

D R A F T

AT&T Speech Mashups

Application Developer’s Guide

ii Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Copyright © 2009-2010 AT&T. All rights reserved.

AT&T Speech Mashups, Application Developer’s Guide, v. 1010

Printed in USA.

October 2010

All rights reserved.

AT&T, WATSON, AT&T logo, and all other marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T

affiliated companies.

Apple and Mac are trademarks of Apple Computer, Inc. registered in the U.S. and other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States.

All other trademarks are the property of their respective owners.

No part of this document may be reproduced or transmitted without written permission from AT&T.

Every effort was made to ensure that the information in this document was complete and accurate at the time

of printing. However, information is subject to change.

Application Developer’s Guide iii
AT&T Proprietary (Restricted)

D R A F T

1 About this guide

This guide describes how to incorporate AT&T speech technologies with a web-based
application to create a speech mashup. It is written for developers and assumes a
knowledge of web applications and the standards used for web applications, including
HTTP, XML, JSON, and EMMA.

Information in this guide is divided into the following chapters:

Chapter 3, ―Overview,‖ is a high-level description of the speech mashup architecture
with information about connecting to AT&T speech servers, including the WATSON
speech recognizer and the Natural Voices TTS (text-to-speech) server. This chapter also
includes instructions for registering at the portal, which is manages account and
connection information and is where you upload and manage grammars needed for
applications requiring automatic speech recognition (ASR).

Chapter 4, ―Creating a Rule-Based Grammar,‖ describes the syntax and notations used
to create the two rule-based grammars supported by WATSON ASR: XML and WNBF.
It also describes how to parse the semantic interpretation so that a specific string is
returned, based on the recognized result.

Chapter 5, ―Setting up a Statistical Language Model,‖ outlines the steps for building a
statistical language model to recognize the vocabularies too unpredictable to be
effectively captured by a rule-based grammar.

Chapter 6, ―Uploading, Managing, and Testing Grammars,‖ describes how to upload
grammars for use with the WATSON recognizer and then test how well the speech
recognition performs with a specific grammar. General guidelines are also provided for
increasing the recognition accuracy.

Chapter 7, ―Modifying Output Speech for Natural Voices,‖ describes how to modify the
output speech using SSML tags or to change word pronunciations using phonemic
transcriptions.

Chapter 0, ―The MIME Multipart/Mixed format for audio/metadata interleaving is
documented in the AT&T Internal Addendum to this document.

Building a Speech Mashup Client,‖ gives instructions on how to build (and modify
existing) clients for Java ME and the iPhone as well as a plugin for a Safari browser on a

Mac®. It includes information needed to write or modify clients so they can access the
WATSON server or the Natural Voices server, or both.

Chapter 9, ―Administration & Troubleshooting,‖ describes how to view log files, change
portal account information, and address problems that may occur.

About this Guide

iv Speech Mashup
AT&T Proprietary (Restricted)

1.1 Getting more help

Development of speech mashups is ongoing. To keep current with updates or request
more information, send emails to watsonadm@research.att.com.

1.2 Change History

June 2011:

 Added a chapter covering the transcription and utterance export facility.

October 2010:

 Added a chapter describing the WatsonApplet and AudioPlayer applets, for
creating speech-enabled web applications for Java-enabled web browsers.

 Added a chapter describing the container formats used to deliver bookmarked
audio streams.

February 2009:

 The speech mashup manager now manages connections to AT&T‘s text-to-
speech server, Natural Voices, allowing users to convert text to streaming audio.
Parameters allow the client to specify a particular voice, sample rate, and other
information relevant for speech.

SSML tags, which allow you to modify the text normalization, pronunciation, and
prosody in the output speech are documented in Chapter 5.

 Support has been added for connecting to outside servers in order for an
additional processing step to be applied before or after the speech-related task.
For example, postprocessing would enable a phone number or other database
item to be returned with the recognition, such as for a directory assistance
request. For TTS, preprocessing might include applying application-specific text
normalization before the text is converted to speech.

 When creating transcriptions, you can insert annotations into the transcript,
(including background speech or non-speech events such as hangups and tones)
by clicking a button.

 Limits have been applied to the amount of space allocated for all grammars
associated with a single UUID. The amount of space taken up by current
grammars is displayed on the Update account information page.

August 2008: Initial version

mailto:watsonadm@research.att.com

Application Developer’s Guide v
AT&T Proprietary (Restricted)

D R A F T

2 Contents

1 About this guide .. iii
1.1 Getting more help .. iv
1.2 Change History .. iv

2 Contents ... v

3 Overview ... 1
3.1 Speech mashup architecture .. 1
3.2 What is WATSON ASR? .. 2
3.2.1 Grammars for recognition .. 3
3.3 What is Natural Voices? ... 4
3.4 The speech mashup portal ... 5
3.5 What you need to do ... 7
3.5.1 What you need to know ... 7

4 Creating a Rule-Based Grammar ... 9
4.1 Guidelines and best practices for creating a grammar .. 9
4.1.1 Pronunciation tags .. 10
4.1.2 Numbers and digits ... 11
4.2 Semantic tags ... 12
4.3 Define statements for controlling the compilation ... 12
4.4 Creating an XML grammar .. 13
4.4.1 Adding pronunciation tags to an XML grammar .. 15
4.4.2 Adding semantic tags to an XML grammar ... 15
4.4.3 Using word weighting .. 16
4.4.4 A sample XML grammar.. 16
4.5 Creating a WBNF grammar ... 18
4.5.1 Rules.. 18
4.5.2 Adding pronunciation tags to a WBNF grammar ... 20
4.5.3 Adding semantic tags to a WBNF grammar ... 20
4.5.4 A sample WBNF grammar... 21

5 Setting up a Statistical Language Model ... 23

6 Uploading, Managing, and Testing Grammars .. 25
6.1 Creating application directories for grammars .. 25
6.2 Uploading grammars .. 27
6.2.1 Uploading grammars interactively .. 28
6.3 Sharing and managing grammars .. 28
6.3.1 Editing prebuilt or shared grammars .. 29
6.4 Determining accuracy ... 30
6.4.1 Sending audio files for testing.. 30
6.4.2 Creating transcriptions .. 33
6.4.3 Comparing transcriptions to utterances .. 33
6.4.4 Exporting transcriptions and utterances ... 34
6.5 Checklist for improving accuracy .. 36
6.6 Setting recognizer preferences with a commands file ... 37
6.6.1 Preferences for automatic endpointing ... 38

Contents

vi Speech Mashup
AT&T Proprietary (Restricted)

7 Modifying Output Speech for Natural Voices .. 41
7.1 Using SSML tags .. 42
7.1.1 SSML syntax .. 42
7.2 Changing word pronunciations .. 44
7.3 Testing the TTS conversion.. 46
7.4 TTS With Bookmarks / Notifications... 47
7.4.1 Introduction .. 47
7.4.2 Simple Format .. 48
7.4.3 Ogg Format .. 49
7.4.4 MIME Multipart/Mixed Format.. 50

8 Building a Speech Mashup Client .. 51
8.1 REST API information ... 51
8.1.1 Setting recognizer parameters ... 53
8.1.2 Request API parameters for TTS ... 54
8.2 Sample clients for devices ... 55
8.2.1 Client for Java ME .. 55
8.2.2 Native client for the iPhone.. 60
8.2.3 Safari plugin for Mac ... 62
8.3 Applets for Java-enabled browsers .. 64
8.3.1 Introduction .. 64
8.3.2 Speech Recognition (ASR).. 64
8.3.3 Text-to-Speech (TTS) ... 66
8.3.4 Loading Applets in Detail... 69
8.3.5 Client Requirements ... 71
8.4 Configuring the client for the recognition result .. 72
8.4.1 Setting a threshold .. 73
8.5 Combining speech processing with other processing .. 74
8.5.1 Processing transaction steps ... 75

9 Administration & Troubleshooting .. 77
9.1 Viewing log files.. 77
9.2 Updating passwords and other account information... 77
9.3 Troubleshooting ... 77

10 Glossary .. 79

11 Index ... 81

Application Developer’s Guide 1
AT&T Proprietary (Restricted)

D R A F T

3 Overview

An AT&T® speech mashup is a web service that implements speech technologies, including both
automatic speech recognition (ASR) and text to speech (TTS) for web applications. This enables users
of an application to use voice commands to make requests (ASR) or to convert text to audio
(TTS). Speech mashups work by relaying audio or text from a web application (any application
that understands HTTP) on a mobile device or a web browser to servers at the AT&T network
where the appropriate conversion takes place. The result of the process is returned to the web
application.

Speech mashups can be created for almost any mobile device, including the iPhone, as well

as web browsers running on a PC or Mac®, or any network-enabled device with audio input.

3.1 Speech mashup architecture

Figure 3.1 In a speech mashup, clients access AT&T speech services through the speech mashup manager

A speech mashup application consists of three main components that enable clients on a
browser or mobile device to connect to AT&T speech servers:

 AT&T speech servers, including WATSON servers configured for ASR, and Natural
Voices servers, which converts text to speech and returns streaming audio back to
the web application.

1

Chapter 3

2 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

 A speech mashup client that relays audio (using HTTP) to the WATSON servers
and accepts the recognition result. Examples of clients are available for Java ME
devices, the iPhone, and the Safari browser on the Mac OS X.

 The speech mashup manager (SMM), which opens and manages direct connections
to the appropriate AT&T speech servers on behalf of the client, including resolving
device dependency issues, and performing authentication and general accounting.

The following diagram details the client elements:

Figure 3.2 Speech mashup clients (available for Java ME, the iPhone, and the Safari Mac browser) interface
between the web application and WATSON ASR.

3.2 What is WATSON ASR?

WATSON ASR is the automatic speech recognition component of the WATSON system
responsible for converting spoken language to text. This process in WATSON ASR is
broken into three main steps: identifying speech features in the incoming audio, mapping
those features to basic language sounds (contained in an acoustic model), and matching
sounds to phrases and sentences contained in the grammar. The particulars of how this is
done is not important to know when creating speech mashups.

Overview

Application Developer’s Guide 3
AT&T Proprietary (Restricted)

D R A F T

Figure 3.3 ASR converts speech to text based on words, phrases, and sentences in the grammar.

Speech mashups are intended to be easy to develop, so whenever possible individual
components and default parameters are provided. WATSON ASR includes a general dictionary
and acoustic model so the only ASR component you need to provide is the grammar.

3.2.1 Grammars for recognition

A grammar contains the words, phrases, and sentences that the recognizer will try to
recognize. A grammar must be customized for each application to include all possible word
sequences that could be uttered within the context of the application.

There are two general types of grammars: rule-based and statistical. Both types are compiled
from a text source.

 In a rule-based grammar, you explicitly define the sentences (and order of words) that can
be understood by the recognizer. Words not included in the grammar cannot be recognized.

WATSON ASR supports two grammar formats: the XML standard (W3C) and its own
BNF (WBNF). See chapter 2 for specific information on the syntaxes used to create XML
and WBNF grammars.

 A statistical language model (SLM) does not use explicit rules, but instead uses the
statistical properties of thousands of transcribed utterances to help infer the language.

Constructing an SLM requires a very large set (several tens of thousands) of sentences
representative of what a speaker might say in a given context. The data set itself does not
need to explicitly contain every sentence that should be recognized because the SLM will
model combinations of snippets from each training sentence. In fact the SLM will have
probability estimates for all word combinations of all words from the training text, so good
vocabulary coverage in the training text is very important.

The procedure for creating an SLM is outlined in chapter 3.

Chapter 3

4 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

3.3 What is Natural Voices?

Natural Voices converts text to speech. It has built-in rules for normalizing text (such as
converting common abbreviations to words and correctly pronouncing numbers) and
assigning prosody to make the generated speech sound as natural as possible.

Figure 3.4 Natural Voices TTS Architecture

In addition, Natural Voices will properly interpret Synthesized Speech Markup Language (SSML) tags
embedded in the text to more closely control normalization, pronunciation, and prosody.

Overview

Application Developer’s Guide 5
AT&T Proprietary (Restricted)

D R A F T

3.4 The speech mashup portal

The portal is the main interface between developers and the speech mashup, managing
accounting and login information, and providing a repository for speech mashup-related
files that both the developer and the speech servers (ASR and TTS) can access.

Figure 3.5 and information related to speech mashups are accessible through the speech mashup portal

The portal is where you do the following:

 Obtain the unique user ID (UUID) to be associated with your account. The UUID is
needed for logging into the portal and enables the client to access AT&T speech
services.

 Create application directories for organizing all files and grammars associated with
ASR applications.

 Upload and manage the grammars needed for ASR applications. You store your
personal grammars at the portal and also access prebuilt and shared grammars.
Grammars are automatically compiled when uploaded.

 View current and past activity (log files).

 Make transcriptions of audio files (useful for evaluating the accuracy of the speech
recognition).

 Read and post messages to the Speech Mashup users‘ board.

Chapter 3

6 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Figure 3.6 Home page of speech mashup portal

You register once to receive a unique UUID (universally unique identifier), which allows
you to log into the portal and to write clients that can access the AT&T speech servers.

The UUID is used by the speech mashup to uniquely identify and retrieve your grammars, log files,
and transcriptions. Multiple applications can be associated with a single UUID.

Overview

Application Developer’s Guide 7
AT&T Proprietary (Restricted)

D R A F T

3.5 What you need to do

As much as possible, AT&T provides default components and parameter settings to make
speech mashup development easy. Building a speech mashup consists of the following steps:

3.5.1 What you need to know

The following table summarizes the major specifications and requirements for speech mashups.

Table 3.1 Speech mashup specifications

Speech
mashup portal

http://service.research.att.com/smm/

Device support Java ME devices, iPhone, Safari browser (Mac
®
)

Audio format
(speech

mashup portal),

AMR (Adaptive multi-rate coding)

AU (µ-law, 16-bit linear)

WAV (µ-law, linear)

CAF (µ-law, linear)

Raw audio (µ-law and 16-bit linear) is also supported, but requires you to provide the
sample rate if other than 8000 Hz. (See page 52.)

Output format ASR: XML (default), JSON, EMMA (recommended)

TTS: AMR, AU (µ-law, A-law,16-bit linear)

Supported
languages

ASR: US English (en-us, the default) and the US dialect of Spanish (es-us).
TTS: US English

Grammar types XML (SRGS), WBNF (WATSON BNF), and SLMs (statistical language models)

User ID (UUID) Allows access to portal and enables the speech mashup client to access WATSON
servers. Obtained by registering at the portal.

1 Register for a portal account.

http://service.research.att.com/smm/

You’ll receive back an UUID for logging onto the portal and enabling the client to

access AT&T servers.

2 Create an application directory for each application or select an existing one.

The application directories will contain the grammars, log files, and all other entities
associated with a specific application.

4 Build a speech mashup client from existing examples.

The client can be written in any suitable programming language (Java, JavaScript,
or any other language) depending on the device. Three sample clients can be
downloaded: a Java-based client for any Java ME mobile, iPhone native application
client, and a Safari Mac OS X plugin.

3 Create and upload one or more grammars or use a builtin or shared grammar.

ASR applications only. Create your own rule-based grammar (XML or WBNF) or SLM
and upload it or select a grammar provided on the portal or shared by another user.
Uploading a grammar (or a zipped file of multiple grammars) to the portal
automatically compiles it.

Chapter 3

8 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Application Developer’s Guide 9
AT&T Proprietary (Restricted)

D R A F T

4 Creating a Rule-Based Grammar

This chapter summarizes how to build rule-based grammars. Although two formats are
described here—the standard XML and the WATSON version of BNF—it is
recommended that all new grammars be created in XML; WBNF is provided for backward
compatibility.

To create a rule-based grammar:

1. In a text editor, create the rules. See ―Creating an XML grammar‖ or ―Creating a
WBNF grammar‖ as appropriate.

2. Save the file using the extension .grxml for an XML grammar or .wbnf for a WBNF
grammar.

A set of prebuilt grammars is available from the portal to be used both as standalone
grammars and for assembling with other grammars. For a listing, see page 29. Use prebuilt
grammars with caution and always thoroughly test as you would with grammars you create.

WBNF grammars can be assembled from other grammars by inserting #include
statements at the top of the grammar source. Assembling larger grammars from smaller
ones allows you to take advantage of existing grammars and not have to rewrite rules.

#include statements use the following syntax:

#include "FILENAME.wbnf"

Note that there is a limit to the size of grammars; exceeding the limit generates an error
message. If your combined source and compiled grammars exceed the limit, contact AT&T
Research at watsonadm@research.att.com.

4.1 Guidelines and best practices for creating a grammar

Effective recognition depends on careful design of the rules. Follow these guidelines:

> Define all possible utterances, but define them as narrowly as possible.

No word, phrase, or sentence will be recognized unless it is included in the grammar.
Out-of-grammar words may be matched to the closest in-grammar word (for
example, New York for Newark if Newark isn‘t in the grammar) or may not be
matched at all, resulting in a recognition error.

Chapter

Chapter 4

10 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

> Account for multiple ways of saying the same information.

Some information, such as long numbers, dates, or years, may be described in
various ways depending on context; 111 could be ―one hundred eleven‖ (a quantity)
or ―one eleven‖ for an address; ―1234‖ could be recited as ―twelve hundred thirty
four‖ or ―one thousand, two hundred eighty-four.‖ The grammar must take into
account various ways of saying the same information.

> Avoid making broad grammars that can identify any utterance.

Write the rules to exclude unlikely utterances. The longer the grammar or the more
utterances it can recognize, the more inefficient it becomes. You don‘t want to
waste time searching for sentences that would never be uttered. This includes
ungrammatical constructions or extremely unlikely word combinations or values that
don‘t fall within a reasonable range.

If a grammar becomes too large, consider changing the prompt to make it more directed.

> Avoid prompts that encourage very short words or similar sounding words.

Short, one-word responses provide little context that the recognizer can exploit. For
short word responses, use the name pron tag (see next section) to increase recognition.

If the grammar contains similar sounding words (reservation and reconfirmation for
example), rewrite the prompt to guide the speaker to use distinct words.

> Use pronunciation tags when appropriate.

The acoustic model contains special phone sets for whole-word pronunciations for the
following cases: names, alpha, digits, confirm, quantities (whole numbers). See the next
section for more information about pronunciation tags.

> Substitute full words for abbreviations. For example, use street and doctor
rather than St. and Dr.

4.1.1 Pronunciation tags

Words pronounced in isolation, such as digits and one- or two-word answers (such as names
and confirmations) pose a difficult recognition problem because they provide little context for
the recognizer to exploit. For such cases, five specialized phone sets are contained in the
acoustic model provided with WATSON ASR.

 digits, for the numbers 0-9 when used in isolation or when spoken as part
of a telephone, account, and other number

 alpha, for acronyms or when spelling out names or other words

 name, for proper names and other short utterances such as states and cities

 quant (quantity), for natural numbers (10 and above) or utterances referring
to quantities

 confirm (confirmation), for yes, no, maybe, and other similar utterances

To make use of these specialized pronunciations, you insert pronunciation tags (pron tags)
in the grammar rules. How these tags are represented in the grammar is described in the
sections describing the XML and WBNF grammars.

Creating a Rule-Based Grammar

Application Developer’s Guide 11
AT&T Proprietary (Restricted)

D R A F T

4.1.2 Numbers and digits

The way in which you represent numbers within a grammar depends on the number itself
and the context.

As a general rule, use digits for numbers smaller than 10. Using digits automatically causes
the compiler to use the digits phone set within the acoustic model (this is the same as
specifying the digit pronunciation tag).

Use words for numbers larger than 10 and specify that the quantity pron tag be used.

When you have account, telephone, or other numbers that combine digits and larger
numbers, use both digits and words as appropriate. For example, for a 1-800 number, use
digits for 1 and 8, and then use the quantity pronunciation tag for ―hundred‖ as shown here:

 <phone-number> = 1 8 _{ pron-quant hundred }_

The following are guidelines for representing numbers and digits in a grammar.

 Use digits, rather than words, for numbers up to and including 10, such as those making
up an account, telephone, or other number.

 For natural numbers, use the word forms of the number (eleven, twelve . . .; twenty-one,
twenty-two, twenty-three . . . etc.)

 Spell out ordinal numbers such as first and third.

 For account, phone, and other numbers with a known, fixed number of digits, write the
grammar to allow only that number of digits.

Rather than simply allowing multiple digits (<item repeat=1-10>), specify the exact
number of digits as shown here:

 <rule id="digit">

 <one-of>

 <item>1</item>

 <item>2</item>

 <item>3</item>

 <item>4</item>

 <item>5</item>

 <item>6</item>

 <item>7</item>

 <item>8</item>

 <item>9</item>

 <item>0</item>

 </one-of>

 </rule>

 <rule id="digits">

 <item repeat="10">

 <ruleref id="digit">

 </item>

 </rule>

Chapter 4

12 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

4.2 Semantic tags

In an actual application, the recognized utterance is often not used directly. Instead the end
application expects a predefined string that determines the next transaction to perform. For
example, a fast-food customer might order a drink using any combination of phrases (―I want
a coke,‖ ―coke, please,‖ ―give me a coke‖), but all the end application needs to know is ―coke.‖

Translating between the uttered phrase and the string expected by the application is done
through the use of semantic tags in the grammar. In the previous example, a semantic tag could
convert specified phrases to the string expected by the end application (in this case, ―coke‖).

Semantic tags are implemented in XML using the W3C standard SISR (Semantic
Interpretation for Speech Recognition), which uses a script language to return semantic
results. See http://www.w3.org/TR/semantic-interpretation/.

The way in which the semantic tags are entered into the grammar depends on the grammar
type. See ―Adding semantic tags to an XML grammar‖ (see page 15) or ―Adding semantic
tags to a WBNF grammar‖ (page 20) as appropriate.

4.3 Define statements for controlling the compilation

Define statements, which can be included in the grammar, offer some control over the way
in which grammars are compiled; you can, for instance, substitute a different acoustic
model or specify the use of pronunciation tags.

In XML, define statements are specified using the WATSON extension to SRGS
<watson:option>, which takes a both a name and a value attribute. The following example
shows the use of the define statement to change the acoustic model:

<watson:option name="am" value="gentel06" />

The following table describes the options for both name and value that are most useful
for speech mashups.

http://www.w3.org/TR/semantic-interpretation/

Creating a Rule-Based Grammar

Application Developer’s Guide 13
AT&T Proprietary (Restricted)

D R A F T

Table 4.1 Define statement options

name value

 pron
Applies specified pron tag to entire grammar. Can be alpha, digits, name, quant,
confirm. See page 10 for more information about pron tags.

 lang ISO country code for language to use.
Currently US English (en_us) and the US dialect of Spanish (en_es) are supported.

 am Short name or full path of acoustic model.

 By default, grammars are compiled with the gentel04 acoustic model. In some
cases (such as for short words), gentel06 may provide better recognition.

 word_penalty,
 sil_penalty

Both take float values.

If after evaluating the accuracy of a grammar, lowering the word penalty

(less than 3) for too many deletions may increase accuracy (for out-of-
grammar words). Raising it above 3 can sometimes increase accuracy if
there were many insertion errors.

If changing the word penalty has no effect, try increasing the silence penalty
(set to 4 or 5). Setting the silence penalty is similar to lowering the word
insertion penalty.

Grammar types XML (SRGS) and SLMs (statistical language models). WBNF is also supported for
backward compatibility, though it should not be used for creating new grammars.

User ID (UUID) Allows access to portal and enables the speech mashup client to access WATSON
servers. Obtained by registering at portal.

By convention, define statements are inserted at the beginning of the grammar. The syntax
for define statements in the WBNF grammar are as follows:

#define default_pron_tag alpha, digit, name, quant, confirm
#define lang en_us, en_es
#define word_penalty float
#define sil_ penalty float
#define start_rule name of the start (aka root) rule. Use this when the grammar starts

with a rule other than <START>

4.4 Creating an XML grammar

The XML syntax is described in detail in the Speech Recognition Grammar Specification
(SRGS) (http://www.w3c.org/TR/2002/CR-speech-grammar-20020626). The following
paragraphs summarize the main points. See table 2.2 for a listing of the most common
XML operators and special characters.

An XML grammar consists of a header followed by a body and, like HTML and
VoiceXML, uses markup case-insensitive tags and plain text. A tag is a keyword enclosed
by angle brackets (< >). Tags, which appear in nested pairs, are not defined; you define
your own.

An XML grammar starts and ends with the grammar tags (<grammar> … </grammar>)

and must contain at least one rule element (<rule> … </rule>).

http://www.w3c.org/TR/2002/CR-speech-grammar-20020626

Chapter 4

14 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

A tag may have attributes inside the angle brackets. Each attribute consists of a name and a
value, separated by an equal (=) sign; the value must be enclosed in quotes.

 <item weight="0.8">New York </item>

The rule name for each rule definition must be unique within the grammar and it cannot
contain the following characters or special rules: . : - GARBAGE NULL VOID.

The XML version must be included in the first line (the encoding attribute that is
sometimes included is not required when writing an XML grammar for WATSON). A
single root must also be defined:

 <grammar version="1.0" root="typeofLoan">

The following is a simple XML grammar that prompts to know whether an account is new
or existing (a longer example is given on page 16):

<grammar version="1.0" root="typeofLoan">

 <!--Grammar to select a new or existing account -->

 <rule id="typeofLoan">

 <ruleref uri="#hes"/>

 <ruleref uri="#object"/>

 <ruleref uri="#post"/>

 </rule>

<rule id="hes">

 <item repeat="0-1">

 <one-of>

 <item>huh</item>

 <item>um</item>

 </one-of>

 </item>

 </rule>

<rule id="object">

 <item>

 <one-of>

 <item>new</item>

 <item>existing</item>

 </one-of>

 </item>

 <item>account</item>

 </rule>

<rule id="post">

 <item repeat="repeat="0-1">

 <one-of>

 <item>bye</item>

 <item>good-bye</item>

 <item>that’s all</item>

 <item>I’m done</item>

 </one-of>

 </item>

 </rule>

</grammar>

Creating a Rule-Based Grammar

Application Developer’s Guide 15
AT&T Proprietary (Restricted)

D R A F T

Table 4.2 XML Notations

Element Description

“<one-of>” A set of alternatives ("loan" or "home" or "interest rate").

repeat="0-1" Optional expression.

repeat="n" Repeat the expression exactly n times.

repeat="n-m" Repeat the expression between n and m times.

repeat="n-" Repeat the expression n times or more.

Special
characters

Function

“<!-- -->” Enclose a comment.

Special rules Function

GARBAGE A rule that matches any speech up until the next rule match, the next token, or until
the end of spoken input.

NULL Defines a rule that matches if the speaker doesn’t say anything.

VOID Defines a rule that can never be spoken. Inserting VOID into a sequence

automatically makes that sequence unspeakable.

4.4.1 Adding pronunciation tags to an XML grammar

For an XML grammar, pron (pronunciation) tags have the following form:

 <item pron="name-of-phone-set"> term </item>

Where name of phone set can be one of the following: digits, alpha, name, quant, or
confirm, and where term is the word to which the pron tag applies.

In this sample XML grammar, the ―pron‖ attribute for <item> causes the compiler to use a
digit transcription for ‗0‘ if one is available but use the default pronunciation for 1.

 <grammar root="start">

 <rule id="start">

 <item repeat="1-" repeat-prob="1.0">

 <one-of>

 <item pron="digits"> 0 </item>

 <item> 1 </item>

 </one-of>

 </item>

 </rule>

 </grammar>

4.4.2 Adding semantic tags to an XML grammar

To add semantic tags to an XML grammar, insert the string
tag-format="semantics/1.0" in the first <grammar> line (<grammar tag-

format="semantics/1.0" root="object">). Then add <tag> elements to
override the returned value of a grammar component using a script. Do not insert spaces
between the double quotes.

Chapter 4

16 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

<tag> out="tag-content"</tag>

In the following example, the rule ―object‖ contains tags that specify the returned string
depending on what was matched.

<rule id="object">

<one-of>

 <item>home <tag> out="newloan" </tag> </item>

 <item>refinancing <tag> out="refi" </tag> </item>

 <item>refinance <tag> out="refi" </tag> </item>

 <item>loan <tag> out="newloan" </tag> </item>

 <item>interest <tag> out="rates" </tag> </item>

 <item>rate <tag> out="rates" </tag> </item>

 <item>rates <tag> out="rates" </tag> </item>

</one-of>

</rule>

Thus the same string (refi) is returned depending on whether the speaker says refinancing
or refinance; the string rates is returned if the speaker says interest, rate, or rates.

4.4.3 Using word weighting

XML grammars support word weights so that the grammar can better model the word
statistics of an actual application. Insert weight attributes within the nested <item> tags,
and place a floating-point value for a weight, as shown here:

 <item>

 <one-of>

 <item weight="0.8">New York </item>

 <item weight="0.2"> Newark </item>

 </one-of>

 </item>

4.4.4 A sample XML grammar

The following example shows a possible XML syntax for the prompt: ―You have reached
the Home Mortgage Department. Are you calling about buying a new home, refinancing an
existing one, or are you calling to get the current interest rates?‖

<grammar version="1.0" root="typeofLoan" tag-format="semantics/1.0">

 <!--Grammar to select to new loans, refinancing, interest rates -->

<rule id="typeofLoan">

 <ruleref uri="#hes"/>

<ruleref uri="#preamble"/>

 <ruleref uri="#object"/>

 <ruleref uri="#post"/>

 <tag>

 out = rules.object;

 </tag>

</rule>

<rule id="hes">

 <item repeat="0-1">

 <one-of>

Creating a Rule-Based Grammar

Application Developer’s Guide 17
AT&T Proprietary (Restricted)

D R A F T

 <item>huh</item>

 <item>um</item>

 </one-of>

 </item>

 </rule>

<rule id="preamble">

 <item repeat="0-1">

 <one-of>

 <item>hi</item>

 <item>please</item>

 <item>I want</item>

 <item>I want to</item>

 <item>I’m interested in</item>

 <item>I’m calling about</item>

 <item>just</item>

 <item>just give me</item>

 </one-of>

 </item>

 </rule>

<rule id="object">

 <one-of>

<item>home</item>

<item>new home <tag> out="newloan" </tag> </item>

<item>new loan <tag> out="newloan" </tag> </item>

<item>existing loan <tag> out="refi" </tag> </item>

<item>existing home loan <tag> out="refi" </tag> </item>

<item>existing <tag> out="refi" </tag> </item>

<item>refinancing <tag> out="refi" </tag> </item>

<item>refinancing my home loan <tag> out="refi" </tag> </item>

<item>refinance my home loan <tag> out="refi" </tag> </item>

<item>refinance my loan <tag> out="refi" </tag> </item>

<item>refinancing an existing loan <tag> out="refi" </tag> </item>

<item>refinance <tag> out="refi" </tag> </item>

 <item>loan</item>

 <item>interest <tag> out="rates" </tag> </item>

<item>interest rate <tag> out="rates" </tag> </item>

<item>interest rates <tag> out="rates" </tag> </item>

<item>rate <tag> out="rates" </tag> </item>

<item>current rate <tag> out="rates" </tag> </item>

 <item>current rates <tag> out="rates" </tag> </item>

 <item>current interest rates <tag> out="rates" </tag> </item>

 </one-of>

</rule>

<rule id="post">

 <item repeat="0-1">

 <one-of>

 <item>bye</item>

 <item>good-bye</item>

 <item>that’s all</item>

 <item>I’m done</item>

 </one-of>

 </item>

</rule>

Chapter 4

18 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

</grammar>

This grammar is for demonstration only. In practice, this grammar might elicit a range of
responses difficult to predict (note the preamble rule); for this reason, you might redo the
application as a series of directed prompts (―Are you calling about buying a new home?‖) or
consider doing an SLM.

4.5 Creating a WBNF grammar

This section describes the WBNF syntax, which is WATSON‘s variation of the standard BNF.
Because support for this syntax is being discontinued, it is recommended that all new rule-
based grammars be created using XLM.

At its simplest, WBNF source text is composed of rules, which themselves are composed
of words, operators, and other rules. Rule names are enclosed in angle brackets (< >) and
are separated from the matching expression by =. A semicolon denotes the end of a rule.
The syntax is shown here:

<rulename> = <word, rule, or expression> | < word, rule, or expression> ;

Elements to the right of the rule name are logically AND‘ed together, with the pipe symbol |
to separate alternate responses (see table 2.3 for other operators and special characters):

<loan-type> = new | existing ;

Words are tokens representing the speech part of the grammar. All words have to match
some speech. As much as possible they are written out as regular words, but they could be
arbitrary sequences of letters and digits.

Words are separated by white space and are not case sensitive (though the case used in the
source will be preserved in the recognition string). Words are tokens representing the
speech part of the grammar, and are also called terminals, because, unlike rules, they
cannot be expanded further. Terminals never appear on the left side.

Optional words are enclosed in square brackets ([]), and parentheses are used to group
words and clarify meaning. In this example, the parentheses makes clear that ―loan‖ can be
preceded by one of several qualifiers:

 (new | existing | old) [home] loan

4.5.1 Rules

By convention, WBNF grammars begin with the <START> rule (the compiler issues a
warning message if it‘s missing). (Rule names are tokens between angle brackets.) Avoiding
recursion is recommended or the compilation may fail. Individual tokens within a rule are
separated by white space.

A rule is often called a non-terminal, because it can be expanded into terminals (words) and
other rules. Only grammars that can be fully expanded to terminals can be compiled. Partial
grammars, grammars containing missing rules, cannot be compiled.

In WBNF, all rules have public scope.

Creating a Rule-Based Grammar

Application Developer’s Guide 19
AT&T Proprietary (Restricted)

D R A F T

Whether a given grammar source text contains a complete grammar may depend on the
choice of the start rule. Not all rules defined in the source need to be reachable from the
start rule; they can be left dangling. They should be commented out for clarity.

Here‘s a simple three-rule grammar (the two forward slashes in the first line indicate comments):

// Are you calling about a new account or an existing account?

<START> = [<hes>] [<preamble>] <account-type> ;

<preamble> = ([I’m calling] about) | hi ;

<account-type> = (a new | an existing) (account | one) |

 (new | existing) [account | one] ;

Simple grammars such as this one could be written on one line, with only the <START>
rule, though placing each rule on its own line clarifies the grammar structure.

The above grammar can result in the following utterances (as well as others):

I’m calling about a new account, About a new account,
I’m calling about an existing account, About an existing account,

A new account, An existing account, New, Existing

All utterances listed here would be considered as a possible candidate at the beginning of the
prompt. As the recognizer works to match phonemes to the input audio, paths get ruled out.

Table 4.3 WBNF Notations

Special
characters

Function

 (White space, including spaces, tabs, and new lines.) Separates words.

< > Delimits a rule name.

; Terminates a rule.

// Indicates a comment (C++ style); anything after // is ignored.

/* */ Indicates a comment (C style); all following text is ignored. As in C, these delimiters
do not nest.

“ ” Sets off words containing special characters that would otherwise be treated as
control characters. White space is not allowed between the double quotes.

\ Performs the same function as quotation marks when placed before a non-white
space special character.

Special words Function

. . . Wildcard word (also called garbage) that matches any speech. Often used for

keyword spotting, when all text except keywords are replaced by wildcards. The
normal recognition string will contain "..." tokens where speech was matched, but the
speech itself is not decoded or cannot be reported.

_garbage Same as a wildcard (matches any speech), but is also insignificant: it is
suppressed from the normal recognition string.

_silence Matches non-speech, in particular silence. It is insignificant and does not appear in

the normal recognition string. There is usually no need to add explicit silences to a

grammar since WATSON ASR inserts optional silences at the beginning and end of
the grammar as well as between all words.

_epsilon Represents the null word, i.e., the absence of a word. It is unusual to find this word

explicitly in a grammar, but it is often used by the compiler so you may come across
it when examining lists of grammar symbols or examining the compiled g.fsm.

Chapter 4

20 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Operators are evaluated in the following order:

 Parenthesized and optional expressions

 Repeated expressions (those that use * or +)

 Expression sequences

 Expression alternatives (OR)

4.5.2 Adding pronunciation tags to a WBNF grammar

For a WBNF grammar, you can use pronunciation (pron) tags in two ways: by setting a global
pron tag that covers the entire grammar, or by associating pron tags only with specific words.

To set a global pron, use a define statement at the beginning of the grammar:

#define default_pron_tag name-of-phone-set

Where name-of-phone-set can be name, digits, quant, confirm, or alpha.

For example, for a list of names you would use #define default_pron_tag name.

To specify a pron tag for individual words, insert a pron tag in the appropriate place in the
grammar, as follows:

{ pron-name-of-phone-set term } For example: _{ pron-name Reid }_

where term is replaced by the word or term to which the tag is applied.

The following shows a simple account number grammar, which uses the digits phone set.

<START> = <Digit> <Digit> <Digit> <Digit> <Digit> <Digit> <Digit> <Digit> <Digit> <Digit> ;

<Digit> = _{ pron-digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }_ ;

4.5.3 Adding semantic tags to a WBNF grammar

A semantic tag replaces a recognized utterance with a predefined string that is expected by
the end application.

To insert semantic tags, include an expression in the <START> rule according to the syntax
shown here, where the expression is enclosed by the characters _{ and }_:

 <START> = [<hes>] [<preamble>] _{ "$=$a" <request> }_ [<closing>] ;

where <request> is a rule name you define within the grammar. <request> is just an
example; you can assign any rule name that makes sense for your application.

In the body of the grammar, include the rule name definition, specifying both the string to
be forwarded to the end application and the rule whose results are to be replaced by the
string. Use double quotes around the string expression and do not include spaces between
the double quotes. The syntax is as follows:

<rule-name> = _{"$a='string'" <name-of-input-rule> }_

where string is the text of the semantic string sent to the end application, and where the rule
name that follows is the rule whose returned utterance will be replaced by the semantic tag.

Creating a Rule-Based Grammar

Application Developer’s Guide 21
AT&T Proprietary (Restricted)

D R A F T

In the following example, any utterance allowed by the rule <newloan> (e.g., ―I want a
new loan,‖ ―I‘m calling about a new loan,‖ ―new loan,‖ etc.) will be replaced by the string
newloan.

<request> = _{"$a='newloan'" <newloan> }_

The sample WBNF grammar shown starting on page 21 shows the use of semantic tags.

The portal contains a set of builtin WNBF grammars that can be used, after being tested
and modified for the intended purpose, as standalone grammars or incorporated with other
grammars. See page 29 for a listing.

4.5.4 A sample WBNF grammar

The sample WBNF grammar selects a mortgage type. For additional WBNF grammar
examples, see the prebuilt grammars provided on the portal.

//This is for the loan-type prompt: "You have reached the Home

//Mortgage Department.

//Are you calling about buying a new home, refinancing an existing

//home, or are you calling to get the current interest rates?"

<START> = [<hes>] [<preamble>] _{ "$=$a" <request> }_ [<closing>] ;

<hes> = uh | um | ahhh;

<preamble> = hi | please |

 ([I want] to) |

 ([I'm interested] in) |

 ([I'm calling] about [getting]) |

 (give me) ;

<request> = _{"$a='newloan'" <newloan> }_ |

 {"$a='existingloan'" <existingloan> } |

 {"$a='interestrate'" <interestrate> } ;

<newloan> = [(buy | buying)] [a] new [(loan | home)] ;

<existingloan> = refinancing [my | a | an] [existing] [(home | loan)] |

 [refinancing] [my | a | an] existing (home | loan) |

 [refinance] [my | a | an] existing (home | loan) |

 refinance [my | a] [(home | loan)] |

 [refinance] [my | a | an] [existing] [(home | loan)] ;

<interestrate> = [current] interest (rate | rates) |

 [current] [interest] (rate | rates) |

 current [interest] (rate | rates) ;

<closing> = that's all | done | ok | thank you |

 I’m done | good-bye ;

This grammar is meant only as a demonstration. In practice, this grammar might elicit a range
of responses difficult to predict (note the preamble rule); for this reason, you might redo the
application as a series of directed prompts (―Are you calling about buying a new home?‖).

Chapter 4

22 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Application Developer’s Guide 23
AT&T Proprietary (Restricted)

D R A F T

5 Setting up a Statistical
Language Model

When it‘s not possible to constrain speakers to a set of responses and the utterances are apt
to be too unpredictable to be defined by rules, use a statistical language model (SLM).
Instead of relying on hand-written rules that explicitly spell out which utterances can be
recognized, an SLM derives its rules from the statistical properties of thousands of training
sentences (the training corpus). By analyzing the training data, the SLM is able to estimate
the probability that certain word sequences will appear together.

When passed a new utterance, the SLM can provide an a priori probability for it based on
the patterns it detected in the training data. Such a grammar is much more flexible than a
rule-based one.

Setting up a statistical language model requires training data, and lots of it. A minimum of
10,000 utterances is recommended.

The steps to setting up an SLM are the following:

1. Collecting sample data from the customer.

Sample data should include thousands of transcribed utterances (at least 10,000) and
should be representative of the responses expected in the final application.

2. Obtaining transcriptions of the training data.

The file of transcribed utterances should include only text, and each utterance should be
on a single line that ends with a carriage return.

Do not include punctuation. Remove from the file any non-language information, such
as silences, hesitations, coughs, and other artifacts of spontaneous spoken language.

While not required, the filenaming convention is to append the extension .train to the
text file.

3. Reviewing the transcription file and strengthening it if necessary.
Strengthening may be needed if critical words are not well represented in the training
data. For instance, in service calls to a gas company, the words ―emergency‖ or ―gas
leak‖ are very important, but if they appear only a handful of times out of 10,000
utterances, you should physically edit the file to add additional utterances containing
those terms (25 times out of 10,000 should be adequate).

Experiment with the utterances to see if whether inserting additional words into likely
and representative phrases prevent the utterance from being recognized.

Chapter

4

Chapter 5

24 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

4. Assigning semantic meaning to the text.
SLMs do not use semantic tags. To get the same effect, the SLM can be used in
collaboration with AT&T‘s Natural Language Understanding (NLU) tools, which can
be used to build classifiers for translating text to the normalized strings expected by the
application.

5. Setting aside data for testing.

Before compiling an SLM, set aside a portion (a minimum of 10% is recommended) of
the audio for testing purposes.

6. Uploading the SLM. See page 25.

Application Developer’s Guide 25
AT&T Proprietary (Restricted)

D R A F T

6 Uploading, Managing, and
Testing Grammars

Grammars belong to three contexts:

 My grammars. These are your personal grammars that you create and
control. They are not accessible to anyone else.

 Shared grammars. Shared grammars are grammars created by others and
then made available to all speech mashup users. You can view (and copy)
these files but cannot rename or delete them. Grammars you create and share
with others are listed in both your personal grammars and under shared
grammars.

 Built-in grammars are included with the speech mashup and include
grammars for US cities, digits, account numbers, and names. See Table 4.1
for a listing.

Grammars you create must be uploaded to the portal to be made accessible to the
WATSON ASR servers; uploading a grammar automatically compiles it. You can upload
grammars either through the portal or by using wget.

6.1 Creating application directories for grammars

Grammars you upload must be associated with an application directory, which serves
as a central location for all grammars, log files, and audio associated with a specific
application. You cannot upload a grammar until you create an application directory
for it.

To create a new application directory, select Manage applications from the
portal‘s home screen to open the following dialog:

Chapter

4

Chapter 6

26 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

To create a new application directory:

1. Click Create New from Manage applications screen.

2. Enter a unique name.

3. (Optional). Enter a short and long description. The short description is shown
in the table of applications; the longer one is revealed by mousing over the
application directory name.

4. Click Create.

Warning: Deleting an application directory deletes all grammars, log files, and audio stored
in it.

From the Manage Applications screen,
you edit, back up, or delete current
application directories, or create new ones.

Use Backup option (the pie-shaped icon
under “Actions”) to create a zipped file of
all application directory contents.

Specifies how long to wait
before considering a new

utterance to be part of a new
conversation. Default is

5 minutes.

If combining recognition with
other processing (see

page 74), enter the URL of

servers to connect to.

Uploading, Testing, and Managing Grammars

Application Developer’s Guide 27
AT&T Proprietary (Restricted)

D R A F T

6.2 Uploading grammars

You upload grammars in two ways: either from the portal or by using wget. In both
cases, uploading the grammar automatically compiles it.

From the portal, you upload a grammar (or multiple grammars zipped
together) as follows:

1. Select the appropriate application directory from the dropdown list.

2. Select the Manage Grammar Files option from the main screen.

3. In the text box at the bottom of the screen, enter or browse for the
filename. Click Submit Upload.

Note: It‘s recommended that you keep a copy of each grammar on your local
system. To back up an entire application directory, use the Backup option on
the Manage Applications page.

The grammar will be automatically compiled when uploaded (if you‘re uploading
a zipped file, the files will be unzipped first and then compiled).

A file that does not compile correctly is shown in red; the reason for the error is
shown at the top of the screen. For more information about a compilation error,
including the file line on which the error occurs, select the file and click View
Log File.

Select My Grammars (private),

Shared Grammars, or Builtin

Grammars

Change grammar compilation options

Click to upload
(& compile)

Select the application directory in
which to store the grammar

Change recognizer parameters, if

needed. See page 37.

Chapter 6

28 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

6.2.1 Uploading grammars interactively

Rather than using the portal, you can upload grammars non-interactively, i.e.,
without having to be logged in. This can be useful for applications where
grammars are generated by an automated process, and you want these grammars
to be uploaded automatically by the same process that generated them.

To use this feature, use wget or some other tool that lets you send a file to an HTTP
server using a POST request. With wget, the command to upload a grammar looks like
this:

 wget --post-file=your_grammar_source_file \

 --header 'Content-Type: text/plain' \

 --server-response \

'https://service.research.att.com/smm/grammarUpload?username=YourUserName&

password=YourPassword&appname=YourApplication&filename=YourGrammarName'

The --header option is necessary because when Content-Type is unspecified, wget sets
it to application/x-www-form-urlencoded, making the Tomcat server parse the request
body as a form submittal—not what you want when trying to upload a file. The
grammarUpload servlet ignores the Content-Type, so you can set it to whatever you
want, as long as it isn‘t application/x-www-form-urlencoded.

The --server-response option makes wget print the response header on stdout;
you want that because this is where grammarUpload reports success or failure.

If the compilation fails, the servlet adds ―X-Compilation-Failure: Grammar compilation
failed; see response body for details‖ to the response header, and it returns the compilation
error log in the response body. Note that the HTTP status code is 200 in case of a

compilation failure; while this is inconsistent, the reason is that wget refuses to download
the response body if the HTTP status code signals an error, so in order to return the error
log, the servlet has to return a status code of 200 and signal the error some other way.

When uploading a very large grammar, it is possible for the request to appear to fail, because
wget or some proxy between wget and the server may decide to terminate a connection
after it has been idle for a long time. Compiling large grammars can take a very long time; if
this problem occurs, you can add keepalive=true to the request URL; the servlet will
write a dot to the response every 10 seconds, thus keeping the connection alive indefinitely.
The upload and compilation result will be reported in the response body instead of the
response header in this case. You may want to add something like ―-O response_file‖
to the wget command line to specify what file to save the response body to.

6.3 Sharing and managing grammars

You can share any grammar you create so that others can also use it. Any grammar
you share is available to everybody else. (Future versions will support user groups
so you can share with a specific group of users.)

Uploading, Testing, and Managing Grammars

Application Developer’s Guide 29
AT&T Proprietary (Restricted)

D R A F T

To share a grammar, go to Manage Grammars, select the appropriate application
directory and then the grammar (make sure the context My Grammars is selected), and
assign it a title and a description (click Update Description); a grammar cannot be
shared unless it has a title and description. Then click Make Shared. To unshare a
grammar, select the grammar and click Remove Shared.

6.3.1 Editing prebuilt or shared grammars

When using a shared grammar (which can be unshared at any time), it‘s
recommended that you copy the grammar into a text editor and then re-upload
them as one of your personal grammars. Although personal grammars may have
the same name as prebuilt or shared grammars (the recognizer looks first for
personal grammars, than shared grammars, and then prebuilt ones), it‘s probably
good practice to uniquely name each grammar.

Table 6.1 Builtin Grammars

citystate.xml Contains all cities in the US. The source is not available.

en-us-time.wbnf Returns time in the format of hhmmx, where hh is the hour, mm is the minutes,
and x is one of the following: a (am) or p (pm), h (24-hour time), or ? (unknown).

en-us-helpcancel.wbnf Returns help or cancel.

es-us-boolean.wbnf Spanish boolean grammar.

es-us-phone.wbnf Spanish phone number grammar that returns a string of 10 digits (area code
followed by phone number) or 7 digits (phone number alone).

names2k.wbnf A grammar containing two hundred names.

en-us-currency.wbnf Currency grammar that returns a value formatted as mmm.nn where mmm is

the number of dollars (3 digits or less). nn is the number of cents (always 2
digits).

The standard specifies an optional currency type as a 3-character field
preceding the amount, unless it is ambiguous. Does not include the currency
type.

alphadigits.wbnf 7 alpha-digits grammar.

es-us-number.wbnf Spanish numbers grammar that returns a series of digits optionally including a +
or - sign, and/or a decimal point.

en-us-exit.wbnf Grammar for recognizing the word exit.

en-us-helpcancel.wbnf Spanish grammar for recognizing the words help and cancel.

digits_es.wbnf Spanish digit loop grammar.

es-us-currency.wbnf Spanish currency grammar that returns a value formatted as mmm.nn, mmm is
the number of dollars and may be 3 digits or fewer. nn is the number of cents

and is always 2 digits. The standard specifies an optional currency type as a 3-
character field preceding the amount, unless it is ambiguous. This grammar
does not include the currency type.

en-us-number.wbnf Numbers grammar returns a series of digits optionally including a + or - sign,
and/or a decimal point.

en-us-
helpcancelexit.wbnf

Returns words help, cancel, and exit.

Chapter 6

30 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

es-us-cancel.wbnf Spanish grammar for recognizing cancel.

en-us-cancel.wbnf Grammar for recognizing cancel.

es-us-help.wbnf Spanish grammar for recognizing help.

numbers-es.wbnf Spanish numbers grammar that returns a series of digits optionally including a +
or - sign, and/or a decimal point.

en-us-boolean.wbnf Boolean grammar.

en-us-date.wbnf Date grammar. Returns an 8-digit number, yyyymmdd with ? for missing fields
Example: july 4th: ????0704, november: the first: january 1st 1970: 19700101

es-us-helpexit.wbnf Returns words help, cancel, and exit.

6.4 Determining accuracy

To evaluate how well speech recognition is performing for a specific application,
you need to compare the recognized results returned from the WATSON
recognizer to what was actually said. This is a three-step process:

1. Collect sample audio files and forward them to WATSON ASR for
recognition (you can use wget or another tool). You will need to make
recordings for this step. The more sample audio files, the better; several
hundred are recommended.

2. Create transcriptions for each test utterance. You can use the portal‘s
View/enter transcriptions to do so.

3. Compare the transcriptions to the recognizer outputs to determine the
percentage of correct and incorrect recognitions.

Each step is described in more detail in the following sections.

6.4.1 Sending audio files for testing

To test how well the grammar can recognize utterances, create recordings of
utterances that people might say in the context of the application. Send these audio
files to the WATSON servers and then evaluate the word and sentence accuracy (the
percentage of words and sentences that were correctly recognized). You might find
when making recordings, people use different words than you anticipated and that
may not be included in the grammar.

You can send audio files to WATSON ASR using a client if you have one already, or
use the wget command to send audio. The wget command is standard in many
modern UNIX and UNIX-like systems, including the Cygwin environment for
Microsoft® Windows®. In case your system does not include wget, the source code is
available at http://www.gnu.org/software/wget/, and executables for Microsoft
Windows can be found at http://pages.interlog.com/~tcharron/wgetwin.html, and
for Mac OS X at http://www.statusq.org/archives/2005/02/22/610/.

For testing a grammar, wget requires the following:

http://www.gnu.org/software/wget/
http://pages.interlog.com/~tcharron/wgetwin.html
http://www.statusq.org/archives/2005/02/22/610/

Uploading, Testing, and Managing Grammars

Application Developer’s Guide 31
AT&T Proprietary (Restricted)

D R A F T

 Name of audio file and content type. What you enter for the content type
(audio/amr in the example starting on the next page) does not matter (though

it should be descriptive), as long as it is not the wget default, which is
application/x-www-form-urlencoded.

 Your UUID.

 The grammar name, without the extension. The grammar must already be
uploaded to the portal and have compiled correctly.

 The format type of the result (if other than XML).

 (Optional) An output filename.

The following is a sample use of wget using one of the prebuilt grammars (en-us-date). To
send multiple files, write a simple script. (You can find scripts containing for the following
sample, as well as the sample-date.amr file used there, in the SpeechMashupGuide.zip
file that you download by using the portal‘s Sample Code link. Note that you have to edit
the script to put in your own UUID before you can run it.)

wget \

 --post-file=sample-date.amr \

 --header 'Content-Type: audio/amr' \

 --server-response

'http://service.research.att.com/smm/watson?cmd=rawoneshot&grammar=en-us-

date&uuid=<your own UUID>&appname=<application ID>&resultFormat=emma' \

 -O response.emma

The output produced onscreen will look similar to the following:

--16:16:08--

http://service.research.att.com/smm/watson?cmd=rawoneshot&grammar

=en-us-date&uuid=<your own UUID>&appname=<application

ID>&resultFormat=emma

 => `response.emma'

Resolving service.research.att.com... 192.20.225.56

Connecting to service.research.att.com|192.20.225.56|:80...

connected.

HTTP request sent, awaiting response...

 HTTP/1.1 200 OK

 Server: Apache-Coyote/1.1

 Content-Type: application/xml;charset=UTF-8

 Content-Length: 2138

 Date: Thu, 31 Jul 2008 20:16:07 GMT

 Connection: keep-alive

 Set-Cookie: JSESSIONID=BC6CF8CBED6E65C4281FD8026BC75BBB;

domain=service.research.att.com; path=/smm

Length: 2,138 (2.1K) [application/xml]

100%[==

===>]

2,138 --.--K/s

16:16:08 (5.08 MB/s) - `response.emma' saved [2138/2138]

The returned output will be similar to the following (EMMA format):

<?xml version="1.0" encoding="UTF-8"?>

<emma:emma version="1.0"

Chapter 6

32 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

 xmlns:emma="http://www.w3.org/2003/04/emma"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.w3.org/2003/04/emma

 http://www.w3.org/TR/WD-emma-20070409/emma.xsd"

 xmlns="http://www.example.com/example">

<emma:grammar id="gram1"

 ref="smm:grammar=en-us-date&UUID=[your_own_UUID]"/>

<emma:model id="model1"

 ref="smm:file=en-us-date.xsd&UUID=[your_own_UUID]"/>

<emma:info>

 <uuid>[you_own_UUID]</uuid>

 <watson>

 <version>watson-6.1.3700</version>

 <time>2008-08-07 23:08:49.951</time>

 <session_id>20080807-230849-00000002</session_id>

 <hostname>ss-2</hostname>

 </watson>

</emma:info>

<emma:one-of id="one-of1"

 emma:medium="acoustic"

 emma:mode="voice"

 emma:function="dialog"

 emma:verbal="true"

 emma:lang="en-US"

 emma:start="1218164929760"

 emma:end="1218164933360"

 emma:grammar-ref="gram1"

emma:signal="smm:UUID=[you_own_UUID]&file=/l/u205/speechmashu

ps/pino/def001/audio/20080807/audio-222478.amr"

 emma:signal-size="5766"

 emma:media-type="audio/amr; rate=8000"

 emma:source="smm:platform=null&device_id=null"

 emma:process="smm:type=asr&version=watson-6.1.3700"

 emma:duration="3600"

 emma:model-ref="model1"

 emma:dialog-turn="20080807-230849-00000002:1">

<emma:interpretation id="nbest1"

 emma:confidence="0.5"

 emma:tokens="July thirty first 2 thousand 8">

 <![CDATA[<$='????'+$m+$d> <$m> <$='07'> July </$='07'> </$m>

<$d> <$='31'> thirty first </$='31'> </$d> </$='????'+$m+$d>

<$=$y+$m+$d> <$y> <$=$2+'00'> <$2> <$='20'> 2 thousand </$='20'>

</$2> </$=$2+'00'> <$=$2+$c7> <$c7> <$='0'+$1> <$1> 8 </$1>

</$='0'+$1> </$c7> </$=$2+$c7> </$y> </$=$y+$m+$d>]]>

</emma:interpretation>

</emma:one-of>

</emma:emma>

Note that you must specify a Content-Type request header (--header 'Content-
Type: audio/amr' in the example), but it does not matter what value you set it to, as
long as it is not application/x-www-form-urlencoded.

The reason is that that specific content type is handled specially by web servers; they assume
that the request body contains data from an HTML form being submitted, and attempt to parse
it accordingly, and the servlet or CGI program that processes the request never gets to see the

raw request body. Since the default Content-Type header sent by wget is
application/x-www-form-urlencoded, you must use --header to set it to

Uploading, Testing, and Managing Grammars

Application Developer’s Guide 33
AT&T Proprietary (Restricted)

D R A F T

something else, but it does not have to actually match the type of audio you are sending; the
speech mashup portal determines the audio format using the audioFormat request parameter or
by inspecting the audio data itself, not using the Content-Type header.

6.4.2 Creating transcriptions

Creating transcriptions using the portal requires a recent version of the Java Runtime
environment. Download the most recent version from http://java.sun.com.

To create a transcript that can later be compared to the recognized output:

1. Log into the portal and click View/enter transcriptions.

2. Navigate to the appropriate date (click or).

3. Click next to an audio file to listen to it.

4. Type the complete utterance into the transcription field (or copy the reco text if the
match is exact).

5. Click a save button. This saves the transcription to a database for later retrieval.

6.4.3 Comparing transcriptions to utterances

To obtain the accuracy rate, compare each actual utterance to the transcription created for it.

One way is to create two text files, one for the utterances captured from the recognized
results (use the string from the reco field or the tokens string if using EMMA) and the
other for the transcriptions, and then compare and score the files using a tool such as
the Speech Recognition Scoring Package (SCORE) available from NIST
(http://www.nist.gov/speech/tools/score_362tarZ.htm). This tool will return both the
word and sentence accuracy.

Enter (or copy)
transcription here

Play audio

Session number

(utterances by a single
user, or a series of single-

sentence utterances

make up a batch)

Enter new date

Play bar for saving transcription or
advancing/returning to other batches

Buttons for inserting

annotations into
transcription)

Enter ID of transcription

when searching.

http://www.java.sun.com/
http://www.nist.gov/speech/tools/score_362tarZ.htm

Chapter 6

34 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

6.4.4 Exporting transcriptions and utterances

Having created transcriptions for a set of utterances, you will probably need to export them
so you can use them in downstream processes for tuning language models and evaluating
application performance. The mashup portal provides a facility for this through the URL
http://service.research.att.com/smm/utterances.jsp.

When you access this link while logged into the portal, you will be presented with the
following page:

Use the ―currently selected application‖ drop-down to select the application whose
utterance records you want to export, and optionally specify the start and end dates. (Note
that the end date is inclusive, so in order to dump the whole month of January, 2011, you
would specify the start and end dates as shown in the screen shot, above.) Leaving the start
date, or the end date, or both blank will cause the export not to be constrained in that
direction, so you can create dumps of everything up to a certain date, everything from a
certain date, or everything for all dates.

By default, the output generated by utterances.jsp is a pipe-delimited text file, that is, it
contains one line for each utterance record, and each record‘s individual fields are separated
from each other using pipe characters (vertical bar, ASCII/Unicode 124). By checking the
―generate CSV‖ check box, the output format is changed to comma-separated values,
which can be easily imported into spreadsheet programs. In either case, the text is encoded
using ISO-8859-1 (Latin-1) encoding.

pipe-delimited utterance records dump

http://service.research.att.com/smm/utterances.jsp

Uploading, Testing, and Managing Grammars

Application Developer’s Guide 35
AT&T Proprietary (Restricted)

D R A F T

CSV utterance records dump

The utterances.jsp page will usually be used to obtain the recognition and transcriptions for
recorded utterances, and possibly other meta-data that is stored in the utterance records,
but it also lets you dump the utterances themselves, that is, the audio files, in addition to the
utterance database records. To do this, check the ―Create ZIP file containing audio‖ check
box; this will cause your browser to download a ZIP file containing the dump of the
utterance records, plus all the corresponding audio files.

Combined utterance records and audio files dump

You may need to make these utterance dumps a part of a regular batch process, in which
case having to log into a web interface and manually filling out and submitting a form
would be inconvenient. To help with this situation, utterances.jsp also supports being
invoked outside of the portal context, using a tool like wget:

Chapter 6

36 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

wget –O utterances.zip \

 'https://service.research.att.com/smm/utterances.jsp

 ?username=your-username

 &password=your-password

 &appname=selected-appname

 &from=start-date-YYYYMMDD

 &to=end-date-YYYYMMDD

 &csv=(on|off)

 &audio=(on|off)'

Note that there are line breaks in the URL in the example above that were inserted for
readability only; when you create the request URL, everything should be in one line with no
intervening white space.

Note that you must use HTTPS, not HTTP; the portal will automatically send a redirect if
you try to access utterances.jsp over HTTP, but you have to use HTTPS from the start in
order to prevent your password from being sent in the clear.

The username and password parameters should be set to the same values that you use to
log into the portal; all the other parameters correspond to the fields in the form that
utterances.jsp displays in its interactive mode.

6.5 Checklist for improving accuracy

If your results are not good because many no-matches are being reported or many
words are not being recognized, try one or more of the following solutions:

 Check that unrecognized words are contained in the grammar.

 Adjust the word penalty. For errors caused because the recognizer is inserting
too many words that are not there, increase the penalty. If the recognizer is
missing words that are there, decrease the penalty.

You adjust the word (and silence) penalties using define statements in a rule-
based grammar. See page 12. If adjusting the word penalty doesn‘t work, try
adjusting the silence penalty.

 (XML or SLM only) If the recognizer is substituting a referenced word with a
different word, use word weighting to favor or discourage individual words.
Insert weight attributes (floating-point values) within nested <item> tags as
shown here:

<item>

 <one-of>

 <item weight="0.8"> New York </item>

 <item weight="0.2"> Newark </item>

 </one-of>

</item>

 Use pron tags if appropriate.

Pronunciation tags should be used if the grammar includes digits, names, quantities
(whole numbers), spellings, and short confirmations.

See ―Adding pronunciation tags to an XML grammar‖ (page 15) or ―Adding
pronunciation tags to a WBNF grammar‖ (page 20) as appropriate.

Uploading, Testing, and Managing Grammars

Application Developer’s Guide 37
AT&T Proprietary (Restricted)

D R A F T

 In the grammar, remove or insert disfluencies.

Disfluencies, which are the natural irregularities and hesitations in the
smooth flow of speech, are often accounted for in a grammar since they
are a part of spoken language. Adding a rule for disfluencies often
improves recognition; normally one rule for disfluencies at the beginning
of a grammar is enough. However, in some cases, removing disfluencies
can simplify a grammar, making it more efficient and increasing
recognition.

 Check the audio files for audibility. There may be a problem with the audio
rather than with the recognition.

 Some voices are simply hard to recognize, particularly those that are
mumbled or heavily accented. It might not be possible to get good results
with some voices.

Any time you update the grammar, re-upload the file for the changes to take effect.

6.6 Setting recognizer preferences with a commands file

Depending on your grammar, adjusting recognizer parameters can improve
performance. Currently, you can adjust the following parameters for each grammar.

 Speed vs accuracy, which controls the tradeoff between fast processing and
accurate recognition. Better accuracy requires more CPU but at a cost of
slower processing speed. A value of 0 is the fastest, and 1.0 the most
accurate. The default is .5.

 Sensitivity, which controls how sensitive the recognizer is when determining that
audio is speech. Use a lower value for noisy environments and a higher one for
low-noise situations. The default is 50, and the supported range is 1-100.

 Number of results returned. By default the recognizer returns a single result.
However, in some cases (such as when the result is cross-checked against a
database), you may want more than one result to increase the chances that
the correct response is returned.

You set recognizer parameters by creating a WATSON commands file from the
Manage Grammars dialog (select WATSON commands file from the dialog).

Each command uses the following syntax:

set name=value

where name can be one of the following parameters and value is a value appropriate
to the parameter.

config.speedVsAccuracy Value range: 0.0 – 1.0 (default is .5)

Chapter 6

38 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

config.vadSensitivity Value range: 1-100 (default is 50)

config.nbest Value range: n (default is 1)

Note: These recognizer parameters are the same that can be set through the REST
API control parameter (see page 54). Note that the REST control parameters
override the settings contained within the WATSON commands file.

6.6.1 Preferences for automatic endpointing

In many usage scenarios, it is desirable to let the ASR engine itself decide when the user
starts and finishes speaking, rather than requiring the user to signal these events by pressing
a button.

WATSON supports automatic endpointing through its ―timeout‖ parameters. To configure
a grammar to be used with endpointing, add the following statements to the grammar‘s
associated *.cmds file:

activateEvh "timeouts"

activateEvh "speechstart-hmm"

timeouts.firstTimeout = 400

timeouts.secondTimeout = 500

After firstTimeout milliseconds of silence after speech start, WATSON will generate a result,
and if the result‘s confidence score is above the recognition threshold, it will return this
result to the client; if the score is below the threshold, it will continue processing audio.

After secondTimeout milliseconds of silence after speech start, WATSON will generate a
result and return it to the client, even if its confidence score is below the recognition
threshold.

It is possible to specify the timeout parameters in the ASR request instead of using the
*.cmds file; this can be convenient for testing, when the ability to quickly tweak parameters
is important. To do this, you would add the parameter setting statements using the
mashup‘s control parameter, by adding the following to the request URL:

Uploading, Testing, and Managing Grammars

Application Developer’s Guide 39
AT&T Proprietary (Restricted)

D R A F T

...&control=activateEvh+%22timeouts%22%3BactivateEvh+%22speechstart-

hmm%22%3Btimeouts.firstTimeout+=+400%3Btimeouts.secondTimeout+=+500

(Note: the above is URL-encoded, so the + signs represent spaces, %22 represents the
double quote character, and %3B represents the semicolon, used for separating statements.)

This mechanism can also be used to override settings from the *.cmds file.

Application Developer’s Guide 41
AT&T Proprietary (Restricted)

D R A F T

7 Modifying Output Speech for
Natural Voices

AT&T‘s Natural Voices converts text to speech using a large sampling of previously
recorded sound segments that it combines on the fly to form any word or phrase.
There are four main steps to converting text to speech:

 Normalizing the text
Text contains more than just words. Non-words—abbreviations & acronyms,
numbers, symbols ($, &, /)—need to be interpreted or fully expanded into words.
For example, does Dr. mean drive or doctor; does ―1/2‖ mean ―one-half,‖
―January 2‖, or something else (page ―1 of 2‖)? The context can resolve this
problem.

 Retrieving the pronunciation for each word.
Natural Voices provides a large, general English dictionary from which it
retrieves phonetic spellings.

 Combining sound segments.
The phonemes that make up a word are matched to sound segments, which
are then combined into natural sounding phrases.

 Synthesizing the speech.
The sound segments combined in the previous step are converted to a
speech signal using the specified language, voice, and speaking rate.

The way in which the input text sounds is based on default rules applied by the
Natural Voices server at each step. However, you can apply different rules to
change the way in which the text is normalized, or modify the prosody (the
intonations, rhythm, pauses, of spoken speech) or pronunciation of individual
words.

To modify the speech, do one (or both) of the following:

 Spell out numbers and abbreviations to get the exact pronunciation.

For example, for ―1/2‖ to be pronounced ―one of two‖ (instead of as one half),
type out the words rather than using numbers).

 Insert SSML tags as described in the next section. SSML tags can modify
the normalization, prosody, and pronunciation.

Chapter 8

42 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

7.1 Using SSML tags

SSML is a standardized XML markup language for modifying the way text is processed
by TTS engines. The SSML tags are instructions for normalizing text and controlling
emphasis and other speaking qualities (prosody). The tags, which are inserted into the
text, either manually or automatically by an application, do the following:

 Normalize text by interpreting symbols, abbreviations, and acronyms
according to context.

 Substitute a word for another. For instance, you may want all instances of
―America‖" to be replaced with ―United States".

 Resolve ambiguities. Is "lead" to be pronounced "led" or "leed"?

 Achieve natural phrasing by applying stress, intonation, and pitch where
appropriate, or inserting pauses.

 Change the volume and speaking rate.

Tags are not always the best choice. Punctuation (commas and periods) can usually be
inserted more quickly and easily than SSML tags to create pauses. In fact, whenever
possible, use punctuation (commas and periods) for pauses, or use text formatting for
text contained in tables.

SSML tags can be inserted into the text, or you can set up a preprocessing step where
the tags are inserted automatically by a program running on a different server.

See Table 5.1 for a quick listing of SSML tags. See For detailed information about XML
and SSML, see World Wide Web Consortium (W3C).

7.1.1 SSML syntax

SSML tags must be set off with an opening and closing tag as shown in this example, in
which the emphasis tag makes ―this‖ be pronounced louder than surrounding words.

Make <emphasis> this </emphasis> more prominent.

A small number of empty tags don‘t require both an opening and closing tag (such as
the <break/> tag, which inserts a space between two words).

Some SSML tags take an attribute and a value for even more control. For example, you
can control the length of a pause:

Begin <Break time="100ms"/> now. (or Begin <Break time="3s"/>

now.)

http://www.w3c.org/

Building a Speech Mashup Client

Application Developer’s Guide 43
AT&T Proprietary (Restricted)

D R A F T

Table 7.1 SSML tags

<say-as> tags

value can be:

<say as> tags provide hints on which text expansions are more likely given the context.

Syntax is: <say-as interpret-as="value"> text </say-as>

 "acronym" Pronounces each letter individually. Useful for acronyms embedded in all uppercase text.
Same as spell tag.

 "address" Identifies text as an address. Pauses are inserted between address components, and
building numbers are spoken in pairs, e.g., 1250 Elm is read twelve fifty elm.

 "currency" US currency only. Expands $ and decimal numbers appropriately.

 "date" Treats the text as a date. The US English default is “mdy” (with slashes); use format attribute

to change to “dmy”.

<say-as interpret-as="date" format="dmy"> 1/2/2008 </say-as>

 "ignore-case" Ignores capitalization of words. Useful for all-uppercase input (the default is to spell out all-
uppercase words).

 "lines" Treats end-of-line as end-of-sentence, so each line is read separately. Useful for lists,
tables, and poems, and provides an alternative to using <s> to force sentence breaks.

 "literal" Passes the string through literally (as is), exactly as typed and without expansion (Main St.
would be pronounced Main s t.).

 "math" Treats text as a mathematical expression, correctly interpreting plus, minus, and division
signs.

 "measurement" Treats text as a measurement, interpreting single quotes as "feet" and double quotes as
"inches."

 "number" Specifies a fraction (using fraction attribute) or separately pronounces each digit (using
digits attribute).

<say-as interpret-as="number" format="fraction | digits"> text

</say-as>

 "spell" Reads characters & digits separately (Hello, becomes H E L L O). Same as acronym.

 "telephone" Treats input number as a telephone number, speaking each digit separately and applying
prosodic phrasing to group digits.

 "time" Pronounces time as hours, minutes, or seconds.

Structure tags Structure tags consists of opening and closing tags surrounding text being synthesized:

<tag-name> text </tag-name >

 <speak> Identifies the language to use. <speak xml:lang="en_us">, which specifies US English.

Other options are en_uk for UK English, en_es for the US dialect of Spanish, and es_es for
European Spanish.

 <voice> Identifies specific voice to use. <voice name="mike"> text </voice> <voice
name="cyrstal"> text </voice>

Can also identify a language: <voice xml:lang="es_us"> 1 2 3 </voice>

 <paragraph> (or <p>). Signals start and end of a paragraph without regard to other formatting hints. Use

when the start and end of a paragraph are not clear. Can also change language:

<p xml:lang="en_us">

 <sentence> (or <s>). Sets off text that is to be read in sentence structure. Can also change language:
<s xml:lang="es_us">

 <mark/> Causes a bookmark notification to be sent. <mark name="bm1"/> causes the client to

receive a bookmark notification with the text “bm1”. See section 7.4 for details.

Prosody tags Prosody tags (except for <break/>) consist of an opening and closing tag.

Chapter 8

44 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Table 7.1 SSML tags

 <break/> Inserts a pause of the specified length. Use with the strength or time attribute.

 <break strength="level"/> where level can be none, x-weak, weak, medium,

strong, or x-strong

 <break time="ns | nms"/> where n is the number of seconds or milliseconds

For slight pauses with no intonation change, use the silence phoneme (<phoneme

alphabet="darpa"” ph="pau"/>).

 <prosody

volume=level>

Adjusts loudness of the audio output (<prosody volume=" level | n | n%"> text</prosody>):

 <prosody volume=level> where level can be silent, x-soft, soft, medium, loud, x-

loud, default (return to normal)

 <prosody volume=n> or n can be a number between 1 and 100 (or above)

for a relative change from current volume.

 <prosody volume=n%> A minus or plus makes the change in volume a variation from

the default, not current, volume

 <prosody

rate=value>
Varies the speaking rate to be faster or slower (<prosody rate="value">

text</prosody>):

where value can be x-fast, fast, medium, slow, x-slow, or default (to return to a normal
rate). value can also be a number, where .5 is half the default rate, 2 is double the default

rate, and values such as .8 and 1.2 are somewhere in between.

 <emphasis

level="level">
Applies more or less emphasis (<emphasis level="level"> text </emphasis>)

where level can be strong, moderate, none, or reduced.

Phoneme tag Specifies a particular pronunciation for a single instance of a word. No part-of-speech rules
are applied.

 <phoneme alphabet="darpa" ph="f aa 1 dh er 0"/>.

For a listing of the phonemes, see table 5.2.

7.2 Changing word pronunciations

Natural Voices includes a standard dictionary that provides pronunciations for common
English words. However, some words, especially technical terms, jargon, or regional
pronunciations, may not be included in the provided dictionary.

When a word is not included or when you prefer a different pronunciation than the one
provided, you can use the <phoneme> tag to specify the exact pronunciation using the
phonemic spelling.

Natural Voices uses the DARPAbet phoneme set as shown in table 5.2.

Building a Speech Mashup Client

Application Developer’s Guide 45
AT&T Proprietary (Restricted)

D R A F T

Table 7.2 DARPAbet phoneme set

Phoneme Example Transcription More Examples

 aa Bob /b aa b 1/ knot

 ae bat /b ae t 1/ bad, gnat

 ah but /b ah t 1/ cub, tuck, bud

 ao bought /b ao t 1/ saw, caught

 aw down /d aw n 1/ about, how

 ax about /ax 0 b aw t 1/ onion, upon

 ay bite /b ay t 1/ high, psycho

 b bet /b eh t 1/

 ch church /ch er ch 1/

 d dig /d ih g 1/

 dh that /dh ae t 1/

 eh bet /b eh t 1/ mess, led

 er bird /b er d 1/ curb

 ey bait /b ey t 1/ laid, eight

 f fog /f ao g 1/ phone

 g got /g aa t 1/

 hh hot /hh aa t 1/

 ih bit /b ih t 1/ hip, in

 iy beat /b iy t 1/ heap, teal

 jh jump /jh ah m p 1/

 k cat /k ae t 1/ kick

 l lot /l aa t 1/

 m mom /m aa m 1/

 n nod /n aa d 1/ noun

 ng sing /s ih ng 1/

ow boat /b ow t 1/ sew, coal

 oy boy /b oy 1/ foil

 p pot /p aa t 1/

 r rat /r ae t 1/

 s sit /s ih t 1/

 sh shut /sh ah t 1/

 t top /t aa p 1/

 th thick /th ih k 1/

 uh book /b uh k 1/ full

 uw boot /b uw t 1/ fool, crude, do

 v vat /v ae t 1/

 w won /w ah n 1/

 y you /y uw 1/

Chapter 8

46 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

 z zoo /z uw 1/ xylophone

 zh measure /m eh zh 1 er 0/

7.3 Testing the TTS conversion

The TTS functionality can be accessed via the /smm/tts servlet, which takes the
following parameters:

uuid The UUID for authenticating with the mashup server.

appname The application name under which the server will write
log messages.

text Text to speak. Note: Text may also be supplied as the
body of a POST request (see below).

audioFormat Format for the returned digital audio. Possible values are
amr (AMR narrow-band), mulaw (AU with µ-law
encoding), alaw (AU with A-law encoding), and linear
(AU with 16-bit linear encoding). The default is amr.

sampleRate Desired sample rate for the returned digital audio. The
default is 8000 Hz. Note that AMR-NB has a fixed
sample rate of 8000 Hz, so specifying a different
sampleRate will produce odd-sounding results.

volume The volume of the generated audio. The valid range for
this parameter is 0 to 500; the default value is 100.

voice Voice to use. Currently there are four options: mike
(male, English), crystal (female, English), alberto (male,
Spanish), and rosa (female, Spanish). The default is
crystal.

ssml Specifies whether or not the text to speak contains SSML mark-up;
this may be true or false. The default is false.

notifications Specifies which types of notifications should be returned, and
optionally also specifies the desired audio/bookmark container
format. See section 7.4 for details.
The notifications can be any combination of bookmark, phoneme,
viseme, and word. In addition, the container format may optionally
be specified using one of simple, ogg, or multipart, with simple
being the default. The individual parts of this parameter are
separated by commas.
For example, to select bookmark and word notifications, with the
ogg container format, use notifications=bookmark,word,ogg.

You can exercise this API using wget, like this:

 wget -O output_file

'http://<SMM_SERVER>/smm/tts?text=Hello+world&audioFormat=mulaw'

If the text to be spoken is long or contains characters that have to be percent-encoded in a URL

Building a Speech Mashup Client

Application Developer’s Guide 47
AT&T Proprietary (Restricted)

D R A F T

(i.e., anything other than the letters a-z and A-Z, digits 0-9, and hyphen, period, underscore, and
tilde), it is probably more convenient to send the text using an HTTP POST request instead of
using a GET with the text parameter; here‘s how to do this using wget:

 wget -O output_file --post-file=text_file --header 'Content-

Type: text/plain' 'http://<SMM_SERVER>/smm/tts?audioFormat=mulaw'

Note: The --header option is necessary because when Content-Type is unspecified, wget
sets it to application/x-www-form-urlencoded, and that makes the Tomcat server parse the
request body as a form submittal, which is not what you want when you‘re trying to upload a
file. The tts servlet ignores the Content-Type, so you can set it to whatever you want, as long as
it isn‘t application/x-www-form-urlencoded. When sending text in an encoding other than ISO-
8859-1, you should use a content type that specifies the encoding, e.g., ―text/plain;
charset=UTF-8‖ or ―application/xml; charset=ISO-8859-5‖.

7.4 TTS With Bookmarks / Notifications

7.4.1 Introduction

In addition to the synthesized speech itself, the NaturalVoices TTS engine can generate
notification events that provide real-time information about the progress of the speech.

One type of notification are bookmarks, generated using the SSML <mark/> tag. These
notifications can be inserted in the text wherever necessary, and can be used, for
example, to tell an e-book reader when to scroll the text (by inserting a bookmark at the
end of each line) or turn to the next page (by inserting a bookmark at each page break).

The other types of notification are phoneme, viseme, and word notifications. These inform
the client about the individual phonemes, visemes (lip movements), and words that are
being spoken. NOTE: phoneme and viseme notifications are currently only
available to AT&T personnel.

The format of a phoneme notification is
―NOTIFICATION:PHONEME:phoneme:duration:stress‖; the format of a viseme notification is
―NOTIFICATION:VISEME:next-id:current-id:duration:feature‖; the format of a word
notification is ―NOTIFICATION:WORD:speak-handle:character-offset:word-length:sentence-
length:flags:part-of-speech‖. Please refer to the NaturalVoices manual for more detailed
information.
The format of a bookmark notification is simply the string specified in the <mark> tag‘s
name attribute.

The mashup server delivers all these notifications over the same channel as the audio.
Since most audio formats do not support meta-data embedded at arbitrary points inside
the audio stream, the mashup server needs to use a higher-level ―container‖ stream for
combining audio and notifications. This chapter describes the supported container
formats.

The formats described in this section are designed to allow interleaving of streaming
digital audio with some type of metadata, such as bookmarks for text-to-speech (TTS)
applications, or gestures for multi-modal applications combining automatic speech
recognition (ASR) with other input modes. The current reference implementations were
written for a TTS-with-bookmarks demo, and some of the language reflects this, but

Chapter 8

48 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

other types of metadata can be transmitted using the same formats by defining a
different structure for the metadata. The code that generates and parses the interleaved
audio/metadata streams is agnostic of this structure and treats the metadata as a generic
byte stream.

7.4.2 Simple Format

The ―Simple‖ format was designed to allow interleaving of audio and metadata with
minimal overhead, in terms of CPU usage, latency, and network bandwidth
requirements. Its main drawback is that it is not compatible with any established
standards, so all tools to inspect or manipulate it need to be written from scratch.

When transmitted over HTTP, a Simple stream should be identified using Content-
Type: application/x-bookmarked-audio (TBD – this is what the current
SimpleContainerOutputStream implementation uses, but should this be changed to
something more generic, e.g. application/x-audio-with-interleaved-metadata?).

A Simple stream starts with the four bytes 0x41, 0x4D, 0x53, 0x21, representing the
four-character string ―AMS!‖ in ASCII encoding. This is followed by zero or more
chunks, whose layout is defined below. There is no end-of-stream marker; readers are
expected to read Simple streams, chunk by chunk, until they encounter end-of-file, or
until some point identified by the transport protocol, e.g. the optional Content-Length
header in HTTP messages.

A chunk consists of a two-byte header, followed by the chunk data. The two header
bytes should be interpreted as a 16-bit integer in network byte order (most significant
byte first). The two most significant bits of this integer indicate the chunk type; currently
defined are 00=audio, 01=bookmark, 10=reserved, 11=reserved; the remaining 14 bits
should be interpreted as an unsigned integer indicating the number of chunk data bytes
that follow.

A reader can reconstruct the audio stream by simply concatenating the chunk data from
all audio (type 00) chunks.

Bookmark (type 01) chunks have bodies that consist of a four-byte time stamp, followed
by a text string in ISO-8859-1 encoding. (Other types of data can of course also be sent
by simply defining a different encoding for the bookmark text.) The time stamp is to be
interpreted as a signed integer in network byte order, representing a number of
milliseconds from the beginning of the audio stream.

Bookmarks are encoded one per chunk, so even if two bookmarks are to occur
simultaneously, they must still be sent in two separate chunks, although this limitation
can be worked around by defining application-specific encodings.

Example:

The following is a ―simple‖ stream generated for the text ―Hello, world.‖, converted to
speech with bookmarks at the beginning, between the two words, and at the end. The
speech is encoded using AMR-NB encoding with the highest bit rate. The chunk
headers are highlighted in the dump listing.

The stream is identified by the ―AMS!‖ magic number:

00000000 41 4d 53 21 AMS!

Building a Speech Mashup Client

Application Developer’s Guide 49
AT&T Proprietary (Restricted)

D R A F T

The first bookmark:

(Note that the timestamp is 0x00000000, or 0 ms from the start of audio.)

00000000 40 12 00 00 00 00 66 69 72 73 74 20 @.....first

00000010 62 6f 6f 6b 6d 61 72 6b bookmark

Several audio chunks:

00000010 00 26 23 21 41 4d 52 0a .&#!AMR.

00000020 3c 91 17 16 be 66 78 00 00 01 e7 af 00 00 00 00 <...>fx...g/....

00000030 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000040 00 20 3c 48 77 24 96 66 78 00 00 01 e7 ba 00 00 . <Hw$.fx...g:..

00000050 00 00 c0 00 00 00 00 00 00 00 00 00 00 00 00 00 ..@.............

00000060 00 00 00 20 3c 5b 02 9d 86 ba 8a 00 10 02 0c 3f ... <[...:.....?

00000070 19 90 88 2a 9a 52 65 96 00 1b fd f5 2d 13 2c b9 ...*.Re...}u-.,9

00000080 20 1e 97 f0 00 20 3c e0 54 2c 93 7b 38 ae a0 92 ..p. <`T,.{8. .

00000090 c0 bb 6a 8e 78 bb bf ff f9 30 ba 02 65 fc 7f fe @;j.x;?.y0:.e|.~

000000a0 f1 7f c4 39 97 00 00 20 3c aa ea 75 14 a9 79 ff q.D9... <*ju.)y.

000000b0 e1 fd 30 e5 f5 14 bc fe 1f 1b 4f e9 af c3 7d 4b a}0eu.<~..Oi/C}K

000000c0 9a e9 51 a7 d3 dc 7a d0 .iQ'S\zP

The second bookmark:

(Note that the timestamp is 0x0000021c, 540 ms from the start of audio, while only 100
ms of audio have been sent so far. Meta-data, whether bookmarks or gestures, does not
have to be aligned with the audio stream; bookmark packets should typically appear
early so that a TTS playback client can prepare to show them on time, while gesture
packets may have to appear late, if the gesture information provided by the operating
system has more latency than the audio stream.)

000000c0 40 13 00 00 02 1c 73 65 @.....se

000000d0 63 6f 6e 64 20 62 6f 6f 6b 6d 61 72 6b cond bookmark

More audio:

000000d0 00 20 3c . <

000000e0 48 7e 6b b2 b8 3e 03 69 73 85 38 3b 0a 5e c0 99 H~k28>.is.8;.^@.

000000f0 29 c5 5e 3e 29 aa e5 d8 f5 2e 9b 10 70 99 f0 00)E^>)*eXu...p.p.

00000100 20 3c 09 7f c6 60 7f b8 67 e7 9d e1 b5 7d bb b5 <..F`.8gg.a5};5

00000110 42 11 fc 19 1d 26 d6 e7 a2 c4 ca d5 19 ca d4 6b B.|..&Vg"DJU.JTk

00000120 40 00 20 3c 54 4c 1d e9 83 5d f0 56 89 86 68 00 @. <TL.i.]pV..h.

00000130 6e 59 d6 57 4e fa 20 80 09 00 8c 31 7e 62 e1 24 nYVWNz1~ba$

00000140 ba 4f e0 00 20 3c 20 44 02 09 87 20 79 81 fc d4 :O`. < D... y.|T

00000150 29 7d 71 d2 e8 a8 2c 83 3a 01 34 44 60 18 6e 4b)}qRh(,.:.4D`.nK

00000160 70 78 18 5c f0 px.\p

...and so on.

Note that most of the audio chunks in this example are 32 bytes long, which
corresponds to one 20 ms AMR-NB frame. Using a larger buffer, these chunks could be
combined into larger ones, which would reduce the transmission overhead caused by
the chunk headers, but would also introduce additional latency because the sender
would have to queue up more audio before being able to flush the buffer. The trade-off
between bandwidth and latency is one that needs to be determined on an application-
by-application basis.

7.4.3 Ogg Format

The Ogg format for audio/metadata interleaving is documented in the AT&T Internal
Addendum to this document.

Chapter 8

50 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

7.4.4 MIME Multipart/Mixed Format

The MIME Multipart/Mixed format for audio/metadata interleaving is documented in
the AT&T Internal Addendum to this document.

Building a Speech Mashup Client

Application Developer’s Guide 51
AT&T Proprietary (Restricted)

D R A F T

8 Building a Speech
Mashup Client

A speech mashup client is the part of a speech-enabled application that runs on the
user‘s mobile device or Mac (or, in principle, any voice-enabled and networked device).
Its role is to capture and relay speech or text to the speech mashup manager (or SMM),
which in turn handles authentication, accounting, and communication with the AT&T
speech servers. The SMM returns the results from the speech related task (either ASR or
TTS) to the client. For an ASR task, the result format is in simple XML or JSON
formats, or using the proposed EMMA standard (http://www.w3.org/TR/2007/WD-
emma-20070409/). For a TTS task, an audio stream is returned.

You can create your own client from scratch, modify a client to incorporate code
provided in this chapter for relaying audio or text and receiving back the results, or
download one of the following from the Speech Mashup portal web site through the
Sample Code link:

 A Java ME client that can be used for most Java-enabled mobile devices.

 A native client for the iPhone.

 A Safari plugin for the Macintosh. The plugin records audio and communicates with
the SMM, it can be controlled through a JavaScript API, making it easy to create
speech-enabled web pages.

The client communicates with the SMM using a REST (Representational State Transfer) API.

8.1 REST API information

The speech mashup manager provided by AT&T adheres to REST principles of
statelessness, ensuring that each request made contains all relevant information,
including the information returned from previous requests made earlier in the same
session. (Thus multiple searches assume the same location, relayed at the beginning of
the search.)

However, in order to support clients that cannot hold an HTTP request output stream
open to send real-time audio, the speech mashup manager also supports a stateful mode
of operation, where multiple chunks of audio are sent using multiple HTTP requests; in
this mode, the server will maintain enough state to join the chunks of audio and present
them to the WATSON ASR server as a continuous stream. The recognition results will
be returned to the client once it sends the final request of the sequence.

http://www.w3.org/TR/2007/WD-emma-20070409/
http://www.w3.org/TR/2007/WD-emma-20070409/

Chapter 8

52 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

The REST API used for making requests follows the name=value format. Table 6.1 lists
the commands, which are URL-encoded, to directly control the recognizer actions. See
Table 6.3 for commands to control the TTS conversion.

Table 8.1 Request API parameters for ASR

Parameter Value Description

uuid string Required. Unique user ID assigned at registration.

resultFormat string Optional. Result format, which can be EMMA, JSON, XML.
Defaults to XML.

appname string Required. Name of application directory.

cmd string Required. One of the following command strings:

oneshot, rawoneshot

Starts ASR in stateless mode; the request body will
contain the entire audio stream.

start Starts ASR in stateful mode; the audio stream will be
sent using one or more audio or rawaudio requests.

stop Stops stateful ASR and returns the result.

audio, rawaudio
Sends a chunk of audio for stateful ASR

The “raw” versions of oneshot and audio include the audio

unencoded; the non-“raw” versions include the audio hex-

encoded, for the benefit of JavaScript clients that cannot
manipulate raw bytes.

audioFormat String Optional. This specifies the format of the audio data supplied
by the client. Possible values are:

amr Adaptive Multi-Rate (AMR), narrow-band only
au Sun AU, µ-law or 16-bit linear
caf Apple Core Audio Format, µ-law or linear

wav Microsoft/IBM Wave, µ-law or linear
mulaw Raw µ-law
linsbe Raw 16-bit linear, signed, big-endian

linsle Raw 16-bit linear, signed, little-endian
linube Raw 16-bit linear, unsigned, big-endian
linule Raw 16-bit linear, unsigned, little-endian

auto Any of the above; will look for amr, caf, wav, or au
 header, and if none is found, will use statistical
 analysis of the first 1024 bytes of audio to determine

 the format (raw µ-law or any of the above raw 16-bit
 linear varieties); falls back on header-less amr if the
 statistical analysis fails.

If unspecified, this option defaults to auto.

control string Optional. Parameters to control the operation of the speech

recognizer. See next section for a description of recognizer
controls.

grammar string Required. Name of grammar. In case of grammars with the

same name, the recognizer searches first for personal
grammars then for shared grammars and lastly for prebuilt
grammars.

sampleRate integer Optional. The audio data sample rate. This only needs to be
specified for audio data where the sample rate isn’t encoded

in the data itself, i.e. raw µ-law or linear; for formats that do
include the sample rate, this parameter is ignored.
Defaults to 8000 Hz.

platform string Optional (but recommended). Some text to identify the

make, model, and version of the client’s hardware platform,

Building a Speech Mashup Client

Application Developer’s Guide 53
AT&T Proprietary (Restricted)

D R A F T

Table 8.1 Request API parameters for ASR

e.g. “BlackBerry 8800”.

client string Optional. Some text that identifies the client software version,
e.g. “Hotel Finder 2.0”.

imei string Optional. If the client is a mobile device, clients may set this

to the device’s International Mobile Equipment Identity code,

to allow application developers to distinguish individual users.
For production applications, this parameter should not be
used, or at least not without the user’s explicit consent,
because of privacy considerations.

field string Optional. For clients that use ASR in multiple contexts, e.g.,
first to recognize a location and next a business name, this

parameter distinguishes the specific context. This is often
redundant since the grammar will usually be specific to the
context in question, but it can be helpful for ASR tuning.

8.1.1 Setting recognizer parameters

Within the client, you can control the following three recognizer settings, which are set
using the control parameter described in table 6.2:

 Speed-vs-accuracy, which represents the tradeoff between accuracy (how well the
recognizer matched the actual utterance) to the amount of CPU (represented in time)
required to achieve the accuracy. Increasing accuracy slows the speed of processing.

 Sensitivity, which determines whether a sound is judged more or less likely to be
speech rather than random noise. The higher the sensitivity, the quicker the recognizer
is to judge noise to be speech.

 Number of returned results. The default is for one result to be returned. However, in
some cases, such as when the application cross-checks results against a database, you
may want more than one result to increase the chances that the correct result is
returned to the client.

Additional parameter controls will be added in future versions of the speech mashup.

You control recognizer parameters using the REST API‘s control parameter with
the set WATSON command:

set name=value

where name can be one of the parameters in the following table and value is a value
appropriate to the parameter. Since all speech mashup commands must be URL-
encoded (see http://en.wikipedia.org/wiki/Percent-encoding for details), the following
is an example of how to change a parameter setting:

&control=set+name=value

http://en.wikipedia.org/wiki/Percent-encoding

Chapter 8

54 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Table 8.2 Recognizer parameters

Parameter Value range Description

config.speedVsAccuracy

0.0-1.0

Controls the speed-vs-accuracy trade-off, with 0

being the fastest, and 1.0 the most accurate
recognition. The default is .5.

config.vadSensitivity

1-100 Controls how sensitive the recognizer is when

determining that audio is speech. Use a lower
value for noisy environments & a higher one for
low-noise situations. The default is 50.

config.nbest

n Number of best results forwarded to the client.
Default is 1.

8.1.2 Request API parameters for TTS

The following parameters apply for the Natural Voices server. If there is any conflict
between these parameters and SSML tags, the SSML tags have priority.

 Table 8.3 Request API parameters for TTS

Parameter Value Description

uuid string Required. Unique user ID assigned at registration.

text string Optional. Text may also be supplied in the body of a POST
request.

audioFormat string Optional. This specifies the format of the audio data supplied
by the client. Possible values are:

amr Adaptive multi-rate (AMR), narrow-band only

mulaw AU with µ-law encoding

alaw AU with A-law encoding

linear AU, 16-bit linear

The default is amr.

voice string Optional. Crystal (default) or Mike.

sampleRate integer Optional. The audio data sample rate. Defaults to 8000 Hz.

Note that AMR-NB has a fixed sample rate of 8000 Hz, so
specifying a different sampleRate will produce odd-sounding
results.

ssml True or False Optional. Set this parameter to True when text contains

SSML tags. (When set to the default, False, each word is
pronounced, including SSML tags).

Building a Speech Mashup Client

Application Developer’s Guide 55
AT&T Proprietary (Restricted)

D R A F T

8.2 Sample clients for devices

The two clients and the Safari plugin are available for downloading from the Speech
Mashup Portal (use the link Sample code for clients in the portal menu). The following
sections give a high-level description of each.

8.2.1 Client for Java ME

Audio capture in the Java ME environment is performed using the Mobile Media API
(MMAPI, specified in JSR-135).

Recording is performed using code similar to this:

import java.io.ByteArrayOutputStream;

import javax.microedition.media.Manager;

import javax.microedition.media.Player;

import javax.microedition.media.control.RecordControl;

// Start recording

Player player = Manager.createPlayer("capture://audio?encoding=amr");

player.realize();

RecordControl rc = (RecordControl) player.getControl("RecordControl");

ByteArrayOutputStream bos = new ByteArrayOutputStream();

rc.setRecordStream(bos);

rc.startRecord();

player.start();

// ...now recording; digitized audio is written to ByteArrayOutputStream bos

// Stop recording

RecordControl rc = (RecordControl) player.getControl("RecordControl");

player.stop();

rc.stopRecord();

rc.commit();

player.close();

byte[] audio = bos.toByteArray();

The first object created is the Player. This is the generic MMAPI name for a multimedia
device; the precise type of device created is determined by the URL passed to
Manager.createPlayer(). URLs starting with "capture:" indicate recording devices, such
as audio or video recorders, or still image capture devices. The "encoding=amr"
parameter is optional; on devices that support multiple audio formats, this can be used
to select a specific one. If available, AMR (adaptive multi-rate compression; see also
http://en.wikipedia.org/wiki/Adaptive_multi-rate_compression) with fixed mode
AMR_12.20 (12.20 kbit/s) is the format of choice, because it compresses speech
significantly better than other common formats, and since bandwidth on the cellular
data channel can be very limited, high compression can be crucial to providing quick
response times.

You control the Player by obtaining its RecordControl, which is where to attach a
destination for the recorded data -- a ByteArrayOutputStream in the above example
code. Another possibility is to use the setRecordLocation() method, which takes a URL
argument and can be used to direct the data to a file on the local file system (via the use
of a "file:" URL) or to another multimedia device.

Since data will not be manipulated or saved locally and since the volume of data will be
small (a few kilobytes for a typical utterance in AMR format; a few dozen kilobytes in
the case of uncompressed 16-bit PCM), it can be conveniently captured to memory.
Saving to memory also avoids the security issues associated with multimedia- and
filesystem-access APIs.

http://en.wikipedia.org/wiki/Adaptive_multi-rate_compression

Chapter 8

56 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Audio is sent to the WATSON recognizer using the widely used HttpConnection and
HttpsConnection interfaces.

The servlet is invoked with one or more request parameters, and optionally a request
body containing audio. There is one required parameter, cmd (command), which can
have the values start, audio, rawaudio, stop, oneshot, and rawoneshot. If the
command is start, two additional parameters are supported: control is an optional
chunk of text that is sent to WATSON recognizer verbatim to initialize the instance, and
grammar is a required parameter that specifies the grammar to be used.

Once the start command is sent, and the servlet has opened and initialized a connection
to WATSON server, the client may start sending audio or rawaudio commands. These
are POST requests containing hex-encoded (audio) or raw (rawaudio) audio in the
request body; the servlet will decode the audio, if necessary, and forward it to
WATSON. Finally, once audio capture is finished, the client sends a stop command,
which causes the servlet to send a "stop" message to the WATSON server and then wait
until it receives a Notify Message with an Event Type of "phrase_result"; this message is
then formatted as XML and returned to the client.

The oneshot and rawoneshot commands combine the entire start/audio/stop or
start/rawaudio/stop sequence in one command; they require the same parameters as
the start command, and they expect the audio data in a POST request body, like the
audio and rawaudio commands.

WMMJavaMEClient demonstrates all these tasks. It sends a POST request with a
rawoneshot command, and captures the response‘s body in a byte array:

import java.io.ByteArrayInputStream;

import org.xmlpull.mxp1.MXParser;

import org.xmlpull.v1.XmlPullParser;

// Send a POST to the WMMServlet, with the uuid, command,

// and grammar passed as query string parameters in

// the request URL, and the captured audio passed in the request body

byte[] audio = recStream.toByteArray();

InputStream is = new ByteArrayInputStream(audio);

String args = "?uuid=[your_own_UUID]" +

 “&appname=[application name]” +

 "&cmd=rawoneshot" +

 "&grammar=ypc-citystate-gram";

String url = "http://service.research.att.com/smm/watson" + args;

HttpConnection con = null;

OutputStream os = null;

byte[] data = null;

String encoding = null;

String text = null;

boolean success = false;

try {

 con = (HttpConnection) Connector.open(url);

 con.setRequestMethod("POST");

 con.setRequestProperty("Content-Type", "application/octet-stream");

 os = con.openOutputStream();

 byte[] buf = new byte[8192];

 int n;

 while ((n = is.read(buf)) != -1)

 os.write(buf, 0, n);

 is = null;

 os.close();

 os = null;

 int resCode = con.getResponseCode();

 if (resCode ==== 200) {

 is = con.openInputStream();

Building a Speech Mashup Client

Application Developer’s Guide 57
AT&T Proprietary (Restricted)

D R A F T

 encoding = con.getEncoding();

 if (encoding ==== null)

 encoding = "UTF-8";

 ByteArrayOutputStream bos = new ByteArrayOutputStream();

 while ((n = is.read(buf)) != -1)

 bos.write(buf, 0, n);

 data = bos.toByteArray();

 success = true;

 } else {

 text = "" + resCode + " " + con.getResponseMessage();

 }

} catch (IOException e) {

 text = e.getMessage();

} finally {

 if (os != null)

 try {

 os.close();

 } catch (IOException e) {}

 if (is != null)

 try {

 is.close();

 } catch (IOException e) {}

 if (con != null)

 try {

 con.close();

 } catch (IOException e) {}

 }

}

If the request was successful, i.e., no exceptions were thrown and the HTTP response
code was 200, it captures the response body in a byte array named data; it will contain
something like this:

<NotifyMsg>

 <type>9</type>

 <rawText>event: phrase_result

reco: Florham Park New Jersey

interpretation: Florham Park New Jersey

norm_score: 53

grammar:

/n/u205/watsonadm/ypc/lm/../CityStateGram/xml.bmul2.0_bflr10.0_sil4.0/ac0.1_st0.1/USA/a.l

m

trigger: userTimeout

audio_start_sample: 5521

audio_stop_sample: 17040

audio_processed: 0

frame_count: 300

decoded_frame_count: 300

audio_seconds: 0

clock_seconds: 2.70673

cpu_seconds: 0.44

reco_start_time: 1196204960.538

uttr_end_time: 1196204963.245

uttr_end_audio_time: 3

prompt_audio_time: 0

slot: _city = 97 : 0

slot: _state = NJ : 0

Chapter 8

58 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

</rawText>

 <evType>phrase_result</evType>

 <evData>

 <entry>

 <key>trigger</key>

 <value>userTimeout</value>

 </entry>

 <entry>

 <key>uttr_end_audio_time</key>

 <value>3</value>

 </entry>

 <entry>

 <key>slot</key>

 <value>{_city=97 : 0, _state=NJ : 0}</value>

 </entry>

 <entry>

 <key>cpu_seconds</key>

 <value>0.44</value>

 </entry>

 <entry>

 <key>norm_score</key>

 <value>53</value>

 </entry>

 <entry>

 <key>reco</key>

 <value>Florham Park New Jersey</value>

 </entry>

 <entry>

 <key>frame_count</key>

 <value>300</value>

 </entry>

 <entry>

 <key>audio_start_sample</key>

 <value>5521</value>

 </entry>

 <entry>

 <key>audio_stop_sample</key>

 <value>17040</value>

 </entry>

 <entry>

 <key>audio_seconds</key>

 <value>0</value>

 </entry>

 <entry>

 <key>interpretation</key>

 <value>Florham Park New Jersey</value>

 </entry>

 <entry>

 <key>audio_processed</key>

 <value>0</value>

 </entry>

 <entry>

 <key>grammar</key>

<value>/n/u205/watsonadm/ypc/lm/../CityStateGram/xml.bmul2.0_bflr10.0_sil4.0/ac0.1_st0.1/

USA/a.lm</value>

 </entry>

 <entry>

 <key>uttr_end_time</key>

 <value>1196204963.245</value>

 </entry>

 <entry>

 <key>event</key>

 <value>phrase_result</value>

 </entry>

 <entry>

 <key>decoded_frame_count</key>

 <value>300</value>

Building a Speech Mashup Client

Application Developer’s Guide 59
AT&T Proprietary (Restricted)

D R A F T

 </entry>

 <entry>

 <key>clock_seconds</key>

 <value>2.70673</value>

 </entry>

 <entry>

 <key>prompt_audio_time</key>

 <value>0</value>

 </entry>

 <entry>

 <key>reco_start_time</key>

 <value>1196204960.538</value>

 </entry>

 </evData>

</NotifyMsg>

The remaining code parses this XML, looking for a key element with content reco, and
then extracting the content of the value element that follows. The code does this using
MXP1, which is a lightweight XmlPullParser implementation; its small memory
footprint and minimal CPU usage make it a perfect fit for mobile devices, although for
those used to the more common SAX or DOM parsers, it will take a bit of getting used to:

// Extract city/state information from XML

if (success) {

 XmlPullParser parser = new MXParser();

 parser.setInput(new InputStreamReader(new ByteArrayInputStream(data), encoding));

 int eventType;

 String currKey = null;

 String reco = null;

 String value = null;

 while ((eventType = parser.next()) != XmlPullParser.END_DOCUMENT) {

 if (eventType ==== XmlPullParser.START_TAG) {

 value = null;

 } else if (eventType ==== XmlPullParser.END_TAG) {

 String name = parser.getName();

 if (name.equals("key"))

 currKey = value;

 else if (name.equals("value") && currKey.equals("reco"))

 reco = value;

 } else if (eventType ==== XmlPullParser.TEXT) {

 String t = parser.getText();

 if (value ==== null)

 value = t;

 else

 value += t;

 }

 }

 text = "reco: " + reco;

}

The text variable now holds the recognized text.

The SpeechMashupGuide.zip file that accompanies this manual contains the full source
code for WMMJavaMEClient (click the Sample Code link on the portal home page).
The full code is more sophisticated than what was shown above; instead of storing the
audio on the client and sending it only after recording has ended, it sends the audio in
real time; this leads to a significant increase in complexity, including a custom
implementation of HttpConnection for platforms without proper HTTP/1.1 support
for ―chunked‖ requests bodies. The complexity is worthwhile, though, since it can
dramatically improve end-to-end response times.

http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/
http://www.xmlpull.org/

Chapter 8

60 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

8.2.2 Native client for the iPhone

Click the Sample Code link on the portal home page for a zipped file that contains
source code for a native iPhone application, called SMMDemo, that demonstrates how
to use the mashup portal from that platform.

To build and run SMMDemo, first unpack the SMMDemo.tgz package; to do this, copy it
to a location of your choice, then open a terminal window, and execute these commands:

cd <location.of.your.choice>

tar xvfz SMMDemo.tgz

The iPhone SDK does not provide access to the iPhone‘s built-in AMR audio encoder.
The formats that are supported all generate much larger audio streams, which can be a
problem when those audio streams have to be transmitted over the cellular data channel
(EDGE or 3G), where available data bandwidth can be severely limited. In order to
work around this, SMMDemo performs AMR encoding in software, using version 6.10
of the 3GPP audio codec.

To download this code, open a web browser, and go to the following URL:

http://www.3gpp.org/ftp/Specs/archive/26_series/26.104/26104-610.zip

Save the 26104-610.zip file to <location.of.your.choice>/SMMDemo.

Next, execute these commands in the same terminal as before:

cd SMMDemo

./setup.sh

The setup.sh script will unpack the 26104.zip file, apply patches to some of them, and
copy the files required to build SMMDemo to the SMMDemo/Classes directory.

Once setup.sh has finished, the contents of the SMMDemo directory should look like this:

README.txt Brief reminder of how to get

the contents of the

SMMDemo.tgz package ready for

use in Xcode

26104-610.zip 3GPP AMR codec download

26104-610.doc 3GPP AMR codec documentation

26104-610_ANSI_C_source_code.zip 3GPP AMR codec source code

encoder.c.patch patches to 3GPP code

interf_enc.c.patch

interf_enc.h.patch

rom_enc.h.patch

setup.sh script to unpack and patch

3GPP code

MainWindow.xib

SMMDemoViewController.xib Interface Builder files that

define the application’s UI

layout, and its connections

with the actual code

SMMDemo_Prefix.pch iPhone application

boilerplate

main.m

http://www.3gpp.org/ftp/Specs/archive/26_series/26.104/26104-610.zip

Building a Speech Mashup Client

Application Developer’s Guide 61
AT&T Proprietary (Restricted)

D R A F T

Info.plist

c-code/ Directory containing

unpatched 3GPP AMR codec

source files, extracted from

26104-

610_ANSI_C_source_code.zip

Classes/AMREncoderWrapper.h Interface to 3GPP codec

Classes/AMREncoderWrapper.m

Classes/PCMRecorder.h Interface to iPhone audio

capture

Classes/PCMRecorder.m

Classes/SMMDemo.h This ties together the audio

recording, audio level

monitoring, and audio

streaming; its

receiveResponse method

receives the response from

the mashup manager and

handles it.

Classes/SMMDemo.m

Classes/SMMDemoAppDelegate.h Interface Builder boilerplate

Classes/SMMDemoAppDelegate.m

Classes/SMMDemoViewController.h Event handling code for

SMMDemoViewController.xib

Classes/SMMDemoViewController.m

Classes/StreamSocket.h HTTP interface to mashup

manager: uses a raw socket

and explicitly created HTTP

POST request to stream audio

to the server and receive its

response

Classes/StreamSocket.m

Classes/encoder.c 3GPP AMR codec, patched

Classes/interf_dec.c

Classes/interf_dec.h

Classes/interf_enc.c

Classes/interf_enc.h

Classes/interf_rom.h

Classes/rom_dec.h

Classes/rom_enc.h

Classes/sp_dec.c

Classes/sp_dec.h

Classes/sp_enc.h

Classes/sp_enc32.c

Classes/sp_enc32.h

Classes/typedef.h

SMMDemo.xcodeproj/ The Xcode project. Open this

from Xcode to start building

and running SMMDemo.

Once the source code is set up as shown above, you can open SMMDemo.xcodeproj in
Xcode, build it, and run it on the iPhone simulator or on an actual iPhone.

Chapter 8

62 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Overview of the main SMMDemo source files:

PCMRecorder.m: This file uses the AudioToolbox API to record 16-bit linear PCM at
8000 Hz. The init method initializes an AudioStreamBasicDescription record with the
appropriate parameters, activate activates the audio queue using AudioQueueNewInput()
and allocates buffers using AudioQueueAllocateBuffer() and
AudioQueueEnqueueBuffer(); and start and stop control recording using
AudioQueueStart() and AudioQueueStop(), respectively.

AMREncoderWrapper.m: This file is a wrapper around the 3GPP PCM-to-AMR
encoder. It is used when SMMDemo is in ―amr‖ mode; in ―pcm‖ mode, the output
from PCMRecorder is sent to the speech mashup manager as-is.

StreamSocket.m: Implements sending an HTTP POST request with HTTP/1.1-
compliant ―chunked‖ request body encoding; this allows streaming audio, where the
audio length is not known in advance. (This code uses [NSStream getStreamsToHost],
that is, a raw socket, instead of NSMutableURLRequest; the latter has the
setHTTPBodyStream method that directly supports ―chunked‖ request bodies, but
unfortunately, the API for setting up the input stream consumed by the
NSMutableURLRequest is actually more complex than the sample code provided with
this document.)

The initStreamSocket and openConnection methods initialize and open the StreamSocket
instance; initPostMessage and sendHeaders create and send the HTTP request header
(NOTE: initPostMessage contains the speech mashup manager‘s URL, hard-coded in the
startPost variable); setResponseObserver registers the callback that will be invoked when the
response from the speech mashup manager is received; the sendAudioBytes method
should be called to receive the audio from the iPhone‘s microphone (either directly, in
case PCM mode is used, or after having been encoded by the AMR encoder, in case
AMR mode is used; closePost finishes the current POST request, and closeConnection closes
the current HTTP connection.

SMMDemo.m: The main class, which handles high-level events and responds to
various callbacks. Of interest for testers is the recordingType variable in the loadingComplete
method; this variable can be used to select AMR or PCM recording, by setting the
variable to ―amr‖ or ―pcm‖, respectively. AMR encoding is more compact, requiring
1525 bytes per second vs. 16000 bytes per second for PCM, but AMR encoding requires
a lot of CPU time, and on fast networks, response time may be better with PCM. On
cellular networks, where available data bandwidth can be very limited, AMR will
typically give faster response times.

To make SMMDemo with the speech mashup manager of your choice, change the URL
in [StreamSocket initPostMessage] according to your speech mashup manager‘s base
URL and parameters; see page 51 for details.

8.2.3 Safari plugin for Mac

The SpeechMashupGuide.zip file that accompanies this manual contains source code
for a plug-in that can be used with Safari under Mac OS X. The plug-in can be
controlled using JavaScript calls, and handles both recording audio and communicating
with the server.

The code is in the Safari-Plugin folder, and includes a Project for use with Xcode, and a
Makefile for use with the GNU toolchain.

Building a Speech Mashup Client

Application Developer’s Guide 63
AT&T Proprietary (Restricted)

D R A F T

When the plug-in is installed under /Library/Internet Plug-Ins or
${HOME}/Library/Internet Plug-Ins, it will register itself to handle the audio/watson
MIME type. To use it in a web page, add this somewhere within the page body:

<embed name="audio" id="audio" type="audio/watson"

height="1" width="1">

Your JavaScript code can get access to the plugin by using getElementById():

var plugin = document.getElementById("audio");

The plugin supports the following methods:

 startAudioRecording() Starts capturing audio

 stopAudioRecording() Stops capturing audio

 resetAudioRecording() Reinitializes the audio recorder

 playRecordedAudio() Plays back audio that has been recorded so far.

 asr(grammar, uuid) Calls the portal server to do speech
recognition on the audio that has been recorded
so far; the result from the speech recognizer is
returned as a String.
The grammar and uuid parameter values are
passed to the portal as the corresponding
request parameters.

 asrWithParams(grammar, uuid, params)

Like asr(); the additional params parameter
is appended to the request URL, and can be
used to add an arbitrary set of additional
parameters; it is useful for specifying
platform, client, field, etc.

 asrAsync(grammar, uuid, callback)
Asynchronous speech recognition: this call is
like asr(), except it doesn‘t wait for the
response from the portal, but instead returns
immediately. This method is useful for ensuring
your web page stays responsive while waiting for
the speech recognizer to finish. Once the result
is available, a global function whose name is
given by the callback parameter will be invoked,
with a single String-valued parameter containing
the speech recognizer‘s result.

 asrAsyncWithParams(grammar, uuid, callback, params)
This call is like asrAsync(); the additional
params parameter is appended to the request
URL, and can be used to add an arbitrary set of
additional parameters; it is useful for specifying
platform, client, field, etc.

Chapter 8

64 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

 setBaseURL(url) By default, the plugin tries to connect to the portal
at http://service.research.att.com/smm/watson;

using setBaseURL(), you can point it at a
different server.

 getBaseURL() Returns the base URL set with setBaseURL().

The plugin_test.html page in Safari-Plugin demonstrates how to use
startAudioRecording(), stopAudioRecording(), asrWithParams(), and
asrAsyncWithParams(); it is also useful for testing the plug-in itself under control of the
Xcode debugger.

8.3 Applets for Java-enabled browsers

8.3.1 Introduction

To use speech recognition (ASR) and text-to-speech (TTS) in web applications on Java-
enabled browsers, you can use Java applets. We provide such applets, called
WatsonApplet for ASR and AudioPlayer for TTS. The following sections show how to
load these applets, how to control them using JavaScript, and specify the browser and
JVM requirements for clients.

8.3.2 Speech Recognition (ASR)

The ASR applet, WatsonApplet, is provided in the SignedApplets.jar file, which you can
download at http://service.research.att.com/smm/SignedApplets.jar.

In HTML 4, you can load this applet using the tag

<applet name="WatsonApplet"

 archive="SignedApplets.jar"

 code="com.att.speechmashups.applet.WatsonApplet.class"

 width="0"

 height="0"

 mayscript>

This tag, and an alternative way of loading the applet in strict XHTML and HTML 5
environments, are explained in detail in section 4.

Once you have embedded WatsonApplet in an HTML page, you can control it from
JavaScript. The applet will appear in the DOM under the name you provided as the name
attribute in the <applet> tag or deployJava.writeAppletTag() call, so, using the name
from the example above, you can get the applet instance like

var asrApplet = document.getElementsByName("WatsonApplet")[0];

or simply

var asrApplet = document.WatsonApplet;

Before using the applet to do ASR, you must tell it which server to talk to, which user
ID (UUID) and grammar to use, etc. You do this by creating a request URL, as
described on page 51ff.

http://service.research.att.com/smm/SignedApplets.jar

Building a Speech Mashup Client

Application Developer’s Guide 65
AT&T Proprietary (Restricted)

D R A F T

For example, using the mash-up server at http://service.research.att.com/smm/watson,
with the UUID 0123456789ABCDEF0123456789ABCDEF, the ―digits‖ grammar, and
the ―def001‖ application ID, you‘d build the URL like

var url = "http://service.research.att.com/smm/watson"

 + "?uuid=0123456789ABCDEF0123456789ABCDEF"

 + "&grammar=digits"

 + "&appname=def001"

 + "&resultFormat=json";

This done, you pass the URL to the applet:

asrApplet.setUrl(url);

You have to do this only once, unless your page uses multiple grammars, in which case
you may have to pass a new URL before each ASR request.

Note that the example above also specifies that the ASR result should be returned in
JSON format; this is generally recommended since JSON is easy to work with in
JavaScript. However, if you require other result formats such as EMMA, those are also
available; see table 8.1 in chapter 8.

Having set the URL, you are now ready to perform ASR. To initiate this, call the
applet‘s startRecording() method before the user starts speaking, and stopRecording()
after they are done:

<script>

 function watsonCallback(result, session) {

 var resultObj = eval('(' + result + ')');

 alert("ASR Result: " + resultObj.results[0].reco);

 }

</script>

<form>

 <input type="button" value="Press & Hold to Record"

 onmousedown="asrApplet.startRecording()"

 onmouseup="asrApplet.stopRecording()">

</form>

The startRecording() and stopRecording() methods both return instantly. After the
startRecording() call, the applet starts a background thread that reads audio from the
system‘s default audio input device and sends it to the server in real time, and this
continues until stopRecording() is called, or until the ASR engine times out and returns
a result on its own initiative1.

Once the ASR engine returns a result, the applet delivers it to the JavaScript
environment by calling a global function named watsonCallback. This function receives
two parameters, the first one being the result itself (in whatever format was requested
using the resultFormat parameter in the request URL), and the second one being the
HTTP session ID.

In order to simplify the code, it is also possible to obtain the ASR result and HTTP
session ID synchronously; this way the use of a callback can be avoided and the whole
flow of control handled in one function, at the cost of blocking the JavaScript engine
while the applet waits for the result.

1 See section 6.3.1 for details on how to accomplish this.

http://service.research.att.com/smm/watson

Chapter 8

66 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

To use this mode, call startRecording() with the parameter false:

asrApplet.startRecording(false);

Calling startRecording(true) is equivalent to calling startRecording() without a
parameter.

If you call startRecording(false), the applet will not try to call watsonCallback(); instead,
the JavaScript code must call the applet‘s getResult() and getSession() functions to get
the ASR result and HTTP session ID. Both of these functions will block, if necessary,
until the required datum is available.

Note that the HTTP session ID returned by the applet‘s getSession() method or passed
to the watsonCallback() function is a different entity than the WATSON session ID that
is returned within the ASR result object. The former can be useful to establish a group
of ASR requests, while the latter is used primarily to locate WATSON logs for
debugging.

In order to end an HTTP session and force a new one to be created, call the applet‘s
invalidateSession() method.

WatsonApplet API Summary:

// Methods

setUrl(url) // set request URL; see sec. 8.1 for details

startRecording() // start recording, asynchronous results

startRecording(async) // start recording

stopRecording() // stop recording

getResult() // get ASR result (synchronous)

getSession() // get HTTP session (synchronous)

invalidateSession() // invalidate HTTP session for ASR

// Callbacks

// This should be defined at the global scope

// of the document containing the applet

watsonCallback(result, session) // asynchronous result delivery

8.3.3 Text-to-Speech (TTS)

The TTS applet, AudioPlayer, is provided in the Applets.jar file, which you can
download at http://service.research.att.com/smm/Applets.jar.

Note that this applet is not specifically a text-to-speech applet: it can be used to play
.wav and .au audio files from arbitrary URLs. To use it for TTS, you‘ll just ask it to play
a URL that points at the Mash-up Server‘s TTS servlet. This is explained below.

(The applet can even play file: URLs, but you must load it from the SignedApplets.jar
file in that case, since unsigned applets aren‘t allowed to access the local filesystem. The
SignedApplets.jar file can be downloaded at
http://service.research.att.com/smm/SignedApplets.jar. [TODO: Recognizing
containers from file: URLs by their extensions or magic numbers, if the OS doesn‘t
provide useful MIME types on its own])

In HTML 4, you can load this applet using the tag

<applet name="AudioPlayer"

 archive="Applets.jar"

 code="com.att.speechmashups.applet.AudioPlayer2.class"

 width="0"

http://service.research.att.com/smm/Applets.jar
http://service.research.att.com/smm/SignedApplets.jar

Building a Speech Mashup Client

Application Developer’s Guide 67
AT&T Proprietary (Restricted)

D R A F T

 height="0"

 mayscript>

This tag, and an alternative way of loading the applet in strict XHTML and HTML 5
environments, are explained in detail in section 4.

Once you have embedded AudioPlayer in an HTML page, you can control it from
JavaScript. The applet will appear in the DOM under the name you provided as the name
attribute in the <applet> tag or deployJava.writeAppletTag() call, so, using the name
from the example above, you can get the applet instance like

var ttsApplet = document.getElementsByName("AudioPlayer")[0];

or simply

var ttsApplet = document.AudioPlayer;

Next, you must construct the URL that represents the audio you want to play. The
Mash-up Portal‘s TTS servlet is http://service.research.att.com/smm/tts, and to this
URL you must add parameters to specify your identity (your UUID), the text to speak,
the desired audio format, etc. Here is the full list:

uuid (required): your Universally Unique IDentifier, obtained from the portal

appname (required): the application where the servlet‘s log messages get written to in
the portal

voice (optional): one of crystal, crystal16, mike, mike16, rosa, rosa16, alberto, or
alberto16; default: crystal. Crystal and Rosa are female voices, Mike and Alberto are
male; Crystal and Mike are English while Rosa and Alberto are Spanish. The versions
whose names end in 16 are 16-bit voices; the others are 8-bit.

text (optional): the text to speak. If unspecified, the applet will assume the request is a
POST and try to read the text from the raw request body. Note that this is different
than HTML form POST submission, which uses a URL-encoded request body, and
can send multiple parameters in the body.

audioFormat (optional): mulaw, alaw, linear, or amr; default: amr,

sampleRate (optional): in Hz; default: 8000, must be 8000 for amr

volume (optional): 0..500, default: 100

notifications (optional): a set of zero or more, comma-separated, of: bookmark,
phoneme, viseme, word, simple, ogg, and multipart; the first four select the types of
notifications to be returned, while the last three specify the container format to be
used for multiplexing the audio and notifications (see page 47ff for details). If
unspecified, defaults to no notifications and no container.

Having constructed the URL, you can cause playback to begin by calling one of the
applet‘s play() or playWithPOST() methods:

ttsApplet.play(url)

ttsApplet.play(url, closure)

ttsApplet.playWithPOST(url, text)

ttsApplet.playWithPOST(url, text, closure)

Chapter 8

68 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

In all of these, the url parameter is the URL discussed above; the text parameter to
playWithPOST is the text to be passed in the POST request body (note: do not also use
a text parameter in the URL, because it will take precedence over the request body); and
the optional closure parameter is an arbitrary character string that will be passed back to
any notification callbacks the applet may invoke. (The notification callbacks are
discussed later in this section.)

The applet has four additional methods to control its behavior: stop() cancels playback;
pause() pauses playback but does not cancel it; resume() resumes a paused playback; and
setVolume() controls playback volume [TODO: Not yet implemented].

When playback is started, the applet will invoke the global function playbackBeganCallback
at the moment the audio actually begins to play, or it will call playbackFailedCallback if
playback couldn‘t start for any reason (usually an incorrect URL). When playback
finishes, whether because it reached the end or because it was cancelled using the stop()
method, the global function playbackEndedCallback will be invoked.

All of these callbacks are passed one parameter, the closure that was passed to play() or
playWithPost(). If no closure was passed in, the callback will receive a null.

Note that it is not required to actually define any of these callbacks if you‘re not
interested in feedback about the state of playback.

The applet is also capable of returning notifications at the beginning of each phoneme,
word, or viseme, and it is capable of returning bookmark notifications at specially
marked positions in the text. These notifications are passed to the global
bookmarkCallback function. This function receives two parameters: the first is the
bookmark text, and the second is the closure. In the case of a bookmark notification,
the bookmark text is whatever was in the <mark> tag‘s name attribute in the source text;
for phoneme, viseme, and word notifications, the bookmark text consists of the word
PHONEME, VISEME, or WORD, respectively, followed by the notification details,
with all fields separated by colons. (See section 7.4.1 for details.)

[TODO:end-to-end bookmarks example]

AudioPlayer API Summary:

// Methods

play(url) // start playback using GET; closure = null

play(url, closure) // start playback using GET

playWithPOST(url, text) // start playback using POST; closure = null

playWithPOST(url, text, closure) // start playback using POST

stop() // stop playback

pause() // pause playback

resume() // resume playback after pause

setVolume(volume) // set playback volume

// Callbacks

// These should be defined at the global scope

// of the document containing the applet

playbackFailedCallback(closure) // called when playback fails

playbackBeganCallback(closure) // called when playback begins

playbackEndedCallback(closure) // called when playback ends

bookmarkCallback(text, closure) // called for bookmarks and for phoneme,

 // viseme, and word notifications

Building a Speech Mashup Client

Application Developer’s Guide 69
AT&T Proprietary (Restricted)

D R A F T

8.3.4 Loading Applets in Detail

The ASR applet, WatsonApplet, and the TTS applet, AudioPlayer, are provided in two
jar files, Applets.jar and SignedApplets.jar. Applets.jar contains AudioPlayer only, while
SignedApplets.jar contains AudioPlayer and WatsonApplet, both with digital signatures
applied.

The digital signatures enable the applets to access audio input devices and the local
filesystem. WatsonApplet needs to be able to record audio and would therefore be
unusable without a digital signature; AudioPlayer needs a digital signature only in order
to be able to play audio from file URLs, but can be used without a digital signature for
playing audio from HTTP or HTTPS URLs.

In HTML 4, you can load WatsonApplet applet using the tag

<applet name="WatsonApplet"

 archive="SignedApplets.jar"

 code="com.att.speechmashups.applet.WatsonApplet.class"

 width="0"

 height="0"

 mayscript>

For AudioPlayer, use the tag

<applet name="AudioPlayer"

 archive="Applets.jar"

 code="com.att.speechmashups.applet.AudioPlayer2.class"

 width="0"

 height="0"

 mayscript>

The name attribute defines the name under which the applet will be exposed in the
browser‘s DOM for access by JavaScript. You may use any name you like.

The archive attribute is a URL that the applet‘s jar can be downloaded from. The URL
can be relative, as in the example above, which means a location relative to the
directory containing the HTML page, or, if the path starts with a slash character, it
means a location relative to the web server‘s document root; or the URL can be
absolute, where it includes a protocol and host, e.g.
http://service.research.att.com/smm/Applets.jar, allowing the jar file to be
downloaded from different servers or hosts as well.
It is recommended that the jar file be hosted on the same server as the HTML page that
loads it, and that any external JavaScript code that accesses the applet be on that same
server as well. Using multiple servers for the various parts of the web application may
cause the applet to fail because of the browser‘s security model.
When using absolute URLs, it is also recommended to load the applet using the same
protocol (HTTP vs. HTTPS) as its containing page.

The code attribute is the name of the applet‘s main Java class file. It should be exactly as
shown above.

The width and height attributes tell the browser the physical dimensions of the applet on
the HTML page. Since WatsonApplet has no visual user interface, you should set these
dimensions to 0. Making the applet invisible by placing it in a hidden <div> tag is not
recommended, as some browsers may not load it in that case.

Chapter 8

70 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

The mayscript attribute tells the browser that the applet may try to invoke functions in the
JavaScript environment (callbacks). WatsonApplet needs this capability in order to be
able to return ASR results asynchronously, and AudioPlayer needs it in order to invoke
event notification callbacks (audio start, audio end, bookmarks).

In XHTML and HTML 5, the <applet> tag is no longer defined. While some browsers
may continue to support it anyway, it is no longer safe to just assume that it will be
available. The new way of supporting such browsers is the Java Deployment Toolkit
(JDT). Using this toolkit requires two elements in the HTML page: first, loading the
toolkit itself, which is a JavaScript program:

<script src="http://www.java.com/js/deployJava.js"></script>

Place this somewhere in the page‘s <head> element to ensure it is loaded before the
page‘s main content.

Second, load the WatsonApplet, by using the JDT to generate the appropriate browser-
specific <object> tag:

<script>

 var attributes =

 { name:"WatsonApplet",

 archive:"SignedApplets.jar",

 code:"com.att.speechmashups.applet.WatsonApplet.class",

 width:0,

 height:0,

 mayscript:true

 };

 deployJava.writeAppletTag(attributes, null);

</script>

To load AudioPlayer, use this code instead:

<script>

 var attributes =

 { name:"AudioPlayer",

 archive:"Applets.jar",

 code:"com.att.speechmashups.applet.AudioPlayer2.class",

 width:0,

 height:0,

 mayscript:true

 };

 deployJava.writeAppletTag(attributes, null);

</script>

The name, archive, code, width, height, and mayscript attributes correspond to those in the
<applet> tag example shown at the beginning of this chapter.

Just as in the case of using an <applet> tag, it is recommended to load the applet from
the same server as the containing HTML page and any JavaScript code that needs to
access the applet. Using multiple servers may cause problems with the browser‘s security
model. For the same reason, it is also recommended to use the same protocol (HTTP
vs. HTTPS) for the HTML, applet, and JavaScript code. Loading the JDT from its
master server at www.java.com should not cause problems, but you may still have to
make sure the protocol matches the one that‘s used to load the containing page. For
performance reasons, it may be preferable to host a copy of deployJava.js on your own
web server, in case of congestion or outage at www.java.com (it happens!).

http://www.java.com/
http://www.java.com/

Building a Speech Mashup Client

Application Developer’s Guide 71
AT&T Proprietary (Restricted)

D R A F T

8.3.5 Client Requirements

On the client side (i.e. the user‘s), you will need a web browser that is capable of running
Java applets, a Java Virtual Machine, and the Java Plug-in. It can be used under
Microsoft Windows, Mac OS X, and Linux:

In Windows, you will need to install a JVM on the client‘s PC. If one isn‘t available
already, or is too old (you need version 1.5 or later), download the latest version of the
JRE from http://www.oracle.com/technetwork/java/javase/downloads/index.html,
and install it. This will also install the Java Plug-in.

The applet has been tested successfully in Internet Explorer, Firefox, Opera, Chrome,
and Safari with this setup.

In Mac OS X, Java and the Java Plug-in are part of the base system, and WatsonApplet
and AudioPlayer work without any specific preparations on the user‘s machine. It has
been tested successfully in Safari, Firefox, and Opera.

In Linux, you will need to install the Oracle (formerly Sun) JVM on your system if it

isn‘t available already. If in doubt, run java -version; the result should look
something like

java version "1.6.0_21"

Java(TM) SE Runtime Environment (build 1.6.0_21-b06)

Java HotSpot(TM) Server VM (build 17.0-b16, mixed mode)

If it doesn‘t, download the latest JRE from
http://www.oracle.com/technetwork/java/javase/downloads/index.html, and install it.

To install the Java Plug-in, you need to create a link:

cd

mkdir –p .mozilla/plugins

cd .mozilla/plugins

ln –s $JRE_HOME/lib/i386/libnpjp2.so .

In case the browser is already running, restart it to make sure it sees the plug-in.

The applet has been successfully tested with Firefox in this setup.

If the applet is loaded from SignedApplets.jar, you will probably get a security warning
from the Java Plug-in when it is first loaded. It should look something like this:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 8

72 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

The reason for this is that the applet is signed using a self-signed certificate. Just check
the ―Always trust content from this publisher‖ check box and click Run, and the applet
will load. You will not get the warning again when you load the applet again later.

8.4 Configuring the client for the recognition result

The result returned by WATSON ASR contains the recognition result and detailed
information about the parameter value and settings used during the recognition.
However, you will need to write the client to identify the following information,
depending on the application.

 Recognition result or the semantic interpretation.

The semantic interpretation or the recognition string determines the next step for
the web application.

For the semantic interpretation, look for the interpretation field; for the

exact recognized string, look for either the reco field (XML or JSON) or token
(EMMA).

 Confidence score, which is a measure of how confident the recognizer is
that the final result matches the original utterance. You can use the
confidence score to establish a threshold for accepting or rejecting a result.
In cases when the confidence score is low, you may not want the result used
at all (and instead request that the user resubmit the request). For more
information about setting the threshold, see the next page.

Building a Speech Mashup Client

Application Developer’s Guide 73
AT&T Proprietary (Restricted)

D R A F T

The following is sample EMMA output returned from the recognizer:

<?xml version="1.0" encoding="UTF-8"?>

<emma:emma version="1.0"

 xmlns:emma="http://www.w3.org/2003/04/emma"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.w3.org/2003/04/emma

 http://www.w3.org/TR/WD-emma-20070409/emma.xsd"

 xmlns="http://www.example.com/example">

<emma:grammar id="gram1"

 ref="smm:grammar=en-us-date&UUID=[your own UUID]"/>

<emma:model id="model1"

 ref="smm:file=en-us-date.xsd&UUID=[your own UUID]"/>

<emma:info>

 <uuid>[your own UUID]</uuid>

 <watson>

 <version>watson-6.1.3655</version>

 <time>2008-08-31 13:01:32.338</time>

 <session_id>20080807-130131-00000652</session_id>

 <hostname>ss-2</hostname>

 </watson>

</emma:info>

<emma:one-of id="one-of1"

 emma:medium="acoustic"

 emma:mode="voice"

 emma:function="dialog"

 emma:verbal="true"

 emma:lang="en-US"

 emma:start="1218128492125"

 emma:end="1218128495725"

 emma:grammar-ref="gram1"

emma:signal="smm:UUID=[your_own_UUID]&file=/l/u205/speechmashu

ps/pino/def001/audio/20080807/audio-222262.amr"

 emma:signal-size="5766"

 emma:media-type="audio/amr; rate=8000"

 emma:source="smm:platform=null&device_id=null"

 emma:process="smm:type=asr&version=watson-6.1.3655"

 emma:duration="3600"

 emma:model-ref="model1"

 emma:dialog-turn="20080807-130131-00000652:1">

<emma:interpretation id="nbest1"

 emma:confidence="0.5"

 emma:tokens="July thirty first 2 thousand 8">

<![CDATA[<$='????'+$m+$d> <$m> <$='07'> July </$='07'> </$m> <$d>

<$='31'> thirty first </$='31'> </$d> </$='????'+$m+$d> <$=$y+$m+$d>

<$y> <$=$2+'00'> <$2> <$='20'> 2 thousand </$='20'> </$2> </$=$2+'00'>

<$=$2+$c7> <$c7> <$='0'+$1> <$1> 8 </$1> </$='0'+$1> </$c7> </$=$2+$c7>

</$y> </$=$y+$m+$d>]]>

</emma:interpretation>

</emma:one-of>

</emma:emma>

8.4.1 Setting a threshold

For each recognized result, the recognizer assigns a confidence score based on how
confident it is that the recognized hypothesis is correct. You may want to set a threshold
in your application so that results below a certain threshold are not accepted.

If the client is to accept all recognized results, it is not necessary to set a threshold.

Recognized utterance
(for best result)

Confidence score

Chapter 8

74 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

For each grammar or application, you‘ll need to determine the optimum threshold. It varies
between grammars and will be known only through trial and error.

8.5 Combining speech processing with other processing

The SMM can connect to another server before or after the speech-related task so that
the extra processing can be applied before or after the speech-related task. This can be
useful, for example, when a recognition is used to look up a phone number or other
information from a database, or when text normalization specific to an application
should be applied before the text-to-speech conversion.

Figure 8.1 Pre- or post-processing performed by another server can be applied before or after the
speech task. The connection can be opened by the SMM (top flow) or by the other server (bottom)

Since the SMM is already connected to the Internet, having it open connections to other
servers makes it unnecessary for the client to open a second connection, an especially useful
feature for mobile devices, where opening Internet connections tends to be slow.

Note: This section describes how the SMM connects to another server; however, you can
also have the other server connect to the SMM to combine processing. The other server
connects to the SMM using the SMM‘s URL, essentially becoming the ―client‖ from the
SMM‘s perspective, which you are given when registering at the Speech Mashup Portal
(http://service.research.att.com/smm/watson followed by
?uuid=<uuid>&cmd=<command>&grammar=<grammar>, for example,
http://service.research.att.com/smm/watson?uuid=).

Building a Speech Mashup Client

Application Developer’s Guide 75
AT&T Proprietary (Restricted)

D R A F T

For the SMM to open a connection to another server or servers (in case you‘re doing both
a pre- and a post-processing step), you need to enter the server‘s URL in the new
application directory dialog (see page 25) either for pre-or post-processing, or both.

Instructions to the pre- or post-processing server are handled via X-headers relayed by
the client. X-Param- response headers enable the preprocessing server to override
parameters from the original request.

In addition, an X-WhatNext response header inserted by the preprocessing server
determines the next step. There are three options:

X-WhatNext=0 – copy the response body received from the pre-
processor to the client. This ends the transaction. X-WhatNext=0 is
useful when an error occurs in preprocessing.

X-WhatNext=1 - perform speech recognition but no post-processing.

X-WhatNext=2 - perform speech recognition and then post-processing.

If no X-WhatNext header is supplied, X-WhatNext=2 is assumed.

8.5.1 Processing transaction steps

If there‘s a pre- or post-processing URL (or both), the sequence of steps is as follows:

1. The SMM opens a connection to the preprocessing server. Request parameters are
passed to the preprocessor as request parameters; any X-Param-* response headers will
be used to add or override parameters to be passed to the /smm/watson servlet proper
and to the postprocessor. The SMM returns a response code of 200 when the call is
successful; any other code denotes failure.

 If the preprocessing call fails, no recognition occurs, and the SMM passes the response
code and message back to the client. This ends the transaction.

2. If the preprocessing call is successful, (a) any X-Param- response headers override parameters
from the original request, (b) the step sequence required by X-WhatNext is performed, and (c)
any response header starting with X- is copied to the response to the client.

3. The SMM connects to the appropriate AT&T server and sends it the audio or text in the
client‘s request body.

 If the recognition fails, a response code of 500 is relayed to the client, and an exception message
as the HTTP response message (also in the response body). This ends the transaction.

 If the recognition or text conversion is successful (and there is no post-processing), the
recognition result along with results from any preprocessing are returned to the client.

4. If there is a post-processing URL and the pre-processor (if there was one) returned X-
WhatNext=2, the SMM connects to the post-processing server, passing it the same set
of request parameters sent to the AT&T server, along with all request headers from the
original request whose names start with X-.

 If the post-processing fails (returns an HTTP response code other than 200), the SMM passes
the response code and response message back to the client along with the speech task result.

 If the post-processing succeeds, the SMM passes the X- response headers and the
response body back to the client, along with the speech task result.

Chapter 8

76 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Application Developer’s Guide 77
AT&T Proprietary (Restricted)

D R A F T

9 Administration &
Troubleshooting

9.1 Viewing log files

Log files are maintained for each day‘s activities. To view a log file, log into the portal,
select an application and then click View Log Files; select a date or, for the current
day‘s log file, click Log at the top of the list.

Clicking the Tail this Log option allows you to view the logging entries in real time as
they occur.

9.2 Updating passwords and other account information

To change the password used on the portal account or other information such as the
name on the account and email: at the portal‘s Home page, select Update account
information and enter the information you want to change.

9.3 Troubleshooting

This section gives solutions to the most common problems. To get help with problems
not listed here, send email to watsonadm@research.att.com. Also include log files if they
contain helpful information.

Problem: No recognition result was returned (the reco or token field was empty).

Solution: The recognizer was not able to match the audio to anything contained in the
grammar.

 The audio file may be noise only with no speech.

 Words may have been truncated.

Appendix

A

 Chapter 9

78 Speech Mashup
AT&T Proprietary (Restricted)

D R A F T

Problem: Results are not matching the actual utterances.

Solution: This problem can be due to any one of the following:

 The threshold may be set too high.

 Utterances may not be included in the grammar. Check whether the grammar
should include utterances that it doesn‘t currently contain. (If you have
transcriptions, verify that they can be matched by the grammar.)

 Some voices are simply hard to recognize, particularly those that are heavily
accented or that are mumbled.

Problem: Results are not being returned fast enough.

Solution: Speech mashups are in an early stage of development and efforts are
continually being made to increase the speed of recognition. However, also
check the following.

 If you‘re allowing more than one result to be returned, reducing the
number of results will increase speed a bit.

 Adjust the recognition parameter config.speedVsAccuracy to be lower
than 5. Since there is a speed-vs-accuracy tradeoff, increasing the
speed will lower the accuracy. See page 37 to set from the portal or
page 53 to set from the REST API.

Application Developer’s Guide 79
AT&T Proprietary (Restricted)

D R A F T

10 Glossary

acoustic model. The set of phoneme models (HMMs) that the decoder matches to voice features.
WATSON ASR provides a general English acoustic model optimized for telephony.

automated speech recognition (ASR). A type of program that derives text from spoken
language.

dictionary. In WATSON ASR, dictionaries specify how each word is pronounced in terms of the
phonemes in the acoustic model. WATSON ASR supplies two dictionaries: a general dictionary with a
large set of standard English words, and a TTS (text-to-speech) dictionary that generates spellings for
words not included in other dictionaries. Custom dictionaries are also supported for words not found
in the general dictionary.

grammar. Set of sentences that the recognizer is able to recognize. Sentences not included in the
grammar cannot be recognized. There are two types of grammars: rule-based and statistical. Rule-based
grammars (BNF) explicitly define a set of sentences to be recognized. In a statistical language model
(SLM), the probable set of sentences is determined statistically based on a large set of training
utterances. The application developer is responsible for building the grammar.

mashup. See speech mashup or web mashup.

phone set. Within the acoustic model, separately trained phones for special contexts: digits, names,
quantities (whole numbers), confirmations, and alpha. Use of a phone set is specified either by using a
digit between 1 and 10 (for the digits phone set) or by using a pronunciation tag.

pron (pronunciation) tag. An instruction contained within a rule-based grammar to specify use of
special phone sets within the acoustic model. Pron tags, which can be applied to the entire grammar or
to individual words, specify phone sets for digits, spelled alphanumeric characters, proper names,
confirmations, and natural numbers (quantities).

rejection threshold. See threshold.

semantic tag. An expression inserted in a rule-based grammar so that specified utterances are
replaced with a text string expected by the end application. For example, the utterance ―I want to buy
two round-trip tickets‖ might be replaced with the string ―buy_ticket‖ and forwarded to the end
application.

speech mashup. A web application that incorporates an AT&T speech technology, such as
automatic speech recognition (ASR) or text-to-speech (TTS). An ASR speech mashup enables users of
mobiles devices to use voice commands when making requests from an HTTP application running on
a web browser or mobile device such as an iPhone or BlackBerry; a TTS speech mashup takes text and
returns speech. Speech mashups consist of a speech mashup client that relays audio or speech to the
speech mashup manager, which then forwards.

speech mashup client. A Java client residing on a PC or mobile device that (1) relays audio to the
speech mashup manager for forwarding to an AT&T speech server, and (2) accepts the result returned.

Glossary & Index

80 Speech Mashup
AT&T Proprietary (Restricted)

speech recognition. The technology that matches spoken language against the set of phrases and
sentences defined in the grammar.

speech recognizer. Software driver that converts speech to text by matching an utterance to a
recognized phrase or sentence, taking an acoustic signal and translating it to a digital signal.

text-to-speech (TTS). The speech service that converts text to speech.

threshold. Level of confidence the recognizer must have before it returns a result to the end
application; any utterance with a score lower than the threshold is rejected. The threshold is currently
set from the application.

WATSON ASR. AT&T‘s speech recognizer. It converts spoken language to text by matching speech
sounds to words and sentences contained in the grammar.

WATSON server. A general-purpose engine that can perform a number of speech-related tasks,
including ASR, text-to-speech, or TTS, dialog management, and natural language.

web mashup. A web application that combines data from more than one source into a single
integrated tool, thereby creating a new and distinct web service that was not originally provided by
either source. Google map mashups, for example, combine maps with other data, such as
temperatures and crime statistics.

Application Developer’s Guide 81
AT&T Proprietary (Restricted)

D R A F T

11 Index

abbreviations

handling in grammars, 10

account. See speech mashup account

accuracy (of recognition), 30
improving, 34

measuring, 30

acoustic model, 2, 75

changing, 13

application directories, 25

backing up, 26

creating, 26

selecting, 25

ASR, 1, 2, 75

audio formats, 7

output formats, 7
supported languages, 7

audio

sending with wget, 30

supported formats, 7

audio input formats (ASR), 7

define statements, 13

dictionaries, 2

TTS, 37

disfluencies, 34

endpointing, 36

grammars, 2, 3

assembling from other grammars, 9
backing up, 27

compiling, 27

contexts, 25

creating in WBNF, 12–21

creating in XML, 13–18

definition, 75

prebuilt, 29

rule-based, 3

sharing, 29

SLMs, 3, 23

testing, 31
unsharing, 29

uploading, 27

uploading interactively, 28

help, getting, iv

include statements (WBNF), 9

iPhone, client for, 47

downloading, 47
overview, 56–58

Java Applets, 60

ASR, 60

TTS, 62

Java ME client, 47

downloading, 47

overview, 51–55

sample code, 51

languages

supported for ASR, 7

supported for TTS, 7
log files

WATSON ASR, 73

Mac plugin. See Safari plugin

Manage applications, 25

my grammars, 25

Natural Voices, 4

nbest, 49

number of results

setting from REST API, 49

setting from the portal, 35

numbers

expanding in TTS, 37
handling in grammars, 11

in a rule-based grammar, 9

output formats

ASR, 7

TTS, 7

passwords, changing, 73

phone sets, 10, 75

phoneme set, 40

portal. See speech mashup portal

POST

using to send text (TTS), 43
postprocessing, 70

prebuilt grammars, 25

preprocessing, 70

Glossary & Index

82 Speech Mashup
AT&T Proprietary (Restricted)

pron tags. See pronunciation tags

pronunciation tags, 10, 34

in a WBNF grammar, 20

in an XML grammar, 15

prosody, 38

SSML tags for, 39
recognizer, 3, 76

setting parameters from portal, 35

setting parameters in REST API, 49

rejection threshold. See threshold

Request API parameters, 48

REST API, 48

rule-based grammars, 3

guidelines for creating, 9

Safari client (Mac)

overview, 58–60

Safari plugin (Mac), 58
semantic tags, 12, 75

in a WBNF grammar, 20

in an XML grammar, 15

sensitivity, 50

setting from the portal, 35

setting from the REST API, 49

session timeout, 26

shared grammars, 25

silence penalty, 13, 34
SLMs, 3

building, 23

speech mashup, 1, 75

changes since previous release, iv

problems with, 73
summary of specifications, 7

what you need to do, 7

speech mashup account

changing passwords, 73

updating information, 73

speech mashup clients, 2

API parameters, 48, 50

building, 47

speed vs accuracy

setting from the portal, 35

setting from the REST API, 49

speedvsaccuracy, 50

SSML tags, 4, 38

Tail this Log, 73

text

converting to speech, 37

normalizing (TTS), 37

sending with wget, 43

text-to-speech. See TTS

threshold, 74
setting, 69

transcriptions

comparing to actual speech, 33

creating, 33

troubleshooting, 73

TTS

bookmarked stream formats, 43

multipart/mixed, 46

ogg, 45

simple, 44

default parameters, 42
output formats, 7

setting parameters, 42

specifying a word pronunciation, 40

supported languages, 7

UUID, 6, 13, 31

voice

choosing in TTS, 50

WATSON ASR, 2, 3, 76

architecture, 3

WATSON commands file, 35

WATSON servers, 1, 76

WBNF grammars, 3, 12–21
pronunciation tags, 20

sample grammar, 21

semantic tags, 20

wget

using to send audio files, 30

using to send text for TTS, 42

using to upload grammars, 28

word penalty, 34

word weighting, 16

XML grammars, 3

creating, 13–18
pronunication tags, 15

sample grammar, 16

semantic tags, 15

word weighting, 16

