases in turn. We consider the first two
cases and leave the others as exercises.

—p: Suppose the given formula has shape —p. Further suppose that,
under the given interpretation, the immediate subformula ¢ obeys
Theorem 3.1, regardless of what shape ¢ itself has. The truth
value of ¢ is therefore either t or f, but not both. Table 1(a)
from Figure 1 then tells us that, under the given interpretation,
the truth value of = itself is either f or t, respectively, but not
both. That is, both the Law of the Excluded Middle and the Law
of Non-contradiction hold for —¢ if they hold for ¢.

@ A : Suppose the given formula has shape ¢ A 1. Suppose further
that, under the given interpretation, the immediate subformulae
© and 1 obey Theorem 3.1, regardless of their own shapes. That
is, suppose that both the Law of the Excluded Middle and the
Law of Non-contradiction hold for ¢ and for ¥. Thus the truth
value of ¢ is either t or f, but not both, and the truth value of
1 is either t or f, but not both. There are four possible pairings
of the possibilities, but Table 1(b) from Figure 1 tells us that, in
each of these four pairings, the truth value of ¢ A itself is either
t or f, but not both. That is, both the Law of the Excluded
Middle and the Law of Non-contradiction hold for ¢ A % if they
hold for ¢ and % individually.

In general, we have shown that the theorem will hold for a formula if it
holds for all smaller formulae, and also shown that the theorem holds for
all the smallest formulae: namely all atomic formulae. Under this given
interpretation, the theorem therefore must hold for all formulae.

Our proof does not assume nor demand any particular properties of the
given interpretation: it can be any arbitrary interpretation. This means
that the theorem must hold for any and all interpretations. Q.E.D.

We mark the end of a proof with the letters Q.E.D. which stand for the
Latin words quod erat demonstrandum which roughly translate to “which
was to be demonstrated”.

Intuition:' The technical argument in the proof above can be summarised
as follows: each interpretation by its definition respects the two laws for

![Not used here in the technical sense of “intuitionism” discussed in Chapter 51.—Ed.]

15

atomic formulae, and the truth tables in Figure 1 then enforce these two
laws in defining how to calculate the truth value of larger formulae from
smaller formulae.

Exercise 3.2. Complete the arguments for the cases from the proof of The-
orem 3.1 where the given formula has the shape ¢ V¢, ¢ — 9, and ¢ < .

Exercise 3.3. Work out the truth values for the formulae pg — p; and
(=po) V p1 and ((—po) V p1) <> (po — p1) given the four possible pairings of
the truth values of py and p;. Below we have given the case where py and
p1 both have truth value t:

po | p1 | po—p1 | (—=po) Vo1 | ((=po) Vp1) < (po — p1)
t t t t t
t f ? ? ?
f |t ? ? ?
f | f ? ? ?

Notice that the truth values of pg — p; and (—pg) V p1 are always equal:
such formulae are said to be logically equivalent to each other. Notice
also that the truth value of ((=po) V p1) <> (po — p1) is always t since the
meaning of the connective < is supposed to be “_ is logically equivalent to

”

3.2 Satisfiability, Validity and Logical Consequence

Having seen how to give meaning to the syntax of classical propositional
logic via interpretations, we now move on to more complicated semantic
notions. We say that a formula is:

satisfiable: if there is at least one interpretation which gives it a value t
falsifiable: if there is at least one interpretation which gives it a value f
unsatisfiable: if every interpretation gives it a value f

valid: if every interpretation gives it a value t.

Example 3.3. The formula py — p; is satisfiable since any interpretation
where pg is f gives pg — p1 the truth value t. Check this using the method
outlined in Example 3.2.

Example 3.4. The formula py — p; is also falsifiable since any interpreta-

tion where pg is t and py is f gives pg — p1 the truth value f. Check this
using the method outlined in Example 3.2.

16

Thus there exist formulae which are both satisfiable and falsifiable and
these terms are not opposites.

To show that a formula is unsatisfiable or to show that it is valid appar-
ently requires us to inspect every possible interpretation. Since there are an
infinite number of interpretations, how can we possibly achieve this task?

Example 3.5. Consider the formula (—pg) V pg and any interpretation at
all: this interpretation must give a truth value of either t or f to pg which
we write below pg in the first column in two separate rows. Table 1(a) then

tells us that —pg has truth value f when pg

po | —po | (=po) V po has truth value t, and —py has truth value t
t f t when pg has truth value f, as captured by the
f t t two rows of the second column. Under each

of these possibilities, (—pg) V po has value t
according to Table(1b). Since our initial interpretation was totally arbitrary,
this must hold for every interpretation, and therefore, (—pg) V po is valid.

As shown by Example 3.5, the truth value of a formula is determined
only by the atomic formulae that appear in it. It is easy to see, for example,
that the truth value of the atomic formula ps; has no bearing on the truth
value of the formula (—pg) Vpg. But we had to consider two cases in order to
determine whether or not (—pg) V po was valid. How many different cases do
we need to consider to determine the validity of a formula ¢ built up from
n atomic formulae, where n is a positive natural number? Let us consider
the first two values of n, and generalise:

n = 1: Ifn =1 then ¢ must be built up from one atomic formula only, say
po- This does not mean that ¢ is itself an atomic formula, for both pg A =pg
and py < (po V —pp) are built up from only one atomic formula pg. But it
should be clear from the truth tables from Figure 1 that the truth value of
this larger formula is completely determined by the truth value of
Do the atomic formula from which it is built. Thus there are only two
t cases for such formulae: the first where the single atomic formula pg
f has truth value t and the second where it has truth value f, which
we can write in tabular form as shown at left. The truth tables will

now completely determine the truth value of ¢ in these two cases.

n = 2: If n =2 then ¢ is built from only two atomic formulae, say pg and
p1- Again, ¢ may be arbitrarily complex, for example both the formulae

po — p1 and (—(po < p1)) — (p1 V po) are built from only two
Po | M . . .
t ¢ atomic formulae. Once again, the cases we need to consider are
T T F the truth values of only these two atomic formulae since the truth
value of atomic formulae like p1g or p1og7 clearly do not affect the
f|t . .
G truth value of ¢ if they do not appear in ¢. There are now four

cases: two where pg is t and pp is t or f, and another two where

17

po is f and p; is t or f, as shown at left.

General Case: In general, adding another atomic formula to the table
doubles the number of cases. That is, if ¢ is built from n different atomic
formulae, there are 2" cases where 2° = 1 and 2" = 2x2" ' forn =1,2,3,---
Of course, under each one of these cases, ¢ itself evaluates to either t or f.

Exercise 3.4. Extend the table at left to n = 10 by doubling the value of
on 2™ for the previous entry at each stage. This shows the

ZL B difficulty of using truth tables: if the formula ¢ is built
5 1 from 20 different atomic formulae, then we have to exam-
3 3 ine 219 = 1024 different interpretations to tell if it is valid.
Moreover, for a formula with just one extra atomic formula,
10 102 1 the number of cases doubles to 2'' = 2048. If n is 100 then
there are 2'%0 = 1267650600228229401496703205376 cases!

Example 3.6. Show that an arbitrary formula ¢ cannot be both satisfiable
and unsatisfiable. If ¢ is satisfiable then there is some interpretation that
makes it t. If ¢ is unsatisfiable then every interpretation must make it f.
The only way for ¢ to be both satisfiable and unsatisfiable is for some inter-
pretation to make ¢ both t and f. But this interpretation would then break
the Law of Non-Contradiction, which we showed was obeyed by all interpre-
tations. It is thus impossible for ¢ to be both satisfiable and unsatisfiable.

Exercise 3.5. Show that a formula cannot be both falsifiable and valid.

Exercise 3.6. Show that a formula cannot be both unsatisfiable and valid.

Logical Consequence: We now move on to the crucial semantic notion
of logical consequence. We use the capital Greek letter I', pronounced
“Gamma”, as a name for an arbitrary collection of formulae. We say that
an interpretation is a model for a formula ¢ if the interpretation gives the
truth value t to . We say that an interpretation is a model for a set of
formulae T if the interpretation gives the truth value t to every formula in
I'.2 We say that an arbitrary formula ¢ is a logical consequence of T if
every model for I' is also a model for . That is, if every interpretation that
gives a truth value t to every formula in I" also gives a truth value t to ¢.

Note that a formula is valid exactly when it is a logical consequence of
the empty set since every interpretation is a model for the empty set.

Exercise 3.7. Show that the formula py A p; is a logical consequence of the
set {p2 A p1}.

2[See Chapter 44 for more about model theory.—Ed.]

18

Example 3.7. Let I" be the set of formulae {(—pg) V p1,(—p1) V p2} and
let ¢ be pg — p2. The table below shows the 22 = 8 possible different
interpretations we can construct for the atomic formulae pg, p1 and po which
appear in I' and ¢. For each case, the table shows the truth values of the
larger formulae
that appear in
I' and the truth
° value of . The
interpretations
marked with e are
all models for T’
. since these inter-
pretations assign t
° to every member
° of I': if any of

these marked int-
erpretations assign f to ¢, then ¢ is not a logical consequence of I'. Since
all these marked interpretations assign t to pg — ps, the formula py — po is
a logical consequence of the set {(—po) V p1, (—p1) V p2}.

Atomic T

=
o
3
[N}
T
=
o
<
3
[
n
3
—
<
3
no
s
o
3
[N}

e G G R R R AR RS

||| | | |
[l el e Y Rl Bl I ol e Y I S

R G R R GG

L Y e Y B Y ol Bl W
et | mh| et | | | e+

Example 3.8. Let I'y be the set of formulae {(—po) V p1, (—p1) V2, =(po —
p2)} and let ¢ be an arbitrary formula. The set I'; from this example
contains the set I' from Example 3.7 and contains the extra formula —(py —
p2). Suppose I'; has a model. This model must assign t to =(pg — p2) since
it is a member of I'y. This model for I';y must also be a model for I' since I’
is contained in I';. Since our previous example told us that py — p2 was a
logical consequence of I', any interpretation that is a model for 'y, must be
a model for pg — po, and hence must assign f to —=(p9 — p2). This model
therefore assigns both t and f to =(py — p2). The Law of Non-Contradiction
tells us that it is impossible for an interpretation to assign both t and f to
any formula. Such an interpretation cannot exist: thus no interpretation
can be a model for I'y.

How are we to evaluate “every model for I'; is also a model for ¢” when
Iy has no models? In classical propositional logic, we deem the quoted
expression to be true in this case. That is, any formula ¢ whatsoever is a
logical consequence of a set I'y that has no models.

The argument in Example 3.8 illustrates a method of reasoning called
reductio ad absurdum in Latin, which roughly translates to “reduction to
absurdity”. We assume that some given statement is true and show that
this assumption leads to a clear contradiction. The given statement therefore
cannot be true. By the Law of the Exclude Middle, it must therefore be
false. Such a proof is commonly knows as a proof by contradiction. We
shall use such reasoning repeatedly in the rest of this chapter.

19

We now illustrate some general principles of reasoning which are valid
in classical propositional logic. We deliberately use formula shapes in terms
of ¢ and v to show that they apply for all formulae with these shapes.

Exercise 3.8. Show that the following formulae (shapes) are valid:

1.

10.

11.

12.

13.

(p A1) « (Y A p) illustrates the commutativity of conjunction since
the order of the components of the conjunction is immaterial.

(p V) < (¢ Vo) illustrates the commutativity of disjunction since
the order of the components of the disjunction is immaterial.

(p « V) < (Y < o) illustrates the commutativity of logical equiva-
lence since the order of the components of the inner bi-conditionals is
immaterial.

(o1 A (2 A ws)) < ((p1 A p2) A p3) illustrates the associativity of
conjunction since the order of the parentheses between the components
of the conjunctions is immaterial.

(p1 V (w2 V 3)) < ((p1 V p2) V p3) illustrates the associativity of
disjunction since the order of the parentheses between the components
of the disjunctions is immaterial.

(p1 < (P2 < ¥3)) < ((p1 < @2) <« 3) illustrates the associativity
of logical equivalence since the order of the parentheses between the
components of the inner bi-conditionals is immaterial.

(p —) < ((-) — (—¢p)) is called the principle of contraposition:
“if o then ¢” is logically equivalent to “if =) then —¢”.

(m=p) < ¢ is called the principle of double negation: two adjacent
negation signs cancel out.

(=(e A1) < ((m¢) V (1)) is called De Morgan’s Law I and demon-
strates how negation can be pushed through conjunction.

(=(e V1)) < (@) A(—1)) is called De Morgan’s Law II and demon-
strates how negation can be pushed through disjunction.

(=(p — ¥)) < (¢ A1) illustrates how negation can be pushed
through implication.

(p — 1Y) < (=(p A 1)) illustrates how a conditional is logically
equivalent to the negation of a conjunction.

(p A (¢ — 1)) — 1 illustrates the principle that if ¢ is true, and ¢
implies) is true, then % is true.

20

14. (p < ¥) < ((¢ — ¥) A (¢ —)) illustrates that an “_ if and only
if 7 statement can be written as the conjunction of two “if _ then _”
statements.

Example 3.9. Suppose we read ¢ as “statement one is true” and read
as “statement two is true”. Then we can read ¢ — ¢ as “if statement one
is true then statement two is true”. To say that ¢ —) is true is to say that
“if statement one is true then statement two is true is true”. In English, the
principle from Exercise 3.8(13) is precisely the statement “If statement one
is true and if statement one is true then statement two is true is true then
statement two is true.” which we mentioned in the introduction.

Exercise 3.9. Show that:

1. If the formula —¢ is unsatisfiable then the formula ¢ is valid. Assume
that —¢ is unsatisfiable and show that ¢ must then be valid.

2. If the formula ¢ is valid then the formula = is unsatisfiable. Assume
that ¢ is valid and show that = must then be unsatisfiable.

Exercise 3.10. The negation of the valid formula (—pg) V pg from Exam-
ple 3.5 is =((=po) V po). Confirm that —((—po) V po) is unsatisfiable by
showing that it takes the value f under all interpretations.

Exercise 3.9 tells us that a formula — is unsatisfiable if and only if ¢
is valid. It also illustrates that to prove that a bi-conditional statement is
true, it suffices to prove that the two conditional statements to which it is
logically equivalent by Exercise 3.8(14) are individually true. We shall use
this idea over and over again in the rest of this chapter.

We next prove a fundamental property about the notion of logical con-
sequence in classical propositional logic. To indicate that the property is
fundamental, we again call it a theorem, and prove it true by using valid
principles and properties of classical propositional logic itself.

Theorem 3.2. A formula 1 is a logical consequence of the set I' U {¢} if
and only if ¢ — 1 is a logical consequence of the set I'.

Proof: The theorem is stated as an “_if and only if .” statement and hence
is a bi-conditional where the left component is “a formula 1) is a logical con-
sequence of the set I'U {¢}” and the right component is “p — v is a logical
consequence of the set I'”. By the valid principle from Exercise 3.8(14) we
know that a bi-conditional is logically equivalent to a conjunction of two “if _
then 7 statements. The theorem can therefore be stated as the conjunction
of the statements shown below:

(1) If a formula 9 is a logical consequence of the set I' U {¢} then ¢ — ¢
is a logical consequence of the set I'.

21

(2) If ¢ — 1 is a logical consequence of the set I' then 1 is a logical
consequence of the set I' U {¢}.

To prove the theorem true, it suffices to prove each of these conditional
statements true individually.

Consider statement (1): it is an “if _ then ” statement and we want to
show that it is true. Table 1(b) from Figure 1 tells us that there are three
ways to make a conditional statement true but only one way to make it
false. It is therefore more efficient to use a proof by contradiction to show
that the conditional cannot be false, and to use the Law of the Excluded
Middle to then conclude that the conditional is true.

Table 1(b) from Figure 1 tells us that the way to make an “if _ then 7
statement false is to make the “if” part true and the “then” part false. In
the proof of (1) below we assume that the “if” part of (1) is true, and that
the “then” part of (1) false: that is we assume that the whole “if _ then
_” statement (1) is false. We then show that these assumptions lead to a
contradiction, thereby proving that our assumption is flawed: the “if _ then
_” statement (1) cannot be false. But the Law of the Excluded Middle tells
us that each statement is either true or it is false. Since the “if _ then _”
statement cannot be false, it must be true.

The proof of (2) is similar except that the “if” part and the “then” part
are interchanged.

b

Proof of (1): Suppose 9 is a logical consequence of the set I' U {¢} and
suppose that ¢ — 1) is not a logical consequence of the set I'. The
latter means that there is some interpretation which assigns t to each
member of I', but which assigns f to ¢ — 1. This interpretation must
assign t to ¢ and assign f to 1 since this is the only way to assign f
to ¢ — 1. This interpretation is therefore a model for the set I' U {¢}
since it assigns t to each member of I' U {¢}. Our first assumption
was that 1 is a logical consequence of the set I' U {¢}. That is, every
model for I'U {¢} must assign t to 1. Our particular interpretation is
a model for 'U{p} so it must assign t to ¢). But it already assigns f to
1, so it must assign both t and f to ¢. Theorem 3.1 tells us that this
is impossible. Hence it is impossible for 1 to be a logical consequence
of the set I' U {¢} and ¢ — 9 not to be a logical consequence of the
set I'. That is, if ¥ is a logical consequence of the set I' U {¢} then
p — 1 is a logical consequence of the set I'.

Proof of (2): Suppose ¢ — 1 is a logical consequence of the set I' and
suppose that 1 is not a logical consequence of the set I' U {¢}. Show
that these two assumptions lead to a contradiction by using reasoning
similar to the proof of (1).

Q.E.D.

22

Intuition: Theorem 3.2 shows that the conditional — captures logical
consequence between single formulae: that is, ¥ is a logical consequence of
the set {¢} if and only if the formula ¢ — % is valid. Notice that it is not
sufficient for the conditional ¢ — 1 to be merely satisfiable (t under some
interpretation), it must be valid (t under all interpretations).

We now have a syntax and a semantics for classical propositional logic.
In the next section we shall see a calculus for classical logic.

4 The Sequent Calculus SK

We now move onto the final part of classical propositional logic, a calculus.
Recall that a calculus must be purely syntactic, hence the semantics must
play no role in it. Calculi therefore usually consist of a collection of rules
for manipulating expressions built out of the syntax (of formulae), possibly
using some extra symbols. Different extra symbols, and different ways of
building expressions from formulae give different styles of calculi. Of course,
each calculus must rigorously define when there is a deduction of the formula
p from a given collection of formulae I'.

There are three main types of syntactic calculi: Hilbert-style calculi,
natural deduction style calculi and sequent style calculi. Each use different
extra symbols to build expressions from formulae, and each define deductions
in different ways.

Hilbert-style calculi are the most traditional since their origins go back
to Aristotle and other ancient Greek philosophers. They are named after
the German mathematician David Hilbert although Gottlob Frege did much
of the work in formalising them. Hilbert-style calculi are good for reasoning
about deductions, but are not very good for finding deductions, so we do
not go into further details here.

Natural deduction style calculi were invented independently by the Pol-
ish mathematician Stanistaw Jészkowski [J4s34] and the German mathe-
matician Gerhard Gentzen [Gen35]. Most authors choose natural deduction
calculi for teaching purposes since deductions in them follow the usual struc-
ture of mathematical arguments, whence the name “natural deduction”.

Sequent calculi were invented by Gerhard Gentzen [Gen35]. We concen-
trate on sequent style calculi because they provide a basis for an algorithm
for automatically computing whether or not ¢ is logical consequence of I'.

Sequent calculi use the following extra symbols:

=) - r A

respectively called the sequent arrow, the comma, the horizontal line, and
the capital Greek letters pronounced “Gamma” and “Delta”. Once again,
these symbols are not part of the syntax of classical propositional logic but
are ancillary symbols which we use to define the sequent calculus. Thus

23

(Id) F,(,O = (PaA

() 2 () Lp=42
L= A I = —p, A

(V1) P”?;é ¢F:’f’A:>A (vr) FP:’%

(= 1) = p,A I,p=A - T, 0= 1, A

Ne—9yv=A = p—-1y A

I'=o,¢9,A T,0,¢= A
ooy =—A

(=)

F7¢:>¢7A F7¢:>SO7A

(=) T — ¢y, A

Figure 2: Sequent Calculus SK for Classical Propositional Logic.

expressions like I' — A and I' VA and —I" are neither formulae nor formulae
shapes. Using these symbols we now define the following important notions.

Sequent: A sequent is an expression of the form I' = A where I' and
A are finite, possibly empty, sets of formulae. We use I' and A as set
names and write the set {pg,p1,p2} as just pg, p1, p2 by omitting the braces.
Since the order of the elements in a set is immaterial, this set can also be
written as pi1,po,pe or as any of the other five permutations we can obtain
from these three formulae. If I" is a set of formulae and ¢ is a formula, then
I', o and ¢, T" both stand for the union of the sets I and {¢}.

Antecedent: The part to the left of the sequent arrow is the antecedent.

Succedent: The part to the right of the sequent arrow is the succedent.

Example 4.1. All of the expressions shown below are sequents:
—=po = po P0,P1,P3 = P4,P1,D5 po, (po — p1) = p1.

24

Moreover, if ' is the (name of the) set {pp,p1} and A is the (name of
the) set {p4} and ¢ is the (name of the) formula py then I', o = ¢, A is
the sequent pg, p1, P4 = p4 instead of the sequent pg, p1, P4 = P4, P4 since
the expression ¢, A stands for the union of the two sets {¢} and A, and the
union of {ps} and {p4} is the set {p4}. Multiple occurrences of a formula, all
in the antecedent or all in the succedent, are thus automatically collapsed
into one occurrence.

Intuition: Recall that our calculus is supposed to consist of pure symbol
manipulations, so a semantic intuition for a sequent is not appropriate.
There is, however, a purely syntactic intuition which can be given without
recourse to the semantics. Every sequent of the form

P1,P2,P3," " Pn :>¢17¢2,¢37"'7¢m

can be read as the formula

(1A (P2 (P3N Apn—1Apn) -+ +))) = (D1V(P2V(P3V- -V (Pm—1Vim) - *)))

where n > 0 and m > 0 are natural numbers. Under this formula reading
of a sequent, Gentzen’s comma should be read as an A connective when it
appears in the antecedent, but should be read as an V connective when it
appears in the succedent. Unlike the reading of formulae, the reading of
the comma changes from antecedent to succedent. The constants T and
L mentioned in the last paragraph of Section 2 are needed for this reading
where an empty left hand side of a sequent is read as the formula T and an
empty right hand side of a sequent is read as the formula 1. Since we do
not make use of this reading, we do not need these constants.

Sequent Rule: A sequent rule is an expression consisting of 0, 1 or 2
sequents, called the premisses, above a horizontal line, and a single sequent,
called the conclusion, below the horizontal line. The name of the sequent
rule is attached to the left of the horizontal line in parentheses. If the rule
has zero premisses then the horizontal line is omitted. See Figure 2 for a
listing of the rules that we shall use.

I have deliberately not given any intuitions about how to read sequent
rules since they are supposed to constitute pure symbol manipulations: some
formulae get joined together and moved about in going from the premisses
to the conclusion while the formulae in I' and A stay constant.

Principal and Side Formulae: A formula that is shown explicitly in the
premisses is called a sideformula of that rule and a formula that is shown
explicitly in the conclusion is called the principal formula of that rule. We
say that a rule introduces its principal formula from its side formula(e).

25

Example 4.2. In Figure 2, the sequent rule with name (— [) has two pre-
misses: a left premiss I' = ¢, A and a right premiss I';9p = A. The
conclusion of this rule is the sequent I'; o — ¥ = A. The side formulae of
the rule (— 1) are ¢ and v while its principal formula is ¢ — .

Sequent Calculus SK: The sequent calculus SK is the collection of se-
quent rules shown in Figure 2. Many authors use the name LK for this
calculus, since it is a simplified version of Gentzen’s original sequent calcu-
lus, which he called LK. For every connective, there are two rules in SK:
one with a name containing [(for “left”) that introduces a principal formula
with that connective into the antecedent of the conclusion, and another with
a name containing 7 (for “right”) that introduces a principal formula with
that connective into the succedent of the conclusion. The rule (Id) is the
only rule with no premisses, and it introduces an arbitrary formula into both
its antecedent and succedent simultaneously.

The rules in Figure 2 are really built from sequent shapes, rather than
actual sequents. In the rule (Id), for example, the symbols I' and A are
names for arbitrary unknown sets of formulae, and ¢ is the name of some
arbitrary unknown formula which must occur in both the antecedent and
the succedent of the sequent.

Exercise 4.1. Work out the formula corresponding to the rule (Id) under
the formula reading mentioned above. You might care to work out the
formulae corresponding to the premisses and conclusion of each rule, but at
this stage, it is unlikely to shed any light on how the rules capture deduction.

Sequent Instances: We form an instance of a sequent rule (shape) by
uniformly replacing the set names like I' and A that appear in it by sets of
formulae, and uniformly replacing formulae names like ¢ and ¢ that appear
in it by particular formulae. By “uniformly” we mean that all occurrences of
the name ¢ (say) must be replaced by the same formula. We cannot replace
one occurrence of ¢ with one formula, and another occurrence of ¢ with a
different formula. Although the instances of I' and A may be empty sets of
formulae, the instances of side-formulae like ¢ and v must be present.

Example 4.3. Below are two instances of the (Id) rule I', p = ¢, A:

D5, D6, P7 \ P8 = P17, D7 A\ D8 p1 A (p1 — p2) = p1 A (p1 — p2)
I'is {ps,p6} Ais {p17} T is empty A is empty
@ is pr A ps @ is p1 A (p1 — p2)

In the left hand sequent, the “uniformly” restriction forbids us from in-
stantiating the occurrence of ¢ in the antecedent of (Id) with pg or ps and
instantiating the occurrence of ¢ in the succedent of (Id) with py7.

26

Example 4.4. Neither of the sequents below is an instance of (Id):

P5,P6, P8 NP7 = P17, 07 N\ DS p1, (P1 — p2) = p1 A (p1 — p2)

since neither sequent contains a formula which is common to its antecedent
and succedent. In the left hand sequent, the formulae pg A p7 and p7 A pg
are different. In the right hand sequent, the formula p; — ps appears in the
antecedent as a whole formula, but p; — ps appears in the succedent as a
strict subformula of p1 A (p1 — p2).

Example 4.5. Below are two instances of the rule (—) from Figure 2:

= p1 p= P1 = P4 — P5,P2,P3V D4 P1,P2 = P2,P3 V P4

p1— p2 => p1, (P4 — p5) — P2 = P2, p3 V P4
I' and A are empty I'is {p1} and A is {p2,ps V psa}
@ is p1 and ¥ is po p is py — ps and Y is po.

As the example on the right shows, it is often easier to read the rules
backwards (upwards), from the conclusion to the premisses.

Derivation: A derivation is a tree of sequents where every leaf sequent of
the tree is an instance of (Id), and where the child sequents in the tree are
obtained from their parent sequent by instantiating a rule from SK.

The bottom-most sequent in a derivation is called the end-sequent and
the derivation is said to be a derivation of that sequent.

Example 4.6. This example illustrates that each rule instantiation is
independent of the others. In the instance of

the (Al) rule, I" is {p2} and A'is {p1} and ¢ py,py,p1 = M1

is pg and 1 is =—p;. In the instance of the D2, Po —> —D1, P)
(=) rule, T is {p2,po} and A is {p1} and ¢ T T— (1)
is =p1. In the instance of the (—r) rule, T is 210 ! ! Al)

{p2,po} and A is {p;} and ¢ is p;. Thus the P2POATTPL=D1
instantiations are not constant throughout a
derivation, but must be constant throughout one rule instance.

Notice that a derivation (tree) is built from smaller derivations (trees).
The leaf sequents are instances of (Id) and are derivations of themselves.
Given a derivation of some end-sequent, applying a single premiss rule down-
ward transforms the derivation into a derivation of the conclusion of the rule.
Given derivations of two end-sequents, applying a two premiss rule down-
ward transforms the two derivations into a single derivation of the conclusion
of the rule. We use this insight to define the notion of a deduction in SK.

27

Deduction in SK: A derivation is a deduction of its end-sequent from
the collection of its leaf sequents. Each rule of SK, when read downwards,
shows how to turn the deductions of its premisses (from their leaf sequents)
into a deduction of its conclusion (from these same leaf sequents). The leaves
of a derivation are deductions of themselves.

We still have to convince ourselves that instances of (Id) are acceptable
starting points for deductions but we leave this issue till later since it is best
done by using semantic notions.

Deduction of ¢ from I': Reading the sequent arrow = in a slightly
different way, we say that there is a deduction of a formula ¢ from the set
of formulae I' exactly when the sequent I' = ¢ is derivable in SK. This is
a purely syntactic definition that involves no semantic notions.

Example 4.7. The derivation at right has leaf sequents pi, ps = p2 and
p1,p2 = p1 and each is an instance

of (Id) since the first contains the for- ~P1:P2 = P2 P1,P2 = P1 (AF)
mula po in its antecedent and succe- D1,P2 = P2 A\ p1
dent while the second contains the for- p1L A P2 = pa APy
mula p; in its antecedent and succed-

ent. The top-most rule instance is of the rule (Ar) and introduces the
formula py Ap; into the succedent of its conclusion sequent p1, ps = pa Apy.
The bottom-most rule instance is of the rule (Al) with a premiss sequent
p1, P2 = p2 A p1 and a conclusion sequent p; A po = pa A p1.

(AD)

Example 4.8. The derivation at right is also of the same end-sequent as

Example 4.7, but now we
p1,p2 = D2 p1,p2 = P1

consider the rules bottom-up. Al Al
The end-sequent p; A pp = P1Ap2 = P2 p1Ap2 = p1 Ar)
p2 A pp is an instance of the p1 A pa = pa A p1 "

conclusion I' = ¢ A, A of

the rule (Ar) where I' is {p1 A p2} and A is empty and ¢ is p2 and ¥ is p.
Notice that the “uniformly” restriction is not broken by this instantiation
since we are allowed to instantiate ¢ A 1 in the succedent with ps A p;
while also instantiating I" in the antecedent with ps A p;. The corresponding
instances of the premisses I' = ¢, A and I' = 1), A of the (Ar) rule are
the sequents p; Aps = po and p; A pa = p; respectively. The left sequent
p1/Ap2 = ps is an instance of the conclusion I', p A1) = A of the (Al) rule,
where I' is empty and A is {p2} and ¢ is p; and 9 is py, with corresponding
premiss instance pj,ps = p2. The right sequent p; A po = p; is an
instance of the conclusion I', o A) = A of the (Al) rule, where I is empty
and A is {p1} and ¢ is p; and 1 is py, with corresponding premiss instance
p1,p2 = p1. Since these premisses are instances of (Id), we have another
derivation of p; A po = pa A p1.

28

Examples 4.7 and 4.8 show that a sequent may have multiple derivations.

We now have a method for recognising derivations, but how might we
find them? Suppose we were searching for a derivation of the end-sequent
p1 A pa = p2 A p1. Since this sequent is not an instance of (Id), the only
way to find a derivation for it is to find a rule of SK whose conclusion can
be instantiated to p1 A po = po A p1. This sequent, for example, cannot
be an instance of the conclusion I', m¢p == A of the rule (=) since there is
no negated formula in p; A po = ps A p1. By such a process of elimination
we can conclude that the only rules whose conclusions could be instantiated
to give p1 A po = pa A p1 are the (Al) and (Ar) rules. Using (Al) as the
bottom-most rule instance gives the derivation in Example 4.7, while using
(Ar) as the bottom-most rule instance gives the derivation in Example 4.8.
These examples indicate how to find a derivation for a given sequent.

Systematic Backward Search Procedure for Finding Derivations:

Initialisation: Write the given sequent at the bottom of a page so that it
forms the sole leaf of a tree with only one node.

Choose Leaf: Choose a leaf sequent which is not an instance of (Id).

Choose Rule: Choose a rule of SK whose conclusion can be instantiated to
the chosen leaf sequent.

Apply Rule Backwards: If both the above steps succeed then

1. Draw a horizontal line over the chosen leaf so it is no longer a
leaf.

2. Instantiate the chosen rule’s premiss(es) and write them above
the horizontal line to obtain up to two new leaf sequents.

3. Write the name of the chosen rule to the right of the horizontal
line.

4. Return to step Choose Leaf.
End: If every leaf sequent is an instance of (Id) then report success.

Different choices of rules will give different search trees and potentially
different derivations. To conclusively report that a sequent has no derivation
we must try all such search trees (although later on we will show that only
one will actually suffice).

Exercise 4.2. Find derivations for the following sequents, and compare the
formulae involved with those in Exercise 3.3 and Example 3.7:

L. po — p1 == (=po) V p1 3. = ((=po) Vp1) < (po — p1)

2. (=po) Vp1 = po — 1 4. (=po) V p1, (=p1) V p2 = (—po) V pa.

29

Exercise 4.3. Try to find derivations for the following sequents:

Po — P1 == P1 — Po p1Ap2 = (p1 Ap2) Aps3 P1Vp2 = p1.
If you do find derivations then you have done something wrong as these
sequents should not be derivable in SK.

Subformula Property for Rules: For every rule of SK, the sideformulae
that appear in the premisses are strict subformulae of the principal formula
in the conclusion.

Example 4.9. The side formula of the (=l) rule is ¢ and it is a strict
subformula of the principal formula —¢ of ().

Intuition: If we read each rule of SK upwards, the constituents of its
premisses already appear in its conclusion.

Subformula Property for Derivations: The formulae that appear in
any sequent in any backward search tree of the root sequent I' = A are all
subformulae of the formulae in the set I' U A formed by taking the union of
the sets I" and A.

Given that the root sequent I' = A is built from finite sets, the set TUA
must be finite. Since multiple occurrences of a formula are forbidden in the
antecedents and succedents of sequents, the number of different sequents
we can build from the set of formulae in I' U A is finite. From a finite set
of sequents, we can build only a finite number of different search trees or
derivations. This means that any particular backward search tree for a given
sequent I' => A must be finite, and even more importantly, that ' = A
has a finite number of backward search trees. So backward search must end.
Below we give a more direct argument for this fact.

Termination of backward search for a derivation: In any search tree,
the number of logical connectives that appear in any one premiss is always
one less than the number of logical connectives that appear in its conclusion
since every backward rule application removes the connective of its principal
formula. Every branch of a backward search tree for a finite root sequent will
therefore eventually contain a (leaf) premiss sequent which is an instance of
(Id) or which is not an instance of (Id) but which has no connectives in it
at all. In the first case, the systematic procedure will never choose this leaf
again. In the second case, the leaf will consist of atomic formulae only so
no further rule of SK is backward applicable to it. In either case, backward
search along this branch terminates. Since each backward rule application
causes the current branch to split into at most two, and the root sequent has
a finite antecedent and conclusion, there can be only a finite number of such
branches, and the backward search procedure as a whole must eventually
terminate and reach the step marked End.

30

We have now seen how to find and recognise derivations for a given
sequent in the calculus SK and used this notion to define how to find and
recognise a deduction of a formula ¢ from a set of formulae I'.

5 Soundness and Completeness of SK

In this section we make connections between the syntactic notion of deduc-
tion and the semantic notion of logical consequence and show that they are
two faces of the same coin. Since our notion of deduction is couched in
terms of derivations in SK, it is easier to first make the connection between
derivations in SK and logical consequence. We shall therefore show that SK
captures logical consequence in the following two senses:

Soundness of SK: If the sequent I' = ¢ is derivable in SK then ¢ is a
logical consequence of the set of formulae I'.

Completeness of SK: If ¢ is a logical consequence of the set of formulae
I" then the sequent I' = ¢ is derivable in SK.

These facts together show that the purely syntactic notion of derivability in
SK captures the purely semantic notion of logical consequence precisely.

To prove these facts we prove certain properties of the sequent calculus
SK as stepping stones. To do so we use principles of classical propositional
logic which we have already shown to be valid. We are therefore using
classical propositional logic to reason about SK. Some of these proofs are
quite complicated, so don’t worry if you have trouble understanding them
on a first reading.

We first extend some of the semantic notions from Section 3.2 from
formulae to sequents. We say that a sequent is:

falsifiable: If some interpretation assigns t to every member of the an-
tecedent and assigns f to every member of the succedent.

valid: If every interpretation which assigns t to every member of the an-
tecedent assigns t to some member of the succedent.

Example 5.1.

1. The sequent pg,po A p1 = po is falsifiable under the interpretation
t.t,f £ £ f ..

2. The sequent pg,p1 = po A p1 is valid since any interpretation that
assigns t to pp and to p;, must assign t to pg A p1.

3. The sequent pg, -py = p1 is valid since no interpretation can assign
t to every member of its antecedent. This sequent is an example
where the conditional statement of validity is true vacuously because
no interpretation makes the “if” part true.

31

4. The sequent pg,py = is falsifiable vacuously since the interpretation
t,t, - assigns t to every member of the antecedent and assigns f to
every member of the empty succedent.

5. The sequent p1, ps = p3, —p3, p4 is valid trivially since every interpre-
tation must assign t to either ps or to —ps by the Law of the Excluded
Middle and Table 1(a).

Exercise 5.1. Show that if a sequent is not valid then it is falsifiable.
Exercise 5.2. Show that if a sequent is falsifiable then it is not valid.

Exercise 5.3. Together, Exercises 5.1 and 5.2 show that a sequent is falsi-
fiable if and only if it is not valid. By using the principle of contraposition
on each of the statements of Exercises 5.1 and 5.2, show that a sequent is
valid if and only if it is not falsifiable. Thus the notions of falsifiable and
valid are opposites.

5.1 Soundness of SK

When a result is not fundamental in itself, but is used at a later stage as a
step in proving something fundamental, it is called a lemma. We now prove
some lemmata which are eventually used to prove the soundness of SK.

Lemma 5.1. For every instance of every rule of SK except (Id): if the
premisses are valid, then the conclusion is valid.

Proof: We must consider each rule in turn. We give the case for the (— 1)
rule and leave the others as exercises.

(—1): Consider any arbitrary instance of the rule (— [), and suppose that
the instances of the premisses I' = ¢, A and I';9p = A of this
rule are each valid sequents. We must show that the corresponding
instance of the conclusion I', o — ¢ = A is also valid.

If no interpretation assigns t to every member of the antecedent I', ¢ —
1 then we are done since the sequent I'; o — ¥ = A is then valid
vacuously as in Example 5.1(3).

Otherwise, consider any interpretation that assigns t to every member
of the instance of the antecedent I', o — 1. We must show that this in-
terpretation assigns t to some member of the instance of the succedent
A. There are now two cases depending upon how this interpretation
assigns t to o — .

@ is f: One way for the interpretation to assign t to ¢ — ¥ is by as-
signing f to . We can now use the assumption that the instance

32

of the premiss I' = , A is valid. That is, since this interpre-
tation assigns t to each member of I', it must assign t to some
member of ¢, A. We know it cannot assign t to ¢ since ¢ is
already assigned f. Thus some member of A must be assigned t
by this interpretation. This was precisely what we had to show.

@ is t: The only other way for the interpretation to assign t to ¢ — ¥
is by assigning t to both ¢ and). We can now use the assumption
that the instance of the premiss I'; 1) = A is valid. That is, since
this interpretation assigns t to each member of I' and assigns t
to 9, it must assign t to some member of A. This was precisely
what we had to show.

Q.E.D.

Exercise 5.4. Complete this proof for each rule of SK except (Id).

Intuitions: The intuition behind Lemma 5.1 is that each rule of SK except
(Id) preserves validity downwards from all of its premisses to its conclusion.
The (Id) rule itself has no premisses but it has a much stronger semantic
property as shown next.

Lemma 5.2. Every instance of (Id) is valid.

Proof: Suppose a sequent is an instance of (Id): hence it has the shape
I',o = ¢, A. If no interpretation assigns t to every member of the an-
tecedent I', ¢ then the sequent is vacuously valid. Otherwise, consider any
interpretation that assigns t to each member of the antecedent I', . Clearly,
this interpretation assigns t to some member of the succedent ¢, A namely
. The instance of I', o => ¢, A then fulfils the definition of a valid sequent.
Q.E.D.

Exercise 5.5. Go back to the definition of “Deduction in SK” just above
Example 4.7 and convince yourself that it is acceptable to begin all deduc-
tions with instances of (Id).

Theorem 5.3. [Soundness] If a sequent is derivable then it is valid.

Proof: Suppose the sequent I' = A is derivable. We have to show that
it must be valid. The derivation of the sequent I' = A could be totally
arbitrary, so we consider its shape.
If the sequent I' = A is itself an instance of (Id) then the derivation
consists of just this one sequent and we know it must be valid by Lemma 5.2.
Otherwise, the derivation is a tree of arbitrary shape and we begin at
the leaves, which are all instances of (Id). Each of these leaf sequents (there

33

may be only one) is the premiss of a rule of SK and all of these leaf sequents
are valid by Lemma 5.2. Lemma 5.1 then tells us that the conclusions of all
these rule applications must be valid. Repeating this argument, we can use
Lemma 5.1 to percolate the validity of the leaf sequents all the way down
to the end-sequent I' = A, which must then be valid. Q.E.D.

A fundamental result that follows easily from previous theorems or def-
initions is called a corollary.

Corollary 5.4. If a sequent is not valid then it is not derivable.

Proof: The statement of the corollary is logically equivalent to the state-
ment of Theorem 5.3 by the valid principle of contraposition. Q.E.D.

Theorem 5.3 tells us that the calculus SK allows us to derive only valid
sequents. Clearly, if the first backward search tree we attempt turns out
to be a derivation, then we can declare the end-sequent to be derivable.
By restricting the succedent to a single formula, we obtain the version of
soundness we seek.

Theorem 5.5. [Soundness of SK] If the sequent I' = ¢ is derivable then
 is a logical consequence of T'.

Proof: If the sequent I' = ¢ is derivable then the sequent I' = ¢ is valid
by Theorem 5.3. By the definition of valid sequent, every interpretation
that assigns t to every member of I' then assigns t to . By the definition
of a model, this is the same as saying that every model for I' is a model for
. By the definition of logical consequence, the formula ¢ is then a logical
consequence of I'. Q.E.D.

5.2 Completeness of SK

We now turn to completeness and once again start with some lemmata which
are used as stepping stones in the completeness proof.

Lemma 5.6. For every instance of every rule of SK except (Id): if at least
one of the premisses is falsifiable, then the conclusion is falsifiable.

Proof: We must consider each rule in turn. We give half of the case for the
(— 1) rule and leave the others as exercises.

(—1): Consider an arbitrary instance of the (— [) rule and suppose that the
instance of its right premiss I';1) = A is falsifiable. We must show
that the corresponding instance of its conclusion I'; o — ¢ = A is
also falsifiable.

Since I',9 = A is falsifiable, there exists some interpretation that
assigns t to each member of I' and assigns t to v, but which assigns

34

f to each member of A. There are now two cases depending upon the
assignment for ¢ under this interpretation:

@ is f: If the interpretation assigns f to ¢ then it assigns t to ¢ — ¥.

@ is t: If the interpretation assigns t to ¢ then it assigns t to ¢ — ¥
since it already assigns t to .

In both cases, this interpretation assigns t to each member of the
antecedent of I', o — 1 = A and assigns f to each member of the
succedent. This is precisely what we have to show to conclude that
I' o — ¢ = A is falsifiable.

Q.E.D.

Exercise 5.6. Complete this proof for the case where the instance of the
left premiss I' = ¢, A of the rule (— () is falsifiable.

Exercise 5.7. Complete this proof for all other rules of SK except (Id).

Intuition: The intuition of Lemma 5.6 is that each rule of SK except (Id)
preserves falsifiability downwards from any one of its premisses to its con-
clusion. More importantly, Lemma 5.6 also tells us that the interpretation
that falsifies the premiss, also falsifies the conclusion. That is, the rules of
SK also preserve the falsifying interpretation itself downwards from any one
falsifiable premiss to its conclusion.

Completed Sequent: We say that a sequent is completed if it cannot
be the instance of the conclusion of any rule of SK except possibly (Id). That
is, the only rule of SK whose conclusion might possibly be instantiated to
this sequent is the (Id) rule.

Lemma 5.1 tells us that every instance of (Id) is valid, so no instance of
(Id) is falsifiable. We can, however, say something about completed sequents
which are not instances of (Id).

Lemma 5.7. Every completed sequent that is not an instance of (Id) is
falsifiable.

Proof: Suppose we are given a completed sequent which is not an instance
of (Id). If the antecedent of this sequent contained a (non-atomic) formula
—p, then we could make this sequent into an instance of the conclusion
I',~¢ = A of the (=l) rule. But then, our given sequent would not be
completed, hence the antecedent of our sequent cannot contain a negated
formula. This same argument can be repeated for every non-atomic formula
shape ¢ VU, p A1), p — 1, p < 1, by replacing the rule (=) by the appro-
priate rule, hence the antecedent cannot contain any non-atomic formula. A

35

symmetric argument using the right version of each of the rules tells us that
the succedent of our sequent also cannot contain any non-atomic formula.
That is, the given sequent must consist of atomic formulae only.

Let the interpretation be as follows: from our given sequent, assign t
to every atomic formula in the antecedent, and assign f to every atomic
formula in the succedent. All other atomic formulae can be assigned f.

By definition, this interpretation falsifies the given sequent. The only
complication would be if the antecedent and succedent both contained some
common atomic formula p, since then our interpretation would assign both
t and f to this atomic formula. But there can be no such common p since
our given sequent is not an instance of (Id). Q.E.D.

Theorem 5.8. [Completeness] If a sequent is valid then it is derivable.

Proof: To prove this theorem we first use valid principles of classical logic
to transform it into an equivalent form.

Step 1: The theorem is a statement of the form “if _ then _” and is therefore
a conditional.

Step 2: We can use the valid principle of contraposition from Exercise 3.8(7)
to restate the conditional as another conditional by negating each com-
ponent and exchanging their places, since the latter is logically equiv-
alent to the former. Thus the theorem can be equivalently restated as:
If a sequent is not derivable then it is not valid.

Step 3: Exercise 5.3 told us that a sequent is falsifiable if and only if it is
not valid. Thus we can equivalently restate the second version of the
theorem as: If a sequent is not derivable then it is falsifiable.

To prove this third version, suppose the sequent I' = A is not derivable.
This means that every attempt to find a derivation for ' = A using
our systematic backward search procedure terminates with a finite tree of
sequents where at least one leaf is completed and not an instance of (Id).

Consider any such failed backward search tree and choose one of its
completed leaves which is not an instance of (Id). Lemma 5.7 tells us that
this leaf sequent must be falsifiable.

If this leaf is the sequent I' = A because no rules were backwards
applicable to ' = A, then we are done.

Otherwise, this leaf must be the premiss of an instance of some rule of
SK. Lemma 5.6 then tells us that the corresponding conclusion in the chosen
tree must also be falsifiable, regardless of how many premisses this rule has.

By repeating this argument, we can use Lemma 5.6 to percolate the
falsifiability of the original (falsifiable) leaf all the way down the branch to
the sequent I' = A at the root of the chosen tree, which must then be
falsifiable. Q.E.D.

36

Theorem 5.8 tells us that every valid sequent must have a derivation
using the rules of SK.

Example 5.2. The sequent pg, =pg = p; is valid vacuously as shown
in Example'5.1(3). Theore?m 5.8 tells' us that it Do = Po, P
must be derivable. The derivation at right can be — (1)
found using our backward search procedure. Po; —Po P

We now make the promised connection between logical consequence and
derivability by restricting the succedent to a single formula.

Theorem 5.9. [Completeness of SK]| If ¢ is a logical consequence of I" then
the sequent I' = ¢ is derivable.

Proof: If ¢ is a logical consequence of I' then every model for I' is a model
for ¢ by the definition of model. Thus every interpretation that assigns t to
every member of I' assigns t to ¢: that is, the sequent I' = ¢ is valid. By
Theorem 5.8, the sequent I' = ¢ is then derivable. Q.E.D.

5.3 Deductions and Logical Consequence

We now make the promised connections between deduction and logical con-
sequence.

Corollary 5.10. The formula ¢ is a logical consequence of I' if and only if
the sequent I' = ¢ is derivable.

Proof: This is just the conjunction of Theorem 5.9 and Theorem 5.5 written
as an “_if and only if .” statement. Q.E.D.

Corollary 5.11. The formula ¢ is valid if and only if the sequent = ¢ is
derivable.

Proof: The formula ¢ is valid exactly when it is a logical consequence of
the empty set. So just make I' empty in Corollary 5.10. Q.E.D.

Exercise 5.8. For each of the valid shapes of Exercise 3.8, find a derivation
for the sequent with an empty an-

tecedent and a succedent consist- p=v —r Y=)
ing wholly of that valid shape. = TP, ¥ 1 P, =)
The derivation of the shape = @ o = -

(m—p) < ¢ is shown at right. —r)

Strictly, each of these derivations
is really a template since it is not a tree of sequents per se but a tree of
sequent shapes built from formulae names like ¢ and . Uniformly replacing

= (7))

37

the names like ¢ and 1 with particular formulae will give actual derivations.
The distinction is the same as between a formula per se and a formula with
name ¢. By now, you should be comfortable with this abuse of notation.

Corollary 5.12. There is a deduction of the formula ¢ from a set of for-
mulae I if and only if ¢ is a logical consequence of T'.

Proof: There is a deduction of the formula ¢ from a set of formulae I' if and
only if there is a derivation of the sequent I' = ¢ in SK by the definition
of deduction, if and only if ¢ is a logical consequence of I" by Corollary 5.10.
Q.E.D.

5.4 Algorithmic Aspects of SK

We now move on to the algorithmic aspects of SK. We know that the system-
atic backward search procedure will terminate for every (finite) root sequent:
either because it finds a derivation or because it finds a completed leaf se-
quent that is not an instance of (Id). But in this latter case, the systematic
procedure will backtrack over previous rule choices and seek other rules to
apply backwards in the hope of finding a derivation. Do we really have to
search through all other possible search trees before deciding whether the
given sequent is valid or falsifiable? We already have enough information to
answer this question in the negative.

Suppose the root sequent in this latter case is ' = A. The completed
leaf which is not an instance of (Id) is falsifiable by the interpretation chosen
by Lemma 5.7. The proof of (the Completeness) Theorem 5.8 tells us that
the falsifiability of this leaf can be percolated down to the root sequent
I' = A. Since I' = A is falsifiable, it is not valid. Corollary 5.4 (of
Soundness) tells us that I' = A is not derivable: that is, there is no point
in trying other backward rule applications since there is no derivation for
this sequent in SK. We can therefore conclude that the root sequent is not
derivable as soon as we find the first completed leaf sequent which is not an
instance of (Id) in the first backward search tree we try. The order in which
we apply the rules of SK backwards is irrelevant. Moreover, by the intuitions
of Lemma 5.6 that follow Exercise 5.7, we know that the interpretation that
falsifies this first completed leaf, also falsifies the root sequent I' = A.

Backward search in SK not only provides a purely syntactic algorithm
for deciding whether ¢ is a logical consequence of I', but it also gives a con-
crete semantic interpretation that proves that ¢ is not a logical consequence
of I when this is the case.

Example 5.3. The formula py is not a logical consequence of the set

38

{po,po — p1} as shown by the

failed search tree at right. The Ppo == Po,P2 Do,P1 = D2
completed leaf pg, p1 = p2 is not Do, Po — P1 = P2

an instance of (Id) and it can be

falsified by the interpretation t,t,f,f, f ---. This interpretation is a model for
the set {po, po — p1} but makes p, false giving a concrete semantic interpre-
tation proving why the formula ps is not a logical consequence {po, po — p1}.

(=10

Exercise 5.9. For every sequent from Exercise 4.3, find a failed search tree
and extract from it an interpretation that falsifies that sequent.

As we have seen, computing whether or not ¢ is a logical consequence
of some given I' using truth tables is a rather laborious task when I' and ¢
consist of many different atomic formulae; see Exercise 3.4. The question of
whether we can compute logical consequence automatically on a computer
is therefore very important. The algorithm based on SK is usually, but not
always, more efficient than truth tables [DM94].

6 Gentzen’s Original Sequent Calculus LK

Gentzen’s original sequent calculus was called LK and differed from our SK
in the following ways.

Sequences instead of sets: The antecedents and succedents of sequents
in LK were built from sequences (lists) of formulae rather than sets of for-
mulae. Not only were the order of the formulae significant, but so were the
number of occurrences of each formula in an antecedent and succedent. The
following sequents are different in LK but collapse to either of the two left
hand sequents in SK:

Do,P1 = P3 P1,Po = P3 Do, P1 = P3,P3-
Gentzen’s LK therefore contained two extra rules, called the structural rules
of exchange and contraction which allowed him to permute the order of for-
mulae and reduce multiple consecutive occurrences of a formula into one
single occurrence respectively. These rules have no analogues in SK since

sequents in SK are built from sets, so exchange and contraction are already
built into SK.

Different symbols: Gentzen used — as the sequent arrow and used D as
the conditional connective whereas we have used = and — respectively, so

we must be careful when comparing LK and SK.

Different Id Rule: The (Id) rule in Gentzen’s LK was of the form ¢ =
. Gentzen’s LK therefore contained an extra structural rule of thinning to

39

allow the addition of arbitrary formulae to the antecedent and succedent of
sequents. We could have formulated SK in this way but using our (Id) rule
simplifies derivations and makes them easier to find using backward search.

Cut Rule: Gentzen’s LK contained a rule whose analogue for SK is:

I'=p,A Tp=—=A
= A

(cut)

The cut rule allows us to compose the derivations of its left and right pre-
misses (downward) into a derivation of its conclusion sequent I' = A. It is
the only rule we have seen which can break the subformula property: there
is a formula ¢ in each of the premisses which may not be in the conclusion.
The cut rule is backwards applicable to any sequent, and demands that
we choose some arbitrary formula ¢ to add to the left and right premisses.
Since there is no relationship between the formulae in 'UA and ¢, backward
search cannot be applied when the cut rule is present in a sequent calculus.

SKCut: We use SKCut to mean the sequent calculus obtained by adding
the cut rule to SK.

Exercise 6.1. Show that the cut rule is sound with respect to the semantics
of classical propositional logic. That is, show that for every instance of the
cut rule: if the premisses are valid then the conclusion is valid.

Gentzen proved a very famous theorem which he called the Hauptsatz,
but which is usually called the cut-elimination theorem, showing that the
cut rule was redundant in LK. In SKCut the theorem has the form below.

Theorem 6.1. [Cut-elimination for SKCut| If a sequent is derivable in SK-
Cut then the same sequent is derivable in SK.

Since SKCut contains the cut rule, the derivation of the sequent in SK-

Cut can contain applications of the cut rule. Since SK does not contain the
cut rule, the derivation of this same sequent in SK cannot contain any appli-
cations of the cut rule: so the theorem states that the cut rule is redundant
in SKCut.
Proof: Suppose a sequent is derivable in SKCut. Since the extra cut rule is
sound by Exercise 6.1, (the Soundness) Theorem 5.3 also applies to SKCut,
and tells us that the sequent is valid. But SK itself is sound and complete: a
sequent is derivable in SK if and only if it is valid. That is, all valid sequents
are already derivable in SK, including this sequent. Q.E.D.

This proof relies on the semantics of classical propositional logic since a
valid sequent is defined in terms of interpretations. Gentzen’s proof of this

40

theorem was purely syntactic: he showed how to transform any LK deriva-
tion containing applications of the cut rule into a cut-free LK derivation of
the same sequent. Gentzen’s proof is long and difficult, and is the single
most important result in the study of sequent calculi.

In Section 4 we mentioned that a sequent could be read as a formula by
changing the sequent arrow into —, replacing all commas in the antecedent
by A and replacing all commas in the succedent by V (with appropriate
parentheses). This overloading of the comma to mean different connectives
when in the antecedent and succedent is at the heart of sequent calculi. The
termination argument at the end of Section 4, for example, relies on the fact
that commas do not count as connectives.

Although Gentzen explicitly mentions this formula reading of a sequent,
it is not known if he deliberately meant his comma to be overloaded (am-
biguous). For Gentzen explicitly lists the sequent arrow as an auxiliary
(extra) symbol, but he does not list his comma as one. So it is possible
that Gentzen was using the comma as a mere punctuation mark to separate
the members of his sequents, which are formed from lists of formulae rather
than sets. At the bottom of page 71 of Szabo’s English translation [Gen35]
we find the following parenthetical remark: “(The —, like commas, is an
auziliary symbol and not a logical symbol.)”. Remember that Gentzen used
— as his sequent arrow, so he is saying that the sequent arrow is auxiliary
as defined, but so is the commal! It therefore appears as if Gentzen meant
for his comma to be an explicit auxiliary symbol, and not just a punctuation
mark, but that he forgot to list it in the list of auxiliary symbols.

The deliberate overloading of extra auxiliary symbols can be generalised
to give powerful variants of sequent calculi called display calculi [Bel82,
Gor98]. The structure of sequents can also be extended by compartmental-
ising the antecedents and succedents in various ways [Dos88, Dos89, Avr96].

7 Applications of Sequent Calculi

We now show that sequent calculi are useful for proving results about logics.

Lemma 7.1. [Invertibility] For every instance of every rule of SK except
(Id): if the conclusion is derivable, then the premisses are derivable.

Proof: Consider any instance of any rule of SK except (Id). Suppose the
conclusion is derivable and some premiss is not derivable. The conclusion
must be valid by Theorem 5.3. By the statement of Theorem 5.8 in Step 2
of the proof of Theorem 5.8, this premiss that is not derivable is not valid,
and then by Step 3, this premiss is falsifiable. By Lemma 5.6, the conclusion
is then falsifiable. The conclusion is thus both valid and falsifiable. But no
sequent can be both falsifiable and valid by Exercise 5.3. So it is impossible
to have a derivable conclusion and an underivable premiss. Q.E.D.

41

Corollary 7.2. For every instance of every rule of SK except (Id): the
conclusion is derivable if and only if the premisses are derivable.

Proof: If the premisses are derivable then the conclusion is derivable by the
definition of a derivation. If the conclusion is derivable then the premisses
are derivable by Lemma 7.1. Q.E.D.

Intuitions: The invertibility lemma and its corollary tell us that the rules
of SK preserve derivability (and validity) both upwards and downwards,
once again, confirming that the order of rule applications is irrelevant.

Suppose we are told that some particular sequent is derivable, but we
are not shown its derivation. Suppose that there is also at least one non-
atomic formula in the sequent. Corollary 7.2 tells us that we can pick any
non-atomic formula in the sequent and pretend that the bottom-most rule
application of the unknown derivation introduces that formula into the se-
quent. The corresponding premiss is guaranteed to be derivable.

Example 7.1. Example 4.7 tells us that p; Aps = ps Ap; has a derivation
where the bottom-most rule application is of the (Al) rule. But suppose we
had only been told the information that p; Aps = ps Apy is derivable. This
derivable sequent p; Aps = p2 Ap1 however can also be made an instance of
the conclusion I' = ¢ A1), A of the (Ar) rule with corresponding premisses
p1 Ap2 = po and p; Aps = p1. By Lemma 7.1, these premisses must have
derivations. Example 4.8 confirms that indeed they do.

A syntactic calculus is consistent if it is impossible for both ¢ and -
to have deductions from the empty set in that calculus, for any formula ¢.

Theorem 7.3. [Consistency of SK| The sequent = ¢ and the sequent
= —p cannot both be derivable in SK, for any formula ¢.

Proof: (Semantic) The definition of valid formula immediately tells us that
the formulae ¢ and —¢ cannot both be valid. So we could use these facts
together with Corollary 5.11 to give a semantic proof. Q.E.D.

Proof: (Syntactic) Instead we give a purely syntactic proof. Suppose the
sequents = p and == - are derivable in SK: hence there are (unknown)
derivations in SK whose end-sequents are = ¢ and = — respectively.

The conclusion I' = —¢, A of the (—r) rule can be instantiated to the
sequent = - by taking ' and A to be empty, giving a corresponding
premiss instance ¢ = . Since = -y is derivable in SK, and is an
instance of the conclusion of (—r), Lemma 7.1 tells us that its corresponding
premiss ¢ = also has some (unknown) derivation in SK.

Since every rule of SK is also a rule in SKCut, the derivations of = ¢
and @ = are also derivations in SKCut. Since SKCut contains the cut
rule, we can extend these derivations by the following application of cut:

42

= o =
—

(cut)

giving a derivation of the empty sequent = in SKCut.

By (the cut-elimination) Theorem 6.1, the cut rule is redundant in SK-
Cut, so there must be a (cut-free) derivation of the empty sequent in SK.
But this is émpossible since the empty sequent is not an instance of (Id), and
no rule of SK is backwards applicable to it! Thus the sequents =— ¢ and
= - cannot both be derivable in SK, and SK is consistent. Q.E.D.

We now give a syntactic proof of the syntactic analogue of Theorem 3.2.

Theorem 7.4. [Deduction Theorem| There is a deduction of the formula 1
from the set I'U{p} if and only if there is a deduction of the formula ¢ —
from the set I'.

Proof: We split the theorem into two parts and prove each independently.

1. Suppose there is a deduction of ¥ from the set I' U {¢}: that is, there
is a derivation of the end-sequent I', o = 4. If we apply the (— r)
rule downwards to this end-sequent we obtain a new conclusion end-
sequent I' = ¢ — 1) and hence obtain a derivation of I' = ¢ — .
This means that there is a deduction of ¢ — ¥ from the set T'.

2. Suppose there is a deduction of the formula ¢ — % from the set
I'. That is, there is a derivation of the end-sequent I' = ¢ — .
Independently, we can make I' = ¢ — 1 the conclusion of an instance
of the (— r) rule, with empty A, giving a premiss instance I', ¢ = 1.
Since the conclusion I' = ¢ — 9 is known to be derivable, (the
Invertibility) Lemma 7.1 tells us that the premiss I', o = 9 of this
instance of (— 7) must also be derivable. This means that there is a
deduction of ¢ from the set I' U {}.

Q.E.D.

8 History

The history of classical propositional logic is over 2000 years old, so I cannot
possibly do it justice in such a short chapter.

Modern Western logic originates from the work of the Greek philosopher
Aristotle (384-322 BC) who postulated the Law of Non-Contradiction and
defined a notion which is almost identical to our modern definition of logical
consequence: there are some differences like the fact that Aristotle would not
have allowed ¢ to be a logical consequence of itself. Although Aristotle saw
the need for two truth values “true” and “false”, he also saw the problems
that this created with truth values of statements about the future like “It

43

will rain tomorrow”. Of course, Aristotle did much more than this, but the
main distinctions into syntax, semantics and calculi are very recent.

Augustus De Morgan (1806-1871) invented the modern connectives we
have used while George Boole (1815-1864) invented the truth tables we saw
in Figure 1. The basic principle inherent in these truth tables, that the
truth value of a formula is determined by the truth values of its immediate
subformulae, was known from Greek times.

The German mathematician Gottlob Frege (1848-1925) is considered to
be the founder of modern symbolic logic because he invented a calculus for
classical (propositional and first-order) logic and formalised the notion of
a deduction as a sequence of purely syntactic manipulations. The style of
calculus that he used is now known as a Hilbert-calculus after the German
mathematician David Hilbert (1862-1943), although the origins of such cal-
culi go back to the ancient Greeks. Frege attempted to show that all of
mathematics could be based upon symbolic logic, but Frege’s original calcu-
lus was shown to be inconsistent by Bertrand Russell (1872-1970): Russell
showed that there was a formula ¢ such that both ¢ and —¢ had deduc-
tions from the empty set in Frege’s calculus. The incompleteness results of
Kurt Godel (1906-1978) eventually showed that it is impossible to base all
of mathematics upon a single consistent logical calculus.?

Charles Sanders Peirce (1839-1914), an American, also made many im-
portant and independent discoveries, including the invention of a purely
syntactic calculus for classical logic.

Emile Post (1897-1954) formally stated the theorems we have called
soundness and completeness theorems, although he couched them in terms
of a Hilbert-style calculus, since this was the only syntactic calculus style
known at the time. All of that was changed by essentially one man.

In 1935, Gerhard Gentzen (1909-1945) gave both a natural deduction
style calculus and a sequent style calculus for classical logic [Gen35]. Sta-
nistaw Jaszkowski (1906-1965) had given a natural deduction calculus inde-
pendently in 1934 [J4s34], but sequent calculi are more general than natural
deduction calculi in many ways. Gentzen proved the consistency of arith-
metic using his sequent calculus. Gentzen had withdrawn an earlier paper
in 1932 because he feared that Godel’s incompleteness results contradicted
his own results. But there is no contradiction: to prove that arithmetic
was consistent, Gentzen used mathematical principles which are outside of
arithmetic itself. Godel’s results show that it is essential to use such higher
level principles.

After completing his doctorate in 1933, Gentzen worked as an assistant
for Hilbert, and after obtaining a German certificate that allowed him to
teach in 1942, Gentzen took up a job teaching logic and mathematics at
the German University in Prague, the capital of Czechoslovakia (now the

3[See Chapter 48 concerning Godel’s results.—Ed.]

44

Czech Republic). A common misconception is that Gentzen died in a Nazi
concentration camp, but the following extract about Gentzen from [ORO01]
clarifies this aspect:

As part of the German war effort, he took up a teaching post as a
Dozent in the Mathematical Institute of the German University
of Prague and he taught there until arrested and taken into cus-
tody. The citizens of Prague rose in revolt against the occupying
German forces on & May 1945, the day all the staff of the Ger-
man University were arrested, and held the city until the Russian
Army arrived four days later. One would have to mention the
facts concerning Gentzen’s political and military life that Vihan
relates in [Vih95], namely his association with the SA, NSDAP
and NSD Dozentenbund. Gentzen was interned by the Russian
forces and held in poor conditions. He died of malnutrition after
3 months in internment.

For more details see [Vih95].

In the 1950s, E W Beth independently invented semantic tableau cal-
culi: purely syntactic calculi whose rules Beth derived from the semantics of
classical propositional logic [Bet53, Bet55]. Tableau calculi are now known
to be syntactic variants of cut-free sequent calculi.

9 Concluding Remarks

The systematic backward search method in the (cut-free) sequent calculus
SK can be implemented on modern computers to give automatic programs
that decide whether or not a sequent is derivable in SK. The field of research
is known as automated deduction [Gal87] and the variant of sequent calculi
called tableaux calculi are often used in this area [DGHP99].

Over the centuries, philosophers, mathematicians, and more recently
computer scientists, have investigated numerous alternatives to classical
propositional logic. Multi-valued logics reject the Law of the Excluded Mid-
dle and allow truth values other than just “true” and “false”. Paraconsistent
logics reject the Law of Non-Contradiction and allow a formula to be both
“true” and “false”. Modal and Temporal logics allow the truth value of a for-
mula to change over place and time. Intuitionistic logic rejects (——¢) — ¢,
one half of the principle of double negation; see Exercise 3.8(8).* Relevant
logics demand that ¢ and I' share at least one common atomic formula for
© to be a logical consequence of I'. Linear logic demands that every formula
in I' is used exactly once in a deduction of ¢ from I'. For an introduction
to some of these logics see [Pri01].

“[See Chapter 51 in this volume for more about intuitionistic logic.—Ed.]

45

Many of the proofs in this chapter only work for finite sets: for exam-
ple, our systematic backward search procedure terminates only when the
original sequent has a finite antecedent and succedent, and our proof of
Theorem 5.8 depends upon the fact that backward search terminates. Nev-
ertheless, many of the results hold even for infinite sets: for example, (the
Deduction) Theorem 7.4. More complicated mathematical proofs are re-
quired to handle infinite sets, which are beyond the scope of this chapter.
For more on sequent calculi and proof theory see [TS96].

I would appreciate any comments or criticisms that you might have about
this chapter. Please do not hesitate to contact me either by post or email.

Acknowledgements: First I want to thank Helen Lauer, the editor of
this volume, for her patience in waiting for over four months for me to
complete this article. I hope the wait was worth it. Second I would like
to thank Agnes Boskovitz, Jeremy Dawson and Paul Wong for their many
constructive comments on an earlier version. All mistakes in this chapter
were obviously caused by them and they should be ashamed of themselves.

References

[Avr96] A Avron. The method of hypersequents in proof theory of propo-
sitional non-classical logics. In C Steinhorn J Truss W Hodges,
M Hyland, editor, Logic: Foundations to Applications, pages 1—
32. Oxford Science Publications, 1996.

[Bel82] N D Belnap. Display logic. Journal of Philosophical Logic,
11:375-417, 1982.

[Bet53] E W Beth. On Padoa’s method in the theory of definition. Indag.
Math., 15:330-339, 1953.

[Bet55] E W Beth. Semantic entailment and formal derivability. Med-
edelingen der Koninklijke Nederlandse Akademie van Weten-
schappen, Afd. Letterkunde, 18:309-342, 1955.

[DGHP99] M D’Agostino, D Gabbay, R Hahnle, and J Posegga, editors.
Handbook of Tableauxr Methods. Kluwer, 1999.

[DM94] M D’Agostino and M Mondadori. The taming of the cut. Clas-
sical refutations with analytic cut. Journal of Logic and Com-
putation, 4:285-319, 1994.

[Dos88] K Dosen. Sequent systems and groupoid models, 1. Studia Log-
ica, 47:353-389, 1988.

46

[Dos8Y]

[Gal87]

[Gen35]

[Gor98]

[Jas34]

[J1.83]

[ORO1]

[Pri01]

[TS96]

[Viho5)

K Dosen. Sequent systems and groupoid models, II. Studia
Logica, 48:41-65, 1989.

J H Gallier. Logic for Computer Science: Foundations of Auto-
matic Theorem Proving. John Wiley and Sons, 1987.

G Gentzen. Untersuchungen iiber das logische schlieen I and
II. Mathematische Zeitschrift, 39:176-210 and 405431, 1935.
English translation: Investigations into logical deduction, in The
Collected Papers of Gerhard Gentzen, M. E. Szabo (Ed), pp 68-
131, North-Holland, 1969.

R Goré. Substructural logics on display. Logic Journal of the
Interest Group in Pure and Applied Logic, 6(3):451-504, 1998.

S Jészkowski. On the rules of supposition in formal logic (in
Polish). Studia Logica (old series), 1:5-32, 1934. English Trans-
lation in Polish Logic 1920-39, S McCall, (Ed) Clarendon Press,
Oxford, 1967, pp 232-258.

P N Johnson-Laird. Mental Models: Towards a Cognitive Science
of Language, Inference, and Consciousness. Cambridge Univer-
sity Press, 1983.

J J OConnor and E F Robertson. Gerhard Gentzen.
http://www-groups.dcs.st-andrews.ac.uk/“history/
Mathematicians/Gentzen.html, September 2001.

G Priest. An introduction to non-classical logic. Cambridge
University Press, 2001.

A Troelstra and H Schwichtenberg. Basic Proof Theory. Num-
ber 43 in Cambridge Tracts In Theoretical Computer Science.
Cambridge University Press, 1996.

P Vihan. Collegium Logicum, volume 1 of Annals of the Kurt
Godel Society, chapter The Last Month of Gerhard Gentzen in
Prague, pages 1-7. Springer-Verlag, 1995.

47

