5.1 Natural deduction rules for \land, \rightarrow, \lor

There are two rules for each connective. The rules reflect the meanings of the connectives. The easiest is \land (‘and’).

Rules for \land

- (\land-introduction, or $\land I$) To introduce a formula of the form $A \land B$, you have to have already introduced A and B.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>we proved this...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(other junk)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>and this...</td>
</tr>
<tr>
<td>3</td>
<td>$A \land B$</td>
<td>$\land I(1,2)$</td>
</tr>
</tbody>
</table>

The line numbers are essential for clarity.
Rules for \land ctd.

- (\land-elimination, or $\land E$) If you have managed to write down $A \land B$, you can go on to write down A and/or B.

1. $A \land B$ we proved this somehow
2. A $\land E(1)$
3. B $\land E(1)$

Rules for \lor

- (\lor-introduction, or $\lor I$)
To prove $A \lor B$, prove A, or (if you prefer) prove B.

1. A proved this somehow
2. $A \lor B$ $\lor I(1)$

B can be any formula at all!

1. B proved this somehow
2. $A \lor B$ $\lor I(1)$

A can be any formula at all.
Rules for \(\lor \), ctd.

- (\(\lor \)-elimination, or \(\lor E \)) To prove something from \(A \lor B \), you have to prove it by assuming \(A \), AND prove it by assuming \(B \). (This is arguing by cases.)

\[
\begin{align*}
1 & \quad A \lor B & \quad \text{we got this somehow} \\
2 & \quad \text{ass} & \quad \text{ass} \\
3 & \quad \text{the 1st proof} & \quad \text{the 2nd proof} \\
4 & \quad C & \quad \text{we got it} & \quad \text{we got it again} \\
5 & \quad B & \quad \vdash E (1, 2, 4, 5, 7) \\
8 & \quad C
\end{align*}
\]

The assumptions \(A, B \) are not usable later, so are put in (side-by-side) boxes. *Nothing inside the boxes can be used later.*

Rules for \(\rightarrow \)

- (\(\rightarrow \)-introduction, \(\rightarrow I \): ‘arrow-introduction’) To introduce a formula of the form \(A \rightarrow B \), you assume \(A \) and then prove \(B \).

During the proof, you can use \(A \) as well as anything already established. But *you can’t use \(A \) or anything from the proof of \(B \) from \(A \) later on* (because it was based on an extra assumption).

So we isolate the proof of \(B \) from \(A \), in a box:

\[
\begin{align*}
1 & \quad A & \quad \text{ass} \\
2 & \quad \langle \text{the proof} \rangle & \quad \text{hard struggle} \\
3 & \quad B & \quad \text{we made it!} \\
3 & \quad A \rightarrow B & \quad \vdash I (1, 2)
\end{align*}
\]

Nothing inside the box can be used later.

In natural deduction, boxes are used when we make additional assumptions. The first line inside a box should always be labelled ‘ass’ (assumption) — with one exception, coming later (p. 212).
Rules for \to, ctd.

- (\to-elimination, or $\to E$) If you have managed to write down A and $A \to B$, in either order, you can go on to write down B. (This is modus ponens.)

\[
\begin{array}{ccc}
1 & A \to B & \text{we got this somehow...} \\
& & \text{other junk} \\
2 & A & \text{and this too...} \\
3 & B & \to E(1, 2)
\end{array}
\]

5.3 Rules for \neg

This is the trickiest case. Also, \neg has three rules! The first two treat $\neg A$ like $A \to \bot$.

- (\neg-introduction, $\neg I$) To prove $\neg A$, you assume A and prove \bot.

As usual, you can't then use A later on, so enclose the proof of \bot from assumption A in a box:

\[
\begin{array}{ccc}
1 & A & \text{ass} \\
2 & & \text{more hard work, oh no} \\
3 & \bot & \text{we got it!} \\
4 & \neg A & \neg I(1, 3)
\end{array}
\]
Rules for \lnot, ctd.

- (\lnot-elimination, $\lnot E$)
 From A and $\lnot A$, deduce \bot:

1. $\lnot A$ proved this somehow...
2. \vdash junk
3. A ...and this
4. $\bot \lnot E(1,3)$

- ($\lnot \lnot$-elimination, $\lnot \lnot$):
 From $\lnot \lnot A$, deduce A. (See example 5.8.)