CS112 - Friday, September 12, 2008

* Agenda
$>$ Natural Deduction Questions
> FOL Translations
$>$ FOL Interpretations
* Natural Deduction Questions?
* First Order Logic Translations
> Symbolization Key
- Universe of Discourse (UD) - tells us what we can talk about
- Predicates
- Individual Constants
> Translations Rules and Pointers
- Scope
- In order for a sentence in FOL to be well-formed (called a 'wff'), there cannot be any unbound variables.
- All variables must fall within the scope of a quantifier.
- The scope includes the quantifier itself (the ' x ' in ' $\forall x^{\prime}$ ' is bound) and the formula that immediately follows the quantifier.
- Use parentheses to extend the scope of a quantifier

> Complex Translations

- When faced with a tough translation, try breaking it down into smaller parts.
- What is the main operator in the sentence?
- Keep rewriting the translation when you add a quantifier or figure out a main operator until it is obvious how to fill in the pieces
- Example
- "Pit Bulls are dangerous, but Labradors are not."
- Conjunction
- Both pit bulls are dangerous and Labradors are not dangerous.
- Both no matter what x I choose, if x is a pit bull then x is dangerous and no matter what y I choose, if y is a Labrador then it is not the case that y is dangerous.
> Note that it would have been perfectly legal to use x as the only variable in this sentence because the second time it is used (for Labradors) it is not within the same scope as the first quantifier. But it's a good practice to use different variables even if you don't have to
- $(\forall \mathrm{x})(\mathrm{Px} \supset \mathrm{Dx}) \&(\forall \mathrm{y})(\mathrm{Ly} \supset \sim \mathrm{Dy})$
- When to stack quantifiers
- To be safe, try to give your quantifiers the smallest scope possible.
- If you must stack your quantifiers at the beginning of the sentence, use the equivalences to do so.
$>$ English \rightarrow Symbols
- UD: people
- Lxy: x loves y
- Hxy: x hits y
- Ixy: x insults y
- Lx: x is a lawyer
- Gx: x wears green
- Jx: x would be a good judge
- Cx: x is crazy
- Jx: x is a judge
- Fx: x is fat
- (1) No crazy lawyer insults any fat judge.
- $\sim \exists x(C x \& L x \& \exists y(F y \& J y \& I x y))$
- (2) No crazy lawyer insults every fat judge.
- $\sim \exists x(C x \& L x \& \forall y((F y \& J y) \rightarrow$ Ixy $))$
- (3) No crazy lawyer loves any judge whom she insults.
- It is not the case that there is some x such that x is a crazy lawyer and x loves some judge whom x insults.
- $\sim \exists x$ (Cx \& Lx \& there is some y such that y is a judge and x insults y and x loves y)
- $\sim \exists x(C x \& L x \& \exists y(J y \& I x y \& L x y))$
- (4) Some crazy lawyer insults every fat judge whom she loves.
- There is some x such that x is a crazy lawyer and x insults every fat judge that x loves.
- $\exists x(C x \& L x \&$ for every y, if y is a fat judge and x loves y, then x insults y)
- $\exists x(C x \& L x \& \forall y((J y \& F y) \& L x y) \rightarrow$ Ixy $))$
- No lawyer hits any judge whom she loves unless she's crazy.
- Ambiguous! Who does "she" refer to?
- Case 1: "She" refers back to the lawyer
- $\sim \exists x(x$ is a lawyer and x is not crazy and x hits some judge whom x loves) $==$ Only a crazy lawyer would hit a judge that the lawyer loves.
- $\sim \exists x($ Lx \& $\sim C x \& \exists y(J y \& L x y \& H x y))$
- Case 2: "She" refers to the judge
- $\sim \exists x(x$ is a lawyer and x hits some judge whom x loves who is not crazy.)
- ~ヨx(Lx \& ヨy(Jy \& Lxy \& ~Cy \& Hxy))

Symbols \rightarrow English

- (1) $\exists x(C x \& L x \& \forall y((F y \& J y) \rightarrow I x y))$
- Some crazy lawyer insults every fat judge.
- (2) $\exists x(C x \& L x \& \exists y(F y \& J y ~ \& ~ I x y))$
- Some crazy lawyer insults some fat judge
- (3) $\forall x[(L x \& \sim C x) \rightarrow \exists y(L y \& \sim J y \& I x y)]$
- Every lawyer who is not crazy insults some lawyer who would not be a good judge.
$>$ Stacking quantifiers
- UD: positive integers
- Lxy: x is larger than y
- (1) For every integer, there is a greater integer.
- $\forall x \exists y L y x$
- (2) There is an integer that is greater than every integer.
- $\exists x \forall y L x y$
- (3) If the product of two integers is even, then at least one of them is even.
- Pxyz: x is the product of y and $z, E x: x$ is even
- $\forall x \forall y \forall z\left(\left(\right.\right.$ Pxyz ${ }^{\wedge}$ Ex $) \rightarrow($ Ey v Ez $\left.)\right)$
- (4) No product of prime numbers is prime.
- $\sim(\exists x)(\exists y)((P x \& P y) \& P x y)$
* First Order Logic Interpretations
> Review
- In propositional logic, every line of a truth table is an interpretation.
$>\mathrm{FOL}$
- In FOL, we need to provide an interpretation function for each predicate and individual constant.
- Example Interpretation
- UD: positive integers
- $O x:\{x \mid x$ is odd $\}==\{1,3,5, \ldots\}$
- Ex: $\{x \mid x$ is even $\}==\{2,4,6, \ldots\}$
- Lxy: $\{x$ y $\mid x$ is larger than $y\}==\{\{2,1\},\{3,2\},\{3,1\},\{4,3\}, \ldots$
- a: 1, b: 2 c: 3
$>$ Diagrams
- Since truth tables aren't helpful for FOL semantics, using diagrams to model sentences can tell us if they are true or false for a given interpretation or model.
- (1) Any 1-place predicate is represented with a circle.
- (2) Any individual constant is represented with a dot.
- (3) 2-place predicates are represented with an arrow.
> When do we use these?
- Show that a set of sentences is consistent.
- If you can draw a diagram for a set of sentences, then we know there is at least one interpretation where all the sentences are true. $=$ = Consistency
- Show that an argument is valid
- If you make all of the premises of an argument true in a diagram, but you are able to make the conclusion false, then the argument is not valid.
$>$ Examples - Show that the following are consistent.
- $\{\forall x(F x \rightarrow \exists y G y x), \forall x(G x x \rightarrow F x), \forall x \forall y(G x y \rightarrow G x x), \exists x \exists y \exists z(F x \&$ Gyz) \}
- To show that this is consistent, provide an interpretation where all the sentences are true.
- (1) Start with 1 dot to represent something in the domain.
- (2) Fill in the diagram as needed to make each sentence true.
- Existentials tell us something about the world, so they add to the diagram
- Universals are more like tests.
- (3) As you add to the diagram, look for triggered sentences.
- (4) When you think you're done, check all the sentences.
- (5) Write up the interpretation.
- $\{\forall x \exists y F x y, \forall x(G x \rightarrow \exists y F y x), \exists x G x, \forall x \sim F x x\}$
- $\{\forall x(P x \vee Q x) \rightarrow \exists x R x, \forall x(R x \rightarrow Q x), \exists x(P x \& \sim Q x)$
$>$ Examples - Show that the following arguments are valid.
- $\{\forall x F x x v \forall x \exists y G x y, \forall x \forall y(F x y \rightarrow$ Gyx $)\} \quad \mid=\exists x G x x$
- What we want to find is an interpretation where the premises are true and the conclusion is false $(\sim \exists x G x x)$
- $\quad\{\forall x \forall y(F x y \rightarrow \exists y F y x), \forall x \exists y F x y, \forall x \exists y(F y x \rightarrow F x x)\} \quad I=\forall x F x x$

