Propositional Logic – Language

► A logic consists of:

- \triangleright an alphabet \mathcal{A} ,
- \triangleright a language \mathcal{L} , i.e., a set of formulas, and
- \triangleright a binary relation \models between a set of formulas and a formula.
- \blacktriangleright An alphabet \mathcal{A} consists of
 - ▷ a finite or countably infinite set of nullary relation symbols $\mathcal{A}_R = \{p, q, \ldots\},$
 - \triangleright the set of connectives $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ and
 - \triangleright the punctuation symbols "(" and ")".
- The language \mathcal{L} of propositional logic formulas is defined as follows:
 - \triangleright Each relation symbol is a formula.
 - ▷ If F and G are formulas, then $\neg F$, $(F \land G)$, $(F \lor G)$, $(F \rightarrow G)$ and $(F \leftrightarrow G)$ are formulas.

Notions, Remarks and an Example

- Nullary relation symbols are also called propositional variables, nullary predicate symbols and atoms.
- ▶ Literals are formulas of the form p or $\neg p$.
- ▶ We define a precedence hierarchy as follows:

$$\neg > \land > \lor > \{\leftarrow, \rightarrow\} > \leftrightarrow .$$

▶ A simple example: $(p_1 \lor p_2) \land (q_1 \lor q_2)$.

Structural Induction and Recursion

- ▶ Theorem 2.1 (Principle of Structural Induction) Every formula of propositional logic has a certain property *E* provided that:
 - 1. Basis step: Every propositional variable has property \boldsymbol{E} .

2. Induction steps: If F has property E so does $\neg F$. If F and G have property E so does $F \circ G$, where $\circ \in \{\land, \lor, \leftarrow, \rightarrow, \leftrightarrow\}$.

▶ Theorem 2.2 (Principle of Structural Recursion) There is one, and only one, function *h* defined on the set of propositional formulas such that:

- 1. Basis step: The value of h is specified explicitly on propositional variables.
- 2. Recursion steps:

The value of h on $\neg F$ is specified in terms of the value of h on F. The value of h on $F \circ G$ is specified in terms of the values of h on F and on G, where $\circ \in \{\land, \lor, \leftarrow, \rightarrow, \leftrightarrow\}$.

Subformulas

▶ The set of subformulas $\mathcal{T}(H)$ is the smallest set satisfying the following conditions:

 $\triangleright \ H \in \mathcal{T}(H).$

- $\triangleright \text{ If } \neg F \in \mathcal{T}(H), \text{ then } F \in \mathcal{T}(H).$
- ▶ If $F \circ G \in \mathcal{T}(H)$, then $F, G \in \mathcal{T}(H)$, where $\circ \in \{\land, \lor, \leftarrow, \rightarrow, \leftrightarrow\}$.

Propositional Logic – Semantics

• Goal: assign a meaning to formulas with the help of a function $\mathcal{L} \to \{t, f\}$.

• Interpretation I: a total mapping $\mathcal{A}_R \to \{t, f\}$.

• Abbreviation: $I \subset \mathcal{A}_R$ with the understanding that I(p) = t iff $p \in I$.

▶ I models F, in symbols $I \models F$:

$I\models p$	iff	$I(p)=t \ \ (ext{iff} \ p\in I)$
$I \models \neg F$	iff	$I \not\models F$
$I\models F_1\wedge F_2$	iff	$I \models F_1$ and $I \models F_2$
$I\models F_1\vee F_2$	iff	$I \models F_1$ or $I \models F_2$
$I\models F_1\to F_2$	iff	$I \not\models F_1 ext{ or } I \models F_2$
$I\models F_1\leftrightarrow F_2$	iff	$I \models F_1 \rightarrow F_2$ and $I \models F_2 \rightarrow F_1$.

Connectives

► Unary connective:

$$egin{array}{c|c} & \neg & \ \hline t & f & \ f & t & \ \end{array}$$

▶ Binary connectives:

			\vee	\rightarrow	\leftrightarrow
t	t	t	t	t	t
t	f	f	t	$oldsymbol{f}$	$oldsymbol{f}$
\boldsymbol{f}	t	f	t	t	$oldsymbol{f}$
$oldsymbol{f}$	f	f	\boldsymbol{f}	t	t

Models, Validity and More Notions

- ▶ An interpretation I for F is said to be a model for F iff $I \models F$.
- Let \mathcal{F} be a set of formulas. I is a model for \mathcal{F} iff I is a model for each $G \in \mathcal{F}$.
- ▶ F is said to be valid or a tautology iff for all I we find that $I \models F$.
- ▶ F is said to be satisfiable iff there exists an I such that $I \models F$.
- ▶ F is said to be falsifiable iff there exists an I such that $I \nvDash F$.
- ▶ F is said to be unsatisfiable iff for all I we find that $I \not\models F$.

Logical Entailment

- ▶ A set of formulas \mathcal{F} logically entails G (or G is a logical consequence of \mathcal{F} or G is a theorem of \mathcal{F}), in symbols $\mathcal{F} \models G$, iff each model for \mathcal{F} is also a model for G.
- ▶ A satisfiable set of formulas together with all its theorems is said to be a theory.
- ▶ Truth tabling: $\{p \rightarrow q \land r\} \models p \rightarrow r$?

\boldsymbol{p}	$oldsymbol{q}$	\boldsymbol{r}	$q \wedge r$	$p ightarrow q \wedge r$	p ightarrow r
t	t	t	t	$oldsymbol{t}$	\boldsymbol{t}
t	t	f	$oldsymbol{f}$	$oldsymbol{f}$	$oldsymbol{f}$
t	f	t	$oldsymbol{f}$	$oldsymbol{f}$	t
t	f	f	$oldsymbol{f}$	$oldsymbol{f}$	$oldsymbol{f}$
f	t	t	\boldsymbol{t}	$oldsymbol{t}$	t
f	t	f	$oldsymbol{f}$	$oldsymbol{t}$	\boldsymbol{t}
f	f	t	$oldsymbol{f}$	$oldsymbol{t}$	t
\boldsymbol{f}	\boldsymbol{f}	\boldsymbol{f}	$oldsymbol{f}$	$oldsymbol{t}$	t

Logical Consequence vs. Validity vs. Unsatisfiability

▶ Abbreviation: $\emptyset \models F \rightsquigarrow \models F$.

- ▶ Theorem 2.4: F is valid iff $\neg F$ is unsatisfiable.
 - ▶ Validity is related unsatisfiability.
 - ▷ Logical consequence is related to unsatisfiability

Semantic Equivalence

▶ $F \equiv G$ if for all interpretations I we find that $I \models F$ iff $I \models G$.

► Some equivalences:

	F	\equiv	$(oldsymbol{F}\wedgeoldsymbol{F})$
idempotency	F	\equiv	$(F \lor F)$
	$(G \wedge F)$	\equiv	$(F \wedge G)$
commutativity	$(G \lor F)$	\equiv	$(F \lor G)$
	$(F \wedge (G \wedge H))$	\equiv	$((F \wedge G) \wedge H)$
associativity	$(F \lor (G \lor H))$	\equiv	$((F \lor G) \lor H)$
	$oldsymbol{F}$	\equiv	$((F \wedge G) \lor F)$
absorption	$oldsymbol{F}$	\equiv	$((F \lor G) \land F)$
	$((F \wedge G) \vee (F \wedge H))$	\equiv	$(F \wedge (G \vee H))$
distributivity	$((F \lor G) \land (F \lor H))$	\equiv	$(F \lor (G \land H))$

More Equivalences

$$\neg \neg F \equiv F$$
double negation

$$\neg (F \land G) \equiv (\neg F \lor \neg G)$$

$$\neg (F \lor G) \equiv (\neg F \land \neg G)$$
de Morgan

$$(F \lor G) \equiv F, \text{ if } F \text{ tautology}$$
tautology

$$(F \land G) \equiv G, \text{ if } F \text{ tautology}$$
tautology

$$(F \lor G) \equiv G, \text{ if } F \text{ unsatisfiable}$$
tautology

$$(F \land G) \equiv F, \text{ if } F \text{ unsatisfiable}$$
unsatisfiability

$$(F \leftrightarrow G) \equiv (F \rightarrow G) \land (G \rightarrow F)$$
equivalence

$$(F \rightarrow G) \equiv (\neg F \lor G)$$
implication

The Replacement Theorem

- \blacktriangleright F[G]: formula F, in which the occurrences of the formula G are important.
- ▶ F[G/H]: formula obtained from F by replacing all occurrences of G by H.
- ▶ Theorem 2.5: If $G \equiv H$, then $F[G] \equiv F[G/H]$.

Normal Forms

- Negation normal form: the formula is built solely by literals, conjunctions and disjunctions.
- Conjunctive normal form: the formula has the form $F_1 \wedge \ldots \wedge F_n$, $n \geq 0$, where each of F_1, \ldots, F_n is a disjunction of literals.

 \triangleright case n = 0: $\langle \rangle$ denoting a valid formula.

▶ Disjunctive normal form: the formula has the form $F_1 \lor \ldots \lor F_n$, $n \ge 0$, where each of F_1, \ldots, F_n is a conjunction of literals.

▷ case n = 0: [] denoting an unsatisfiable formula.

- ▶ Clause form: set notation of formulas in conjunctive normal form;
- ▶ Clauses: elements of these sets.
- ▶ Dual clause form: set notation of formulas in disjunctive normal form;
- ▶ Dual clauses: elements of these sets.

Normal Form Transformation

Input A propositional logic formula \boldsymbol{F} .

Output A propositional logic formula G in conjunctive normal form which is equivalent to F.

- 1. Eliminate all equivalence signs using the equivalence law.
- 2. Eliminate all implication signs using the implication law.
- **3**. Eliminate all negation signs except those in literals using the de Morgan and the double negation laws.
- 4. Distribute all disjunctions over conjunctions using the second distributivity, the commutativity and the associativity laws.

Normal Form Transformation - Example

Clause Form

- Conjunctive normal form: $(L_{11} \lor \ldots \lor L_{1n_1}) \land \ldots \land (L_{m1} \lor \ldots \lor L_{mn_m}),$ Clause form: $\{\{L_{11}, \ldots, L_{1n_1}\}, \ldots, \{L_{m1}, \ldots, L_{mn_m}\}\}.$
- ▶ Unit clause: clause which contains only one literal.
- ▶ Horn clause: clause which contains at most one positive literal $(L \leftarrow L_1 \land \ldots \land L_n).$
- Goal clause: Horn clause which contains only negative literals $(\leftarrow L_1 \land \ldots \land L_n).$
- ▶ Definite clause: Horn clause which contains a positive literal.
- ▶ Fact: definite unit clause.
- ▶ []: denotes the empty clause.

Propositional Logic Programs

- ▶ Procedural vs. declarative reading of definite clauses.
- ▶ Definite propositional logic program \mathcal{F} : set of definite clauses.
- ▶ Proposition 2.1: If I_1 and I_2 are models of \mathcal{F} then so is $I_1 \cap I_2$.

 \triangleright There exists a least model $M_{\mathcal{F}}$ of \mathcal{F} .

- Theorem 2.6: Let \mathcal{F} be a logic program. $M_{\mathcal{F}} = \{p \mid \mathcal{F} \models p\}.$
- ► Meaning function:

$$egin{aligned} T_{\mathcal{F}}(I) &= \{p \mid p \leftarrow p_1 \wedge \ldots \wedge p_n \in \mathcal{F} \wedge \{p_1, \ldots, p_n\} \subseteq I \}. \ T_{\mathcal{F}} \uparrow & 0 &= \ \emptyset \ T_{\mathcal{F}} \uparrow & (n+1) &= \ T_{\mathcal{F}}(T_{\mathcal{F}} \uparrow & n) & ext{for all } n \geq 0. \end{aligned}$$

T_F admits a least fixed point lfp(T_F).
Theorem 2.7: M_F = lfp(T_F) = lub({T_F ↑ n | n ∈ N}).

Calculus

- $\blacktriangleright \text{ Logic: } \langle \mathcal{A}, \mathcal{L}, \models \rangle.$
- $\blacktriangleright \text{ Calculus: } \langle \mathcal{A}, \mathcal{L}, \Gamma, \Pi \rangle, \text{ where } \begin{array}{c} \Gamma \\ \Pi \end{array} \text{ is a set of formulas called axioms and } \\ \Pi \\ \end{array} \text{ is a set of inference rules.}$
- ► $\mathcal{F} \vdash \mathbf{F}$: inference relation defined by Γ and Π .
- ▶ Soundness: If $\mathcal{F} \vdash F$ then $\mathcal{F} \models F$.
- ▶ Completeness: If $\mathcal{F} \models F$ then $\mathcal{F} \vdash F$

Classification of Calculi

A calculus is said to be

- ▶ negative if its axioms are unsatisfiable.
- ▶ positive if its axioms are valid,
- ▶ generating if theorems are derived from the axioms using the inference rules,
- ▶ analyzing if theorems are reduced to the axioms using the inference rules.

Natural Deduction

- ▶ Gentzen 1935: How to represent logical reasoning in mathematics?
 - ▷ Calculus of natural deduction.
- ► Alphabet: propositional logic.
 - \triangleright [] denotes some unsatisfiable formula.
 - $\triangleright~\langle~\rangle$ denotes some valid formula.
- ▶ Language: propositional logic formulas.
- Axioms: $\{\langle \rangle\}$.

Natural Deduction - Inference Rules

▶ Introduction Rules for Binary Connectives:

▶ Elimination Rules for Binary Connectives:

Deductions and Proofs

▶ A deduction in the calculus of natural deduction is a sequence of formulas possibly enclosed in (open or closed) boxes such that each element is either

- \triangleright the axiom $\langle \rangle,$
- ▶ follows from earlier elements occurring in open boxes at this stage by one of the rules of inference or
- ▷ is a formula different from $\langle \rangle$ and does not follow by one of the rules of inference, in which case the formula is called assumption and a new box is opened.
- ► A proof of **F** in the calculus of natural deduction is a deduction in which all boxes are closed and **F** is the last element in the deduction.

Lemmas

► The lemmas:

$$rac{
egamma \neg F}{F} = rac{
egamma (F \wedge G)}{
egamma G} = rac{
egamma (F \wedge G)}{
egamma G} = rac{
egamma (F \wedge G)}{
egamma G} = rac{
egamma (F \wedge G)}{
egamma G}$$

▶ represent the sequence of formulas:

▶ Lemmas shorten proofs, but enlarge the search space.

Natural Deduction - Soundness and Completeness

- ▶ Theorem 2.8: The calculus of natural deduction is sound and complete.
- ▶ Human readable proofs vs. machine generated proofs.
- ► Sequent calculus.
- ▶ Proof theory.

Sequent Calculus

▶ Sequent: $\mathcal{F} \vdash \mathcal{G}$, where \mathcal{F} and \mathcal{G} are multisets of formulas.

Notation:
$$\dot{\{}F_1, \dots, F_n \dot{\}} \longrightarrow F_1, \dots, F_n$$
.
 $\mathcal{F} \dot{\cup} \dot{\{}F \dot{\}} \longrightarrow \mathcal{F}, F$.
Inference rules: $\frac{S_1 \dots S_n}{S}$ r or $\frac{1}{S}$ r

Sequent Calculus: Axiom, Cut and Structural Rules

Structural rules

$H,H,\mathcal{F}\vdash\mathcal{G}$	$\mathcal{F}\vdash \mathcal{G}, H, H$	
cl	cr	
$H, \mathcal{F} \vdash \mathcal{G}$	$\mathcal{F}\vdash \mathcal{G}, H$	

Sequent Calculus: Logical Rules

Rules for the left hand side	Rules for the right hand side
$rac{\mathcal{F}Dash\mathcal{G}, H_1 \mid H_2, \mathcal{F}Dash\mathcal{G}}{(H_1 o H_2), \mathcal{F}Dash\mathcal{G}} o ert$	$rac{oldsymbol{H}_1, oldsymbol{\mathcal{F}}dash oldsymbol{\mathcal{G}}, oldsymbol{H}_2}{oldsymbol{\mathcal{F}}dash oldsymbol{\mathcal{G}}, (oldsymbol{H}_1 o oldsymbol{H}_2)} o r$
$rac{H_1,H_2,\mathcal{F}dash\mathcal{G}}{(H_1\wedge H_2),\mathcal{F}dash\mathcal{G}} \wedge ert$	$rac{\mathcal{F}Dash\mathcal{G},H_1 \ \ \mathcal{F}Dash\mathcal{G},H_2}{\mathcal{F}Dash\mathcal{G},(H_1\wedge H_2)}$ \wedge r
$rac{oldsymbol{H}_1, oldsymbol{\mathcal{F}} dash oldsymbol{\mathcal{G}}}{(H_1 ee H_2), oldsymbol{\mathcal{F}} dash oldsymbol{\mathcal{G}}} ee oldsymbol{\mathcal{G}}$	$rac{\mathcal{F}Dash\mathcal{G}, H_1, H_2}{\mathcal{F}Dash\mathcal{G}, (H_1ee H_2)} ee r$
$rac{\mathcal{F}dash\mathcal{G},H}{ eg H,\mathcal{F}dash\mathcal{G}} eg $	$rac{H, \mathcal{F} dash \mathcal{G}}{\mathcal{F} dash \mathcal{G}, eg H} eg r$

Sequent Calculus: Soundness and Completeness

 \blacktriangleright A proof of the sequent **S** in the sequent calculus is defined as follows:

An axiom of the form - r is a proof of S.
If T₁, ..., T_n are proofs of S₁, ..., S_n respectively and the sequent calculus contains a rule of the form

$$\frac{S_1 \dots S_n}{S} r$$
, then
$$\frac{T_1 \dots T_n}{S} r$$
 is a proof of S.

- ▶ Theorem 2.9: The propositional sequent calculus is sound and complete.
- ▶ Subformula property: all formulas occurring in the condition of a rule occur as subformulas in the conclusion of the rule. → Only the cut rule violates this property.
- ▶ Gentzen's "Hauptsatz": Cuts can be removed in sequent calculus proofs.

Resolution

▶ Let
$$C_1 = \{L, L_1, \dots, L_n\}$$
 and $C_2 = \{\neg L, K_1, \dots, K_m\}$ be two clauses. Then
 $\{K_1, \dots, K_m, L_1, \dots, L_n,\}$

is called a resolvent of C_1 and C_2 .

 $\triangleright \ \{C_1,C_2\} \models \{K_1,\ldots,K_m,L_1,\ldots,L_n,\}.$

A deduction of C from \mathcal{F} is a finite sequence $C_1, \ldots, C_k = C$ of clauses such that $C_i, 1 \leq i \leq k$, either is a clause from \mathcal{F} or a resolvent of clauses preceding C_i .

- ▶ A deduction of [] from \mathcal{F} is called a refutation.
- ▶ Theorem 2.11 The resolution calculus for propositional logic is sound and complete.

Monotonicity

• A logic is monotonic iff $\mathcal{F} \models F$ implies $\mathcal{F} \cup \mathcal{F}' \models F$.

▶ Propositional logic is monotonic.

► A logic which obeys the law

for each atom p we find $\mathcal{F} \models p$ iff $p \in \mathcal{F}$.

is not monotonic.