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Abstract. Cavities in spatial phenomena require geometric representations of 
regions with holes. Existing models for reasoning over topological relations 
either exclude such specialized regions (9-intersection) or treat them 
indistinguishably from regions without holes (RCC-8). This paper highlights 
that inferences over a region with a hole need to be made separately from, and 
in addition to, the inferences over regions without holes. First the set of 23 
topological relations between a region and a region with a hole is derived 
systematically. Then these relations’ compositions over the region with the hole 
are calculated so that the inferences can be compared with the compositions of 
the topological relations over regions without holes. For 266 out of the 529 
compositions the results over the region with the hole were more detailed than 
the corresponding results over regions without holes, with 95 of these refined 
cases providing even a unique result. In 27 cases, this refinement up to 
uniqueness compares with a completely undetermined inference for the 
relations over regions without holes.  

1   Introduction 

Some spatial phenomena have cavities (Figure 1a-d), which require geometric 
representations of regions with holes when they are modeled in geographic 
information systems. Most prominent geographic examples are the territorial 
configurations of South Africa (which completely surrounds Lesotho), the former 
East Germany (completely surrounding West Berlin), and Italy (which completely 
surrounds San Marino and the Vatican City). Many other spatial configurations with 
holes have been thought of [1]. This paper focuses on the topological relations 
involving regions with a single hole.  

Although such regions with holes resemble visually regions with indeterminate 
(i.e., broad) boundaries (Figure 2a), their topologies differ conceptually, since a 
region with a broad boundary is an open set (Figure 2b), whereas a region with a hole 
is a closed set (Figure 2c). Therefore, the various versions of topological relations 
between regions with broad boundaries [2,3,13] do not apply immediately to regions 
with holes. 

While geometric models of spatial features have matured to capture appropriately 
the semantics of regions with holes [11,17], models of qualitative spatial relations 
over regions with holes have essentially stayed in their infancy. Some models of 
 
 



304 M.J. Egenhofer and M. Vasardani 

(a) (b) 

A
B

C

B&C

Corbett Hall

Dunn Hall

(c) (d)  

Fig. 1. Regions with a hole: (a) the Lago Iseo (with Monte Isola, Italy’s largest island in a lake), 
(b) the area of Massachusetts with precipitation on December 23, 2006 at 7:30am, (c) the part 
of region A that cannot be reached by both persons B and C when they were to travel from their 
current locations for a set amount of time, and (d) the smoke-free zone around Corbett Hall and 
Dunn Hall on the UMaine campus implied by a 30ft buffer zone around each building 

Broad-Boundary Region Region with Hole  
∂Rbb = B° \ A° ∂Rh = ∂B∪∂A
Rbb

° = A° Rh
° = B° \ (A° ∪∂A°)

∂B∂A

A° B°

Rbb
− = (B− ∪∂B) Rh

− = B− ∪A°
(a) (b) (c)  

Fig. 2. Two closed discs (A and B): (a) their topological components boundary (∂R ), interior 
( R°), and exterior ( R −) that contribute to the formation of (b) a region with a broad boundary 

( Rbb ) and (c) a region with a hole ( Rh ) 

topological relations have addressed regions with holes [8,14,20], distinguishing 
varying levels of details about the placements of the holes, however, qualitative 
spatial reasoning with such relations has been either discarded or treated like 
reasoning without holes. The 4-intersection [9] and 9-intersection [10], for instance, 
exclude explicitly as the relations’ domain and co-domain any regions with holes, so 
that the comprehensive body of inferences over topological relations based on the 9-
intersection does not apply directly to regions with holes. On the other hand, the 
region-connection calculus (RCC) [19] makes no explicit distinction between regions 
with or without holes so that this model of topological relations, and their inferences 
from compositions, applies to regions with holes as well. While the 9-intersection 
composition table is extentional [15], RCC’s applicability to regions with or without 
holes has given rise to a non-extentional composition table. These differences in the 
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composition of topological relations are the key justification for the need to 
differentiate relations for regions with holes from relations for regions without holes 
when making inferences over topological relations.  

The following example highlights the need for such an explicit distinction. Given a 
region B such that it overlaps with a region A and also overlaps with a region C. From 
the composition A overlaps B and B overlaps C [6] one can deduce the possible 
relations between A and C (Figure 3a-h), yielding in this case the universal relation U8 
(i.e., all eight topological relations are possible). 
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Fig. 3. The eight possible configurations if region A overlaps region B and B overlaps region C: 
(a) A disjoint C, (b) A meet C, (c) A overlaps C, (d) A equal C, (e) A covers C, (f) A coveredBy 
C, (g) A contains C, and (h) A inside C 

If one starts, however, with a region with a hole (E) that overlaps with two other 
regions, D and F, each without holes, the hole may play a significant role in 
constraining the possible relations between D and F. For instance, let E overlap with 
D such that E’s hole is completely contained in D, and let E overlap with F such that 
F meets E’s hole. Then D could overlap with F (Figure 4a), D could cover F 
(Figure 4b), and D could contain F (Figure 4c). Therefore, the insertion of a hole into 
the first region results in a composition scenario that is more constrained than the one 
without the hole. Treating both cases with the same (less constrained) composition 
would offer some incorrect choices in case the region has a hole.  

Is this example an anomaly? Or maybe even the only case in which relation 
inferences differ for regions and regions with a hole? Or are there so many more cases 
that typically the reasoning over a region with a hole differs from the well known 
topological inferences of regions without holes? This paper provides answers to these 
questions through a systematic study of the topological relations involving a region 
with a hole, the derivation of the composition inferences of these relations, and a 
quantitative comparison of these compositions with the compositions of topological 
relations between regions without holes [6]. The topological relation between a region 
and a region with a hole is denoted by tRRh  (and its converse relation by tRhR ), while 

tRR  refers to the topological relation between two regions (each without a hole). 
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Fig. 4. The three possible configurations if E overlaps with D such that E’s hole is inside D, 
and E also overlaps with F such that E’s hole meets F: (a) D overlaps F, (b) D covers F, and (c) 
D contains F 

B° is B’s interior 
B −1  is the inner exterior of B, which fills B’s 

hole 
B −0  is the outer exterior of B 
∂1B  is the inner boundary of B, which 

separates B° from B −1  
∂0B  is the outer boundary of B, which 

separates B° from B −0  

∂B1 ∂B0

B°B–1

B–0

 

Fig. 5. B’s five topologically distinct and mutually exclusive parts 

Throughout this paper, the qualitative model of a region with a hole (B) is based 
on B’s five topologically distinct and mutually exclusive parts (Figure 5). 

The elements of the qualitative description of a region with a hole are (1) its hole 
BH ( B −1 ∪∂1B ) and (2) the generalized region B* ( B H ∪ B° ∪∂0B ). B* and BH are 
spatial regions, that is, each region is homeomorphic to a 2-disk so that the eight t RR  
[9] apply to B* and BH (but not to B, because B with the hole is not homeomorphic to 
a 2-disk). The topological relation between B* and BH is contains, therefore, this is a 
more restrictive model than the generic region-with-holes model [8], where BH also 
could have been coveredBy or even equal to B*, thereby leading to somewhat 
different semantics of a region with a hole.  

The remainder of this paper is organized as follows: Section 2 specifies the 
canonical model used for modeling a region with a hole as well as such a region’s 
topological relation with another region. Section 3 presents a method to derive the 
tRRh  that are feasible between a region and a region with a hole. Section 4 presents the 
23 relations that can be found between a region and a region with a hole, followed by 
an analysis of these relations’ algebraic properties in Section 5. Section 6 derives the 
qualitative inferences that can be made with tRRh  and tRh R , focusing on compositions 
over a common region with a hole. Section 7 analyzes these compositions, comparing 
their reasoning power with the compositions of topological relations between regions 
without holes. The paper closes with conclusions and a discussion of future work in 
Section 8. 
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2   Qualitative Model of a Region with a Hole 

The topological relation between a region (A) and a region with a hole (B) is modeled 
as a spatial scene [5], comprising A, B*, and BH together with nine binary topological 
relations among these three regions (Figure 6). 

 

A B

A B* BH
A equal overlaps covers 

B* overlaps equal contains 
BH coveredBy inside equal 

(a) (b)  

Fig. 6. Topological relation of a region with a hole: (a) graphical depiction of a configuration 
and (b) the corresponding symbolic description as a spatial scene 

In such a spatial scene, five of the nine binary topological relations are implied for 
any configuration between a region and a region with a hole: each region is equal to 
itself, B* contains BH, conversely BH is inside B*, and for the two relations between A 
and B* and A and BH, their converse relations (from B* to A and from BH to A) are 
implied by the arc consistency constraint [16]; therefore, a model of such a spatial 
scene only requires the explicit specification of the two relations between A and B* 
and A and BH to denote tRRh  (Eqn. 1). These relations between A and B* and A and BH 
are called the constituent relations of a topological relation between a region and a 
region with a hole. Their horizontal 1x2 matrix is a direct projection of the top 
elements in the two right-most columns of the spatial scene description.  

t RRh
  (A, B) = t(A, B* ) t(A, B H )[ ] (1) 

The principal relation π (t RRh
)  is then the first element of t RRh

 (Eqn. 2). 

π (t RRh
(A,B)) = r (A,B*)  (2) 

Section 3.3 shows that some configurations actually only require the principal 
relation in order to specify tRRh  completely. 

3   Deriving the Topological Relations Between a Region and a 
Region with a Hole 

The spatial scene can also be used for the derivation of what topological relations 
actually exist between a region and a region with a hole. Since two of the scene’s nine 
topological relations are subject to variations (the relations between A and B* and A 
and BH), a total of 82=64 tRRh  could be specified. But only a subset of these 64 
relations is feasible. For example, tRRh  contains disjoint[ ] is infeasible, because B* 
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cannot be inside A at the same time as BH (which is inside B*) is disjoint from A. 
Therefore, a topological relation from a region with a hole to another region is 
feasible if (1) that scene’s representation is consistent and (2) there exists a 
corresponding graphical depiction.  

The binary topological relation between a region (A) and a region with a hole (B) is 
established as a 3-region scene comprising A, B*, and BH with the constraint that B* 
contains BH  (Figure 7). The topological relation between a region and a region with a 
hole holds if this 3-region scene is node-consistent, arc-consistent, and path-consistent 
(Macworth 1977) for the four values t (A, B*), t (A, BH) and their corresponding 
converse relations t (B*, A) and t (BH, A). 

 
 A B* BH 

A equal t (A, B*)  t (A, BH) 
B* t (B*, A) equal contains 
BH  t (BH, A) inside equal 

Fig. 7. A 3-region spatial scene that captures the constituent relations of a binary topological 
relation between a region (A) and a region with a hole (B) 

The range of these four relations is the set of the eight t RR . With four variables over 
this domain, a total of 84 = 4,096 configurations could be described for the topological 
relations between a region and a region with a hole. Only a subset of them is feasible, 
however. These feasible configurations are those whose 3-region scenes are 
consistent. Since in the feasible configurations t (A, B*) must be equal to the converse 
of t (B*, A), the enumeration of the relations in the feasible configuration can be 
reduced. The same converseness constraint also holds for t (A, BH) and t (BH, A); 
therefore, for a feasible tRRh  two of the four relations are implied. Thus, only two of 

the four unknown relations are necessary to completely describe a feasible tRRh , 
reducing the number of possible configurations to 82 = 64. 

4   Twenty-Three Relations Between a Region and a Region with a 
Hole 

In order to determine systematically the feasible tRRh , a scene consistency checker has 
been implemented, which iterates for each unknown (i.e., universal) relation over the 
eight possible relations and determines whether that spatial scene is node-consistent, 
arc-consistent, and path-consistent [16]. Only those configurations that fulfill all three 
consistency constraints are candidates for a valid tRRh . Twenty-three spatial scenes 
representing a region and a region with a hole have been found to be consistent 
(Figure 8).  

The remaining 64–23=41 candidate configurations for tRRh  have been found to be 
inconsistent. Therefore, the 23 consistent cases establish the 23 binary topological 
relations between a region and a region with a hole. 
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RR
h
1 disjoint disjoint[ ] RR

h
2 meet disjoint[ ] RR

h
3 overlap disjoint[ ] RR

h
4 overlap meet[ ]

RR
h
5 overlap overlap[ ] RR

h
6 overlap covers[ ] RR

h
7 overlap conta ins[ ] RR

h
8 covers contains[ ]

RR
h
9 contains contains[ ] RR

h
10 equa l conta ins[ ] RR

h
11 coveredBy disjoint[ ] RR

h
12 coveredBy meet[ ]

RR
h
13 coveredBy overlap[ ] RR

h
14 coveredBy covers[ ] RR

h
15 coveredBy conta ins[ ] RR

h
16 inside disjoint[ ]

RR
h
17 inside meet[ ] RR

h
18 inside overlap[ ] RR

h
19 inside covers[ ] RR

h
20 inside contains[ ]

RR
h
21 inside equa l[ ] RR

h
22 inside coveredBy[ ] RR

h
23 inside inside[ ]  

Fig. 8. Graphical depictions of the 23 topological relations between a region and a region with a 
hole 

5   Properties of the Twenty-Three Relations 

These 23 tRRh  can be viewed as refinements of the eight t RR . Five of the eight t RR—
disjoint, meet, covers, contains, equal—do not reveal further details if region B has a 
hole, because in each of these cases the relation between A and B* is so strongly 
constrained that only a single relation is possible between A and B’s hole BH. The 
remaining three t RR—overlap, coveredBy, inside—are less constraining as each offers 
multiple variations for the topological relations between A and BH: overlap and 
coveredBy each have five variations for t (A, BH), while inside has a total of eight 
variations. 
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Without a specification of the relation between A and BH, the configurations A 
overlap B* (RRh5– RRh8) and A coveredBy B* (RRh11–RRh15) are underdetermined, 
that is, one can only exclude for each case the three relations A equal BH, A coveredBy 
BH, and A inside BH, but cannot pin down which of the remaining five choices—A 
disjoint BH, A meet BH, A overlap BH, A covers BH, A contains BH—actually holds. 
Likewise, the configuration A inside B* is undetermined without a specification of the 
relation between A and BH, because any of the eight t RR  could hold between A and BH.  

5.1   Converse Relations 

Since the domain and co-domain of tRRh  refer to different types—a region with a hole 
and a region without a hole—there is neither an identity relation, nor are there 
symmetric, reflexive, or transitive tRRh . The concept of a converse relation (i.e., the 
relation between a region with a hole and another region) still exists, however. The 
relation converse to tRRh  is implied through the converse property of the constituent 
relations (Eqn. 1)— t(B*, A) = t (A,B* )  and t(BH , A) = t(A,BH ) —which is captured in 
a transposed matrix of the constituent relations (Eqn. 3).  

t RhR (B, A) = t (B*, A)
t (BH , A)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= t (A,B*) t (A,BH )[ ]T

 (3) 

This leads immediately to 23 tRhR . Their names are chosen systematically so that 
all pairs of converse relations have the same index (Eqn. 4). 

∀x :1…23 : R hRx = RR h x  (4) 

From among the 23 pairs of converse tRRh tRhR , five relation pairs have identical 
constituent relations (Equations 5a-e), because each element of these five pairs has a 
symmetric converse relation, that is, R hRx = RR h x( )T

. 

disjoint
disjoint
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

T

= disjoint disjoint[ ] (5a) 

meet
disjoint
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

T

= meet disjoint[ ] (5b) 

overlap
disjoint
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

T

= overlap disjoint[ ] (5c) 

overlap
meet

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

T

= overlap meet[ ] (5d) 

overlap
overlap
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

T

= overlap overlap[ ] (5e) 
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5.2   Implied Relations 

The dependencies among a region’s relations to the generalized region and the hole 
reveal various levels of constrains (Figure 9). While five t (A, B*) imply a unique 
relation for t (A, BH), two other t (A, B*) restrict t (A, BH) to five choices. Only one 
t (A, B*)—inside—yields the universal relation U8, imposing no constraints on t (A, 
BH). 

 
Known Relation t (A, B*) Implied Relation t (A, BH) 

disjoint disjoint 
meet disjoint 

covers contains 
contains contains 

equal contains 
overlap not {equal, coveredBy, inside} 

coveredBy not {equal, coveredBy, inside} 
inside U 

Fig. 9. Constraints imposed by a specified t (A, B*) on t (A, BH) 

Reversely, knowledge of the relation t (A, BH) implies in three cases—if t (A, BH) is 
equal, coveredBy, or inside—a unique relation between A and B*; has three choices 
for three relations between A and B* (if t (A, BH) is meet, overlap, or covers); five 
choices in one case (if t (A, BH) is disjoint); and six choices if t (A, BH) is contains 
(Figure 10).  

 
Known Relation t (A, BH) Implied Relation t (A, B*) 

equal inside 
coveredBy inside 

inside inside 
disjoint not {equal, covers, contains} 

meet {overlap, coveredBy, inside} 
overlap {overlap, coveredBy, inside} 
covers {overlap, coveredBy, inside} 

contains not {disjoint, meet} 

Fig. 10. Constraints imposed by a specified t (A, BH) on t (A, B*) 

The dependencies may be seen as an opportunity for minimizing the number of 
relations that are recorded. For example, if one of the two implications were such that 
all known relations implied a unique relation, then it would be sufficient to record 
only the known relation, thereby cutting into half the amount of relations to be stored 
for each tRRh . Such a simple choice does not apply, however. Since five t (A, BH) are 
implied uniquely by t (A, B*), t (A, BH) needs to be recorded only in three cases to fix 
a complete tRRh  specification. Reversely only three t (A, B*) are implied uniquely by 
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their t (A, BH). Therefore, the common-sense choice of favoring the relation with 
respect to the generalized region over the relation to the hole gets further support. 

6   Compositions over a Region with a Hole 

A key inference mechanism for relations is their composition, that is, the derivation of 
the relation A to C from the knowledge of the two relations t (A, B) and t (B, C). A 
complete account of all relevant compositions considers first all combinatorial 
compositions of relations with regions (R) and regions with a hole (RH). Since all 
compositions involve two binary relations (i.e., _ _ ; _ _ ), each over a pair of R and 
RH, there are 24 = 16 possible combinations (Figure 11). Eight of these sixteen 
combinations specify invalid compositions (C 3–6 and C 11–14), because the domain 
and co-domain of the composing relations’ common argument are of different types 
(i.e., trying to form a composition over a Region and a Region with a hole). Among 
the remaining eight combinations, C 1 is the well-known composition of region-
region relations. Two pairs of combinations capture converse compositions—C 2 and 
C 9, as well as C 8 and C 15—while three combinations capture symmetric 
compositions—C 7, C 10, and C 16. 

 
C 1 t RR ; t RR  C 5 — C 9 t RhR ; t RR  C 13 — 

C 2 t RR ; t RRh
 C 6 — C 10 t RhR ; t RRh

 C 14 — 

C 3 — C 7 t RRh
; t RhR  C 11 — C 15 t RhRh

; t RhR  

C 4 — C 8 t RRh
; t RhRh

 C 12 — C 16 t RhRh
; t RhRh

 

Fig. 11. The 16 combinations of compositions of binary relations with regions (R) and regions 
with a hole (RH) 

From among these combinations of compositions involving a region with a hole, 
we focus here on Comp 7, the inferences from tRRh  ; tRhR . A spatial scene serves 
again as the framework for a computational derivation of all compositions. Objects A 
and C are two regions without a hole, whereas object B is a region with a hole. The 
corresponding spatial scene has four regions (A, B*, BH, and C) with their sixteen 
region-region relations (Figure 12). The pair of relations t (A, B*) t (A, BH) must be a 
subset of the 23 valid tRRh , while the pair of relations t (B*, C) t (BH, C) must be a 

subset of the 23 valid tRhR . Furthermore, t (B*, A) and t (BH, A) must be the 
respective converse relations of t (A, B*) and t (A, BH). The same converse property 
must hold for the pair t (C, B*) t (C, BH) with respect to t (B*, C) t (BH, C). With 23 
pairs for each tRRh  and tRhR , there are 529 compositions. The range of the inferred 

relation t (A, C) is the set of the eight tRR . This composition of t (A, B) ; t (B, C) is 
specified for any spatial scene that is node-consistent, arc-consistent, and path-
consistent. To determine systematically all consistent compositions, we have 
developed a software prototype of a consistency checker that evaluates a spatial scene 
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 A B* BH C 
A equal U U U 
B* U equal contains U 
BH U inside equal U 
C U U U equal 

Fig. 12. The spatial scene over four regions used for the derivation of the composition t (A, 
B) ; t (B, C) 

for the three consistencies. All compositions where found to be valid (i.e., none of the 
compositions resulted in the empty relation).  

Figures 14a and 14b summarize the result graphically, using for the composition 
the iconic representation of the region-region relations based on their conceptual 
neighborhood graph [12]. A highlighted relation in that graph indicates that that 
relation is part of the particular composition. The universal relation U8 is then an icon 
with all relations highlighted (Figure 13a), while a unique inference has a single 
relation highlighted (Figure 13b). The composing relations tRRh  and tRhR  are also 
captured by the same neighborhood graph, in which the relation to the generalized 
region is superimposed over the relation to the hole (Figure 13c).  

 

(a) (b) (c)  

Fig. 13. Iconic representation of relations and compositions: (a) universal relation of region-
region relations, (b) unique composition result (inside) of region-region relations, and (c) 
unique tRRh  with the large circle identifying the relation between region A and the generalized 
region B* and the black disc highlighting the relation between A and BH 

7   Analysis of Compositions 

The 64 compositions of tRR  ; tRR  [6] form the benchmark for the assessment of the 
reasoning power of compositions involving regions with holes.  

Finding 1: The composition table tRRh  ; tRhR  (Figure 14a and 14b) shows that all 529 
compositions are valid (i.e., there is no empty relation as the result of any of the 
compositions). This means none of the 529 4-object scenes considered to calculate the 
compositions (Figure 12) is inconsistent. The same level of consistency was also 
found for the tRR  ; tRR  composition table.  

Finding 2: All compositions are compatible with the composition results of their 
principal relations (Eqn. 6), that is, the inferences from the principal relations provide 
an upper bound for the reasoning over regions with a hole.  

∀a :1…23,∀b :1…23 : RR ha ; R hRb ⊆ π (RR ha) ; π (R hRb)  (6) 
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Finding 3: Among the 529 compositions there are 263 (49.7%) whose results are 
identical to the compositions of the relations’ principal relations (Eqn. 7). Therefore, 
for slightly less than half of the inferences the hole is immaterial, while it matters for 
the remaining 266 inferences. 

∃a,b | a ≠ b : RR ha ; R hRb = π (RR ha) ; π (R hRb)  (7) 

Finding 4: Among the 266 compositions whose results are more refined than the 
compositions of their principal relations, 95 compositions are refined to uniqueness 
(Eqn. 8). If one were to resort in these cases to the compositions of their principal 
relations, one would incorrectly infer that these compositions are underdetermined. 

∃a,b | a ≠ b : RR ha ; R hRb ⊂ π (RR ha) ; π (R hRb) ∧ # (RR ha ; R hRb) = 1 (8) 

To further assess the inference power of the compositions, we use the 
composition’s cardinality (Eqn. 9a), which is the count of relations in that 
composition result, and the composition table’s cardinality (Eqn. 9b), which is the 
sum of the cardinalities of all compositions in a table. This yields the composition 
table’s normalized crispness (Eqn. 9c), whose lowest value of 0 stands for 
compositions that result in the universal relation and whose value increases linearly 
for composition results with fewer choices. The latter measure also applies to subsets 
of a composition table to assess and compare the inferences of particular groups of 
relations. The corresponding measures for tRR  ; tRR  can be defined accordingly. 

card23
ij =# (RRhi;RhRj)  (9a) 

γ 23 = card 23
ij

i=1…#(U23 )

j =1…#(U23 )

∑  (9b) 

Γ23 = 1− γ 23

# (U8)*# (U23)*# (U23)
 (9c) 

Finding 5: While the cardinality of the tRRh ; tRhR  composition table is over seven 
times higher than that of the tRR ; tRR  composition table ( γ 23 =1389 vs. γ 8 =193), the 
overall inferences from tRRh ; tRhR  are crisper, because the average composition 
cardinality is approximately 8% higher for all tRRh ; tRhR  than for all t RR; t RR  
( Γ23 =0.67 vs. Γ8 =0.62).  

Finding 6: The increase in crispness is primarily due to a decrease in the relative 
number of compositions with a cardinality of 5 (and to a lesser degree cardinalities 6 
and 8), while simultaneously the relative numbers of compositions with cardinalities 
3, 2, and 4 (and to a miniscule amount those of compositions with cardinality 1) 
increase (Figure 15). Overall 239 ambiguities of pure topological reasoning are 
reduced, but not fully eliminated, when considering the holes in the regions. 

Finding 7: In absolute numbers the count of compositions with unique results goes up 
from 27 in tRR ; tRR  to 224 in tRRh ; tRhR . Since—for a different set of relations, 
though—people have been found to make composition inferences more correctly if 
the result is unique [19], this increase augurs well for people’s performance when 
reasoning over relations with holes. 
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RhR9RhR1 RhR2 RhR3 RhR4 RhR5 RhR6 RhR7 RhR8 RhR10 RhR11 RhR12

RRh1

RRh2

RRh3

RRh4

RRh5

RRh6

RRh7

RRh8

RRh9

RRh10

RRh11

RRh12

RRh13

RRh14

RRh15

RRh16

RRh17

RRh18

RRh19
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Fig. 14a. Composition table t RRh
 ; t RhR  (for t RhR = [ RhR1…RhR12]) 
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Fig. 14b. Composition table t RRh
 ; t RhR  (for t RhR = [ RhR13…RhR23] ) 
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Fig. 15. Comparison of the frequencies of compositions results with cardinality 1 (unique 
inference) through 8 (universal relation) for composition table tRRh ; tRhR  with tRR  ; tRR  

 

Fig. 16. Crispness improvements (in absolute counts) for t RRh
 ; t RhR  vs. t RR  ; t RR  

(compositions without improvement left out; darker shading indicates stronger improvement). 

Finding 8: From among the 266 compositions with crisper results, 27 (i.e., 10.2%) 
yield a complete crispening, that is a conversion from a universal composition to a 
unique composition. Complete crispenings occur only for compositions RR ha ; R hRb  
with π (RR ha) = inside  and π (R hRb) = contains (Figure 16). Resorting in these cases 
to the composition of their principal relations would incorrectly imply that these 
inferences are undetermined. 
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Finding 9: For all 266 compositions whose results are crisper, on average the 
crispness of each of these 266 compositions improves by 3.5 counts. Given that the 
highest possible improvement is seven (for a complete crispening), the average 
crispness improvement is 50%. 

Finding 10: Compositions RR ha ; R hRb  are only subject to crispening if 
π (RR ha) ∈ {overlap,coveredBy,inside}  and π (R hRb) ∈ {overlap,covers,contains} , 
yielding nine groups of compositions that feature crispenings (Figure 16). In these 
groups, the compositions with π (RR ha) = inside  and π (R hRb) = contains  have the 
highest crispness improvements, both in absolute counts (319) as well as per 
composition (5.23, which corresponds to an average crispness improvement of 75%). 

8   Conclusions 

Most qualitative spatial reasoning has disregarded the inference constraints that 
cavities of geographic phenomena may impose, because their underlying models 
either explicitly exclude regions with holes from their domain or assume that the 
existence of a hole will have no impact on their topological inferences. To overcome 
these limitations, this paper studied systematically the topological relations of regions 
with a single hole, offering new insights for spatial reasoning over such regions: 

While the 9-intersection captures eight topological relations between two regions, 
this number increases by 88% to 23 when one of the regions has a hole, yielding 
refinements of the eight region-region relations. Knowing the relation between a 
region and the generalized region implies a 63% chance (5 out of 8 relations) of 
uniquely identifying the complete relation between the two objects without any 
explicit reference to the relation with the hole. 

The 23 relations’ compositions over a common region with a hole show that these 
compositions form subsets—although not necessarily true subsets—of the results 
obtained from the compositions of regions without a hole. In 36% of the true subsets, 
the result is unique (i.e., a single relation). Approximately half of the compositions 
over a region with a hole yield fewer possible relations, with an 8% increase in the 
average crispness when compared to the results of compositions over a region without 
a hole. This decrease is due to a general trend of fewer results comprising five or 
more possibilities, in combination with an increase of the occurrence of results of 
fewer possibilities (four or less) and by a 10% increase of complete crispness 
(yielding a unique relation) among these improved results. This leads to an average 
crispness improvement of 50% for those results. These insights relate to people’s 
reasoning performance, because relations that include regions with holes lead to a 
higher relative number of unique possible results. 

These findings provide answers to the questions posed in the motivation: the more 
constrained composition inferences found for topological relations of a region with a 
hole are neither anomalies, nor do different inferences occur only in a single case. 
Since over 50% of the inferences with a hole are more refined than the corresponding 
inferences over regions without a hole, typically the reasoning over a region with a 
hole does differ from the well known topological inferences of regions without a hole,  

Future work will pursue the derivation of complementary methods for similarity 
reasoning, such as the 23 relations’ conceptual neighborhoods. Initial results indicate 
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that this graph is an asymmetric extension of the graph for the eight region relations. 
We further intend to pursue the modeling of and inferences from binary topological 
relations between two regions, each with a hole. Finally, an interesting question for a 
larger theory of consistent qualitative reasoning across space and time is whether 
there are analog results to relations over regions with holes in the temporal domain, 
namely for intervals with gaps. 
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