
AN AGENDA-BASED DIALOG MANAGEMENT
ARCHITECTURE FOR SPOKEN LANGUAGE SYSTEMS

A. Rudnicky, Xu W.

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT

Dialog management can be seen as a solution to two specific
problems: (1) providing a coherent overall structure to
interaction that extends beyond the single turn, (2) correctly
manage mixed-initiative interaction, allowing users to guide
interaction as per their (not necessarily explicitly shared) goals
while allowing the system to guide interaction towards
successful completion. We propose a dialog management
architecture based on the following elements: handlers that
manage interaction focussed on tightly coupled sets of
information, a product that reflects mutually agreed-upon
information and an agenda that orders the topics relevant to task
completion.

1. INTRODUCTION

Spoken language interaction can take many forms. Even fairly
simple interaction can be very useful, for example in auto-
attendant systems. For many other applications, however, more
complex interactions seem necessary, either because users
cannot always be expected to exactly specify what they want in
a single utterance (e.g., schedule information) or because the
task at hand requires some degree of exploration of complex
alternatives (e.g., travel planning). Additionally, unpredictable
complexity is introduced through error or misunderstanding. We
are interested in managing interaction in the context of a goal-
oriented task that extends over multiple turns.

Dialog management in the context of purposeful tasks must
solve two problems: (1) Keep track of the overall interaction
with a view to ensuring steady progress towards task
completion. That is the system must have some idea of how
much of the task has been completed and more importantly
some idea of what is yet to be done, so that it can participate in
the setting of intermediate goals and generally shepherd the
interaction towards a successful completion of the task at hand.
(2) Robustly handle deviations from the nominal progression
towards problem solution. Deviations are varied: the user may
ask for something that is not satisfiable (i. e., proposes a set of
mutually-incompatible constraints), the user may misspeak (or,
more likely, the system may misunderstand) a request and
perhaps cause an unintended (and maybe unnoticed) deviation
from the task. The user might also underspecify a request while
the system requires that a single solution be chosen. Finally the
user’s conception of the task might deviate from the system’s
(and its developers) conception, requiring the system to alter the
order in which it expects to perform the task. Ideally, a robust
dialog management architecture can accommodate all of these
circumstances within a single framework.

We have been exploring dialog management issues in the
context of the CMU Communicator [3]. The Communicator
handles a complex travel task, consisting of air travel, hotels
and car reservations.

2. MODELING DIALOG

Existing approaches to dialog management are difficult to adapt
to the current problem because they either impose a rigid
structure on the interaction or because they are not capable of
managing data structures beyond a certain level of complexity.
Call-flow based systems (more generally, graph-based systems)
handle the complexity of dialog management by explicitly
enumerating all possible dialog states, as well as allowable
transitions between states. This serves the purpose of
partitioning the problem into a finite set of states, with which
can be associated topic-specific elements (such as language and
interactions with other system components such as a database
interaction). Movement between states is predicated on the
occurrence of specific events, either the user’s spoken inputs or
through (e.g.) a change in back-end state. It is the nature of
these systems that the graphs are typically trees (where
individual nodes correspond to the specification of certain
information or the setting of constraints). Except for the
simplest tasks, graph systems have a number of limitations.
Unless the graph is carefully designed, users will find
themselves unable to switch to a topic that is coded in a
different sub-tree, without going through the common parent of
the two. Often the only way to get there is through the root node
of the dialog. Similarly it is not always possible to navigate an
existing tree, in order, e.g., to correct information supplied in an
earlier node.

Frame-based systems provide an alternate, more flexible
approach. Here the problem is cast as form filling: a particular
system action is tied to a form that specifies all relevant items of
information for an action. Dialog management consists of
monitoring the form for completion, setting elements as these
are specified by the user and using the presence of empty slots
as a trigger for questions to the user. Form-filling does away
with the need to specify a particular order in which slots need to
be filled and loosens the requirement for the system designed to
correctly intuit the natural order in which information is
supplied. This in any case is impossible for many tasks, as
different users may have different, incompatible, problem-
solving styles. While ideally suited for tasks that can be
expressed in terms of filling a single form, form-filling can be
combined with graph representations (typically ergodic) to
support a set of (possibly) related activities, each of which can
be cast into a form-filling format.

Both graph and frame systems share the property that the task
usually has a fixed goal which can be achieved by having the
user specify information (fill slots) on successive turns. Using a
filled out form the system can perform some action, such as
information retrieval. While this capability encompasses a large
number of useful applications it does not necessarily extend to
more complex tasks, for example ones where the goal is to
create a complex data object, such as a plan (e.g. [1]).

In our own work we have been building a system that allows
users to construct travel itineraries. This domain poses several
problems: there is no “form” as such to fill out, since we do not
know beforehand the exact type of trip an individual might take
(though the building blocks of an itinerary are indeed fixed).
The system benefits from being able to construct the itinerary
dynamically; we denote these solution objects “products”. Users
also expect to be able to manipulate and inspect the itinerary
under construction. By contrast, frame systems do not afford the
user the ability to manipulate the form, past supplying fillers for
slots. The exception is the selection of an item from a solution
set. We do not abandon the concept of a form altogether: an
itinerary is actually a hierarchical composition of forms, where
the forms in this case correspond to tightly-bound slots (e.g.,
those corresponding to the constraints on a particular flight leg)
and which can be treated as part of the same topic of
conversation.

3. TASK STRUCTURE AND SCRIPTS

Intuitively (as well as evident from our empirical studies of
human travel agents and clients) travel planning develops over
time as a succession of episodes, each focused on a specific
topic (such as a given flight leg, a hotel in a particular city, etc.).
Users treat the task as a succession of topics, each of which
ought to be discussed in full and closed, before moving on to the
next topic. Topics can certainly be revisited, but doing so
corresponds to an explicit conversational move on the part of the
participants.

Consequently we implemented a dialog management strategy
that takes advantage of this task structure ([3]). By analogy to
what we observed in the human-human data we refer to it as a
script-based dialog manager. Script in this context simply refers
to an explicit sequencing of task-related topics, Each topic is
expressed as a form-filling task, with conventional free-order
input allowed for form slots and a slot-state driven mixed-
initiative interaction (i.e., ask the user about any empty slot).
The topic-specific form is actually composed of two parts:
constraint slots (typically corresponding to elements of a query)
and a solution slot (containing the result of an executed query).

The control strategy is also actually more complex: slots are pre-
ordered based on their (domain-derived) ability to constrain the
solution; this ordering provides a default sequence in which the
system selects elements to ask the user about. Control is
predicated on the state of a slot (whether constraint or solution).
The state can either be "empty", in which case the system
should ask the user for a value, filled with a single value, in
which case it is "complete", or filled with multiple values. The
last case is cause to engage the user in a clarification sub-dialog

whose goal is to reduce multiple values to a single value, either
by selecting an item in the solution set or by restating a
constraint. Figure 1 shows the structure of the Flight Leg topic
in the script-based system.

4. AN AGENDA-BASED ARCHITECTURE

While capable of handling routine travel arrangements
efficiently, the script-based approach has a number of perceived
limitations: the script is very closely identified with the product
data structure. Specifically, we used a fixed product structure
that served as a form to fill out. While the entire form does not
need to be filled out to create a valid itinerary, it nevertheless
set limits on what the user can construct. Instead we wanted a
form structure that could be dynamically constructed over the
course of a session, with contributions from both the user and
the system. The script-based approach also seemed to make
navigation over the product difficult. While we implemented a
simple undo and correction mechanism that allowed the user to
revisit preceding product elements, users had difficulty using it
correctly. While some of the difficulty could be traced to
inadequate orientation support, the source was more likely the
inability of the system to treat the product structure independent
of the script.

We sought to address these problems by introducing two new
data structures: an agenda to replace a fixed script and a
dynamic product that could evolve over the course of a session.
In the agenda-based system, the product is represented as a tree,
which reflects the natural hierarchy, and order, of the
information needed to complete the task. A dynamic product is
simply one that can be modified over the course of a session, for
example by adding legs to a trip as these are requested by the
user rather than working from a fixed form. Operationally, this
means providing a set of operators over tree structures and
making these available to the user and to the system. In our
case, we defined a library of sub-trees (say air travel legs or
local arrangements) and a way to attach these to the product
structure, triggered either by the setting of particular values in

Value

Value

Value

Schema

Schema

Schema

Destination
airport

Date

TimeFlight
Leg

Value

transform

Available flights

Database lookup

Figure 1 Task-based dialog control in a script-based
system, as determined by the structure of a compound
schema, with contributions from three simple schema.

the existing tree or through
explicit requests on the part
of the user (“and then I’d like
to fly to Chicago”).

Each node in the product tree
corresponds to a handler,
which encapsulates
computation relevant to a
single information item. All
handlers have the same form:
they specify a set of receptors
corresponding to input nets, a
transform to be applied to
obtain a value and a
specification of what the
system might say to the user
in relation to the information
governed by the handler.
Handlers correspond to the
schema and compound
schema of the script-based
system (see Figure 1).

The agenda is an ordered list
of topics, represented by
handlers that govern some
single item or some collection
of information, The agenda
specifies the overall "plan"
for carrying out a task. The
system’s priorities for action
are captured by the agenda,
an ordered list of handlers
generated through traversal of
the product structure. The handler on the top of the agenda has
the highest priority and represents the focused topic. A handler
can capture relevant input from the user and can generate
prompts to the user. A single handler deals only with a mini
dialog centering on a particular piece of information (e.g.
departure date). The agenda is a generalization of a stack. It
indicates both the current focus of interaction (i.e., the top-most
handler) as well as all undealt-with business, and captures the
order in which such business should be dealt with. (The
system’s high-level goal is to ensure that all values in the
current product tree have valid settings.) As all items in the
agenda are potentially activatable through what the user speaks,
the user has corresponding control over the topic in focus. The
agenda also contains generic handlers that sort to the bottom of
the agenda. These can be used to consume any inputs that are
not caught by product-derived handlers (for example, requests
for help).

The order of the agenda is generated from the left-to-right,
depth-first traversal of the product tree. When a user input
comes in, the system calls each handler per their order in the
agenda and each handler will try to interpret the user input.
When a handler captures a single piece of information, the
information is marked as consumed. This guarantees that a
single information item can be consumed by only one handler.

After an input pass, if the user's input does not directly cause a
particular handler to generate a question, then the system will
go through an output pass during which each handler will have a
chance to generate a prompt about itself (e.g. the handler for
departure date can ask user for departure date).

The framework can determine the next step from the return code
of a handler, it can choose to continue the current pass, exit
input pass and switch to output pass, exit current pass and wait
for input from user, etc. During a pass, a handler can also
declare itself as the focus through its return code. In this case, it
will be promoted to the top of the agenda. In order to preserve
the context of a specific topic, we use a method called sub-tree
promotion. In this method, a handler is first promoted to the
left-most node among its sibling. Then its parent node is also
promoted this way. Figure 2 gives an example of sub-tree
promotion.

The system also handles the dependencies among the nodes of
the product tree. A typical dependent relationship is between a
parent node and a child node. Usually, the value of a parent
node is dependent on its children. Each node maintains a list of
its dependent nodes and it will notify its dependents about any
changes of its value. The dependent node can then declare itself
invalid and therefore a candidate topic for conversation.

The following dialog, generated using the system, shows a
number of features: the ability to absorb an implicit change of
topic on the part of the user (A1—A3), adding to an existing
itinerary (A8—A10) and handling an explicit topic shift (U11).

A1: Hello. You've reached the C M U Communicator.
Tell me your full name

U2: hi i'd like to fly to seattle tuesday morning
A3: Traveling to Seattle on Tuesday, August eleventh in

the morning. Your full name?
U4: wei xu
A5: Hello, Wei, I’m glad to hear from you again. You can

now ask me for help.
A6: OK. Let’s see I have a United flight departing

Pittsburgh at ten forty five a.m. arriving into Seattle
at one fifty seven p.m. Is that OK?

U7: Yes
A8: Will you return to Pittsburgh from Seattle?
U9: no i will go to Los Angeles
A10: Traveling to Los Angeles. on what date
U11: Sorry can we go back to talk about the previous leg

again
A12: For the first leg, you are on a United flight 1446

departing Pittsburgh at ten forty five A.M. tomorrow,
arriving in Seattle at one fifty seven P.M. Do you
want to take that?

U13: actually i want to leave on wednesday
A14: a flight on wednesday.
A15: I have a flight departing Pittsburgh at ten forty five

a.m., arrives Seattle at one fifty seven p.m. Is that
OK?

U16: Yes

a

dc

b e

gf

ih

a

dc

b e

g f

ih

a

fg

e b

dc

ih

Figure 2 Rotating sub-
trees to bring a topic into
focus. Node i is the new
focus.

5. SYSTEM IMPLEMENTATION

The Carnegie Mellon Communicator is telephone-based and is
implemented as a modular distributed system, running across
NT and Linux platforms. Communication between modules is
handled through the DARPA Communicator architecture, based
on the MIT Galaxy architecture. Currently the task is captured
in an approximately 2500-word language based on corpora
derived from human-human, wizard of oz and human-computer
interaction in this domain. Domain information is obtained from
various sources on the Web; the system is typically configured
for about 250 destinations worldwide, with a concentration on
North America. The system otherwise understands over 500
destinations worldwide.

A publicly accessible demonstration has been available since the
summer of 1998, at 1-877-CMU-PLAN. Current information is
available at http://www.speech.cs.cmu.edu/Communicator.

The system uses the Sphinx II ([2]) decoder in a real-time mode
and supports barge-in. A top-1 hypothesis is produced by the
decoder and parsed by Phoenix ([4]) using a semantic domain-
specific grammar. The resulting parse is evaluated for coherence
then passed to the dialog manager. The parse is treated as a set
of concepts, or nets, and individual handlers in the agenda
respond to these. Currently, either individual nets or net-subnet
combinations are matched for. Once matched, the contents of
the net are either consumed directly (i.e., to set a target value)
or transformed through a call to a domain agent. Currently the
system has three major domain agents, a travel backend, a date-
time module and a user profile module. The transform result is
stored as the target value or another action taken, as described
previously.

Also associated with each handler are a set of calls to the
language generation module (effective a domain agent). Calls
correspond to fixed conditions within the handler and specify an
output speech act plus the relevant set of concepts. We use a
stochastic language generator trained on instances of actual
human utterances (those of a travel agent in our case) as well as
a history mechanism to generate output. A marked-up string is
then passed to a TTS module. We are currently experimenting
with a variety of TTS engines.

6. SUMMARY & CONCLUSIONS

The agenda-based approach addresses the problem dialog
management in complex problem-solving tasks. It does so by
treating the task at hand as one of cooperatively constructing a
complex data structure, a product, and uses this structure to
guide the task. The product consists of a tree of handlers, each
handler encapsulates processing relevant to a particular schema.
Handlers correspond to simple or compound schema, the latter
acting essentially as multi-slot forms. A handler encapsulates
knowledge necessary for interacting about a specific information
slot, including specification of user and system language and of
interactions with domain agents. Handlers that deal with
compound schema coordinate tightly bound schema and
correspond to specific identifiable topics of conversation. We

define tightly bound as those schema that users expect to discuss
interchangeably, without explicit shifts in conversational focus.

We believe that individual handlers can be authored
independently of others at the same level of hierarchy, in turn
we believe this will simplify the problem of developing dialog
systems by managing the complexity of the process.

The agenda contains all topics relevant to the current task. The
order of handlers on the agenda determines how user input will
be will be attached to product nodes. Both the system and the
user however have the ability to reorder items on the agenda,
the system to foreground items that need to be discussed, the
user to reflect their current priorities within the task.

The mechanisms described in this paper do not cover all
necessary aspects of dialog management but do provide an
overall control architecture. For example, clarification
processes, which involve possibly extended interaction with
respect to the state of a value slot, fit into the confines of a
single handler. We believe that the agenda mechanism can be
adapted easily to less-complex domains that might currently be
implemented as a standard form-based system (for example a
movie schedule service). We do not know as yet how well the
technique will succeed for domains of complexity comparable to
travel planning but with different task structure.

7. ACKNOWLEDGEMENTS

This research was sponsored by the Space and Naval Warfare
Systems Center, San Diego, under Grant No. N66001-99-1-
8905. The content of the information in this publication does not
necessarily reflect the position or the policy of the US
Government, and no official endorsement should be inferred.

We would like to thank the other members of the DARPA
Communicator project in the Carnegie Mellon Speech group
without whose contributions this work would not have been
possible: Eric Thayer, Ravi Mosur, Kevin Lenzo, Paul
Constantinides, Rande Shern, Alice Oh, Rita Singh and others.

8. REFERENCES
[1] James F. Allen, Lenhart K. Schubert, George Ferguson,

Peter Heeman, Chung Hee Hwang, Tsuneaki Kato, Marc
Light, Nathaniel G. Martin, Bradford W. Miller, Massimo
Poesio, and David R. Traum, ‘‘The TRAINS Project: A
case study in building a conversational planning agent,’’
Journal of Experimental and Theoretical AI, 7(1995), 7-48.

[2] Bansal, D. and Ravishankar, M. New features for
confidence annotation. In Proceedings of the 5th
International Conference on Spoken Language Processing
(ICSLP), December 1998, Sydney, Australia

[3] Rudnicky, A., Thayer, E., Constantinides, P., Tchou, C.,
Shern, R., Lenzo, K., Xu W., Oh, A. Creating natural
dialogs in the Carnegie Mellon Communicator system.
Proceedings of Eurospeech, 1999, Paper r014.

[4] Ward, W. and Issar, S. Recent improvements in the CMU
spoken language understanding system. In Proceedings of
the ARPA Human Language Technology Workshop, March
1994, 213-216.

