CS112 Notes Model Checking with Trees

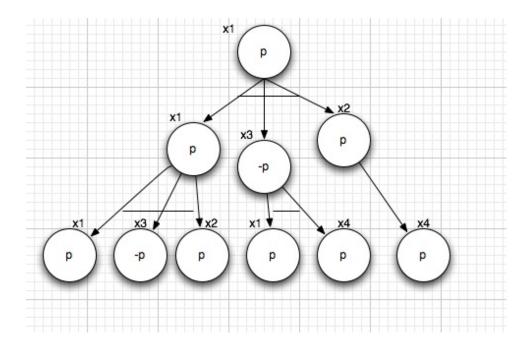
James Pustejovsky

October 2, 2008

Model-Checking

As mentioned in class last week, a valuation of an expression α at a world w_i given a model, \mathcal{M} , can also be viewed as a tree drawing program. Then the valuation of α can be read off the tree quite trivially.

Here is the procedure. Given a valuation call, V_{M,w_i} , and an expression α :


- 1. if α contains no modal operators, simply evaluate relative to the world w_i .
- 2. if α contains a leftmost \Box , i.e., $\alpha = \Box \dots \phi$,
 - (a) then start a tree with root w_i . \Box -rule: The AND-daughters to w_i are those worlds accessible from w_i ; i.e., $\forall w'[w_i Rw']$. Write the value of ϕ at each w' under each world node just created.
- 3. if α contains a leftmost \diamond , i.e., $\alpha = \diamond \dots \phi$,
 - (a) then start a tree with root w_i . \diamond -rule: The OR-daughters to w_i are those worlds accessible from w_i ; i.e., $\forall w'[w_i R w']$. Write the value of ϕ at each w' under each world node just created.
- 4. Working inward, use the \Box -rule or \diamond -rule over the world visited at the current node, and grow the tree downward.
- 5. Continue till operators are exhausted.
- 6. Evaluate the expression according to the AND and OR conditions up the tree.

Consider the model, \mathcal{M} , below:

 $\text{Model}\,\mathcal{M}$

Now consider the valuation $V_{M,w_1}(\Box\Box p)$. From walking the tree, it is easy to see that this is false.

Now consider the valuations for the following stacked modal expressions:

- 1. $V_{M,w_2}(\diamond \diamond p)$
- 2. $V_{M,w_3}(\Box\Box p)$
- 3. $V_{M,w_4}(\diamond \Box \diamond p)$