Propositional Logic Equivalences James Pustejovsky

COSI 112 Brandeis University Fall, 2004

Equivalences involving \land

In the equivalences, A,B,C will denote arbitrary formulas. For short, I will often say 'equivalent' rather than 'logically equivalent'.

- 1. $A \wedge B$ is logically equivalent to $B \wedge A$ (commutativity of \wedge)
- 2. $A \wedge A$ is logically equivalent to A (idempotence of \wedge)
- 3. $A \wedge \top$ is logically equivalent to A
- 4. $\bot \land A$ and $\neg A \land A$ are equivalent to \bot
- 5. $(A \wedge B) \wedge C$ is equivalent to $A \wedge (B \wedge C)$ (associativity of \wedge)

1

Equivalences involving ∨

- 6. $A \lor B$ is equivalent to $B \lor A$ (commutativity of \lor)
- 7. $A \lor A$ is equivalent to A (idempotence of \lor)
- 8. $\top \lor A$ and $\neg A \lor A$ are equivalent to \top
- 9. $A \lor \bot$ is equivalent to A
- 10. $(A \lor B) \lor C$ is equivalent to $A \lor (B \lor C)$ (associativity of \lor)

Equivalences involving -

- 11. $\neg \top$ is equivalent to \bot
- 12. $\neg \bot$ is equivalent to \top
- 13. $\neg \neg A$ is equivalent to A

Equivalences involving --

- 14. $A \rightarrow A$ is equivalent to \top
- 15. $\top \to A$ is equivalent to A
- 16. $A \rightarrow \top$ is equivalent to \top
- 17. $\bot \to A$ is equivalent to \top
- 18. $A \rightarrow \bot$ is equivalent to $\neg A$
- 19. $A \to B$ is equivalent to $\neg A \lor B$, and also to $\neg (A \land \neg B)$
- 20. $\neg (A \rightarrow B)$ is equivalent to $A \land \neg B$.

2

- 3

Equivalences involving \leftrightarrow

- 21. $A \leftrightarrow B$ is equivalent to
 - $(A \to B) \land (B \to A)$,
 - $(A \wedge B) \vee (\neg A \wedge \neg B)$,
 - $\neg A \leftrightarrow \neg B$.
- 22. $\neg (A \leftrightarrow B)$ is equivalent to
 - $A \leftrightarrow \neg B$,
 - $\neg A \leftrightarrow B$,
 - $(A \wedge \neg B) \vee (\neg A \wedge B)$.

de Margan (10th contum logicie

Augustus de Morgan (19th-century logician) did not discover these (they are much older) and indeed he could not even express them in his own notation!

De Morgan laws

- 23. $\neg (A \land B)$ is equivalent to $\neg A \lor \neg B$
- 24. $\neg (A \lor B)$ is equivalent to $\neg A \land \neg B$

Distributivity of ∧, ∨

- **25.** $A \wedge (B \vee C)$ is equivalent to $(A \wedge B) \vee (A \wedge C)$.
- **26.** $A \vee (B \wedge C)$ is equivalent to $(A \vee B) \wedge (A \vee C)$
- 27. $A \wedge (A \vee B)$ and $A \vee (A \wedge B)$ are equivalent to A.

4