Natural Deduction for Propositional Logic

James Pustejovsky

COSI 112
Brandeis University
Fall, 2008
5.1 Natural deduction rules for \land, \rightarrow, \lor

There are two rules for each connective. The rules reflect the meanings of the connectives. The easiest is \land (‘and’).

Rules for \land

- (\land-introduction, or $\land I$) To introduce a formula of the form $A \land B$, you have to have already introduced A and B.

1. A we proved this. . .

2. B and this. . .

3. $A \land B$ $\land I(1, 2)$

The line numbers are essential for clarity.
Rules for \land ctd.

- (\land-elimination, or $\land E$) If you have managed to write down $A \land B$, you can go on to write down A and/or B.

1. $A \land B$ we proved this somehow
2. A $\land E(1)$
3. B $\land E(1)$
Rules for \lor

- (\lor-introduction, or $\lor I$)

 To prove $A \lor B$, prove A, or (if you prefer) prove B.

 1. A proved this somehow
 2. $A \lor B$ $\lor I(1)$

 B can be any formula at all!

 1. B proved this somehow
 2. $A \lor B$ $\lor I(1)$

 A can be any formula at all.
Rules for \lor, ctd.

- \((\lor\text{-elimination, or } \lor E)\) To prove something from \(A \lor B\), you have to prove it by assuming \(A\), AND prove it by assuming \(B\). (This is arguing by cases.)

<table>
<thead>
<tr>
<th>1</th>
<th>(A \lor B)</th>
<th>we got this somehow</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(A)</td>
<td>ass</td>
</tr>
<tr>
<td>3</td>
<td>(\therefore) the 1st proof</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(C)</td>
<td>we got it</td>
</tr>
<tr>
<td>5</td>
<td>(B)</td>
<td>ass</td>
</tr>
<tr>
<td>6</td>
<td>(\therefore) the 2nd proof</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(C)</td>
<td>we got it again</td>
</tr>
<tr>
<td>8</td>
<td>(C)</td>
<td>(\lor E (1, 2, 4, 5, 7))</td>
</tr>
</tbody>
</table>

The assumptions \(A, B\) are not usable later, so are put in (side-by-side) boxes. **Nothing inside the boxes can be used later.**
Rules for \rightarrow

- (\rightarrow-introduction, $\rightarrow I$: ‘arrow-introduction’) To introduce a formula of the form $A \rightarrow B$, you assume A and then prove B.
During the proof, you can use A as well as anything already established. But you can’t use A or anything from the proof of B from A later on (because it was based on an extra assumption).
So we isolate the proof of B from A, in a box:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(the proof)</td>
<td>hard struggle</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>we made it!</td>
</tr>
<tr>
<td>3</td>
<td>$A \rightarrow B$</td>
<td>$\rightarrow I(1, 2)$</td>
</tr>
</tbody>
</table>

Nothing inside the box can be used later.

In natural deduction, boxes are used when we make additional assumptions. The first line inside a box should always be labelled ‘ass’ (assumption) — with one exception, coming later (p. 212).
Rules for \rightarrow, ctd.

- (\rightarrow-elimination, or $\rightarrow E$) If you have managed to write down A and $A \rightarrow B$, in either order, you can go on to write down B. (This is modus ponens.)

\[
\begin{array}{ll}
1 & A \rightarrow B \quad \text{we got this somehow...} \\
\vdots & \quad \text{other junk} \\
2 & A \quad \text{and this too...} \\
3 & B \quad \rightarrow E(1, 2)
\end{array}
\]
5.3 Rules for \neg

This is the trickiest case. Also, \neg has three rules! The first two treat $\neg A$ like $A \rightarrow \bot$.

- (\neg-introduction, $\neg I$) To prove $\neg A$, you assume A and prove \bot.

 As usual, you can't then use A later on, so enclose the proof of \bot from assumption A in a box:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>ass</td>
</tr>
<tr>
<td>2</td>
<td>\bot</td>
<td>more hard work, oh no</td>
</tr>
<tr>
<td>3</td>
<td>\bot</td>
<td>we got it!</td>
</tr>
<tr>
<td>4</td>
<td>$\neg A$</td>
<td>$\neg I(1, 3)$</td>
</tr>
</tbody>
</table>
Rules for \neg, ctd.

- (\neg-elimination, $\neg E$)
 From A and $\neg A$, deduce \bot:

 1 $\neg A$ proved this somehow…
 2 : junk
 3 A …and this
 4 \bot $\neg E(1, 3)$

- ($\neg\neg$-elimination, $\neg\neg$):
 From $\neg\neg A$, deduce A. (See example 5.8.)