
A Crash Course onA Crash Course on
Temporal SpecificationsTemporal Specifications

John Hatcliff [Kansas State]

http://www.cis.ksu.edu/santos/bandera

Work on specification patterns by
Matthew Dwyer, Jay Corbett, and George Avrunin

Reasoning about ExecutionsReasoning about Executions

 We want to reason about execution trees
– tree node = snap shot of the program’s state

 Reasoning consists of two layers
– defining predicates on the program states (control points,

variable values)
– expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1 ?b0

?err

!a0

Computational Tree Logic (CTL)Computational Tree Logic (CTL)

Φ ::= P …primitive propositions

 | !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives

 | AG Φ | EG Φ | AF Φ | EF Φ …temporal operators
 | AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AG p …along All paths p holds Globally

EG p …there Exists a path where p holds Globally

AF p …along All paths p holds at some state in the Future

EF p …there Exists a path where p holds at some state in the Future

path quantifier

temporal operator

Computational Tree Logic (CTL)Computational Tree Logic (CTL)

Φ ::= P …primitive propositions

 | !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives

 | AG Φ | EG Φ | AF Φ | EF Φ …path/temporal operators
 | AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AX p …along All paths, p holds in the neXt state

EX p …there Exists a path where p holds in the neXt state

A[p U q] …along All paths, p holds Until q holds

E[p U q] …there Exists a path where p holds Until q holds

Computation Tree LogicComputation Tree Logic

p

p

p

p p p

p

p

p

p

p

p p p p

AG p

Computation Tree LogicComputation Tree Logic

EG p p

p

p

p

Computation Tree LogicComputation Tree Logic

AF p

p

p p p

p

p

Computation Tree LogicComputation Tree Logic

EF p

p

Computation Tree LogicComputation Tree Logic

AX p

p

p p

p

p p

p

p

p

Computation Tree LogicComputation Tree Logic

EX p

p

p

p

p p p

Computation Tree LogicComputation Tree Logic

A[p U q]
p

p

p

q q p

p

q

q

p

p

Computation Tree LogicComputation Tree Logic

E[p U q]
p

p

q q p

p

q

q

q

Example CTL SpecificationsExample CTL Specifications
 For any state, a request (for some resource) will

eventually be acknowledged

AG(requested -> AF acknowledged)

 From any state, it is possible to get to a restart state
AG(EF restart)

 An upwards travelling elevator at the second floor
does not changes its direction when it has
passengers waiting to go to the fifth floor

AG((floor=2 && direction=up && button5pressed)
-> A[direction=up U floor=5])

CTL NotesCTL Notes

 Invented by E. Clarke and E. A. Emerson
(early 1980’s)

 Specification language for Symbolic Model
Verifier (SMV) model-checker

 SMV is a symbolic model-checker instead of
an explicit-state model-checker

 Symbolic model-checking uses Binary
Decision Diagrams (BDDs) to represent
boolean functions (both transition system and
specification

Linear Temporal LogicLinear Temporal Logic
Restrict path quantification to “ALL” (no “EXISTS”)

Reason in terms of linear traces instead of branching trees

Linear Temporal Logic (LTL)Linear Temporal Logic (LTL)

Semantic Intuition

[]Φ …always Φ

<>Φ …eventually Φ

Φ U Γ …Φ until Γ

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ

Φ Φ Φ Φ Φ Φ Γ Φ Γ

Φ ::= P …primitive propositions
 | !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
 | []Φ | <>Φ | Φ U Φ | X Φ …temporal operators

Syntax

LTL NotesLTL Notes

 Invented by Prior (1960’s), and first use to
reason about concurrent systems by A.
Pnueli, Z. Manna, etc.

 LTL model-checkers are usually explicit-state
checkers due to connection between LTL and
automata theory

 Most popular LTL-based checker is Spin
(G. Holzman)

Comparing LTL and CTLComparing LTL and CTL

CTL LTL

CTL*

 CTL is not strictly more expression than LTL (and
vice versa)

 CTL* invented by Emerson and Halpern in 1986 to
unify CTL and LTL

 We believe that almost all properties that one wants to express
about software lie in intersection of LTL and CTL

Motivation forMotivation for
Specification PatternsSpecification Patterns
 Temporal properties are not always easy to write
 Clearly many specifications can be captured in both

CTL and LTL

LTL: [](P -> <>Q) CTL: AG(P -> AF Q)

Example: action Q must respond to action P

 Capure the experience base of expert designers
 Transfer that experience between practictioners.

We use specification patterns to:

Pattern HierarchyPattern Hierarchy
Property Patterns

Occurrence Order

Absence
Universality Existence

Bounded Existence Precedence

Response Chain
Precedence

Chain
Response

Classification

 Occurrence Patterns:
– require states/events to occur or not to occur

 Order Patterns
– constrain the order of states/events

Occurrence PatternsOccurrence Patterns

 Absence: A given state/event does not occur within a
scope

 Existence: A given state/event must occur within a
scope

 Bounded Existence: A given state/event must occur k
times within a scope
– variants: at least k times in scope, at most k times in scope

 Universality: A given state/event must occur
throughout a scope

Order PatternsOrder Patterns

 Precedence: A state/event P must always be
preceded by a state/event Q within a scope

 Response: A state/event P must always be followed
a state/event Q within a scope

 Chain Precedence: A sequence of state/events P1,
…, Pn must always be preceded by a sequence of
states/events Q1, …, Qm within a scope

 Chain Response: A sequence of state/events P1, …,
Pn must always be followed by a sequence of
states/events Q1, …, Qm within a scope

Pattern ScopesPattern Scopes

Global

Before Q

After Q

Between Q and R

After Q and R

State sequence Q R Q Q R Q

The Response PatternThe Response Pattern

To describe cause-effect relationships between a pair of events/states. An
occurrence of the first, the cause, must be followed by an occurrence of the
second, the effect. Also known as Follows and Leads-to.

Intent

Mappings: In these mappings, P is the cause and S is the effect
[](P -> <>S)

<>R -> (P -> (!R U (S & !R))) U R

[](Q -> [](P -> <>S))

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

[](Q & !R -> ((P -> (!R U (S & !R))) W R)

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

LTL:

The Response Pattern (continued)The Response Pattern (continued)
Mappings: In these mappings, P is the cause and S is the effect

AG(P -> AF(S))

A[((P -> A[!R U (S & !R)]) | AG(!R)) W R]

A[!Q W (Q & AG(P -> AF(S))]

AG(Q & !R -> A[((P -> A[!R U (S & !R)]) | AG(!R)) W R])

AG(Q & !R -> A[(P -> A[!R U (S & !R)]) W R])

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

CTL:

Examples and Known Uses:

Response properties occur quite commonly in specifications of concurrent systems.
Perhaps the most common example is in describing a requirement that a resource
must be granted after it is requested.

Relationships
Note that a Response property is like a converse of a Precedence property.
Precedence says that some cause precedes each effect, and...

Specify Patterns in BanderaSpecify Patterns in Bandera

The Bandera Pattern Library is populated by writing pattern macros:

pattern {
 name = “Response”
 scope = “Globally”
 parameters = {P, S}
 format = “{P} leads to {S} globally”
 ltl = “[]({P} –> <>{S})”
 ctl = “AG({P} –> AF({S}))”
}

EvaluationEvaluation

 555 TL specs collected from at least 35 different
sources

 511 (92%) matched one of the patterns

 Of the matches...

– Response: 245 (48%)

– Universality: 119 (23%)

– Absence: 85 (17%)

QuestionsQuestions

 Do patterns facilitate the learning of specification
formalisms like CTL and LTL?

 Do patterns allow specifications to be written more
quickly?

 Are the specifications generated from patterns more
likely to be correct?

 Does the use of the pattern system lead people to
write more expressive specifications?

Based on anecdotal evidence, we believe the answer to each of these
questions is “yes”

For more information...For more information...

http://www.cis.ksu.edu/santos/spec-patterns

 Pattern web pages and papers

