Needs, Requirements, Prototype

Due: Monday, March 21, Noon

Attention: On the due date remember to hand in both an electronic copy to cs125a@cs.brandeis.edu and to turn in a paper copy.

Student name:
Nat Budin

Student email:
natb@brandeis.edu

Part A

1. General information

How did you identify the requirements and needs (observation, review tools etc)? Why did you choose that method?:
I presented several users with varying levels of experience with a crowded dual-monitor desktop. I asked each of them to complete three tasks: switch to a running application, open a non-running application, and move that application from one monitor to the other. I observed what methods they chose to do so. When they had finished, I asked them why they chose to complete the tasks in the ways that they did.

I chose these tasks because they exemplify the all-too-difficult situations my tasks from the previous template aim to confront. One of them (switching to a running app) is exactly what I wrote in my tasks, and the other two are very closely related to the problems with the way existing WMs organize applications on the desktop.

I also asked users to show me their personal desktop setups and how they would perform these tasks on their own computers.

How did you record your findings:
All my data collection was done by taking notes, mostly mental, but also on paper when I found something I did not expect.

2. User profiles

User type:
Inexperienced GNOME user

User description:
This user is a beginning GNOME user. He or she may be somewhat experienced with other desktop environments. This type of user is more inclined to use the mouse for user interface tasks where possible.

Use case scenario:
Joe, whose sole computer experience consists of using Mac OS X for 2 years, buys a PC with Ubuntu Linux pre-installed on it. The default desktop environment is GNOME. Joe figures he won't have too much trouble adjusting to the new system, because how different could it really be?

Joe learns to treat the taskbar at the bottom of the screen similarly to the Mac OS X dock. He is bothered by the fact that every window appears on the taskbar, including ones he has not minimized, which makes it cluttered and difficult to find the window he wants. He is also bothered by the fact that he can't reorder the buttons on the taskbar even if he wants to. The result is that he ends up not running very many applications at once so that his taskbar won't get too cluttered. When he is done with his email for the time being, he closes the program, which means that each time he wants to look at his email again, it takes 20 seconds to start Evolution.

Then someone tells Joe about the WindowLock Environment for GNOME. He goes to the web site and installs the provided package. WindowLock replaces Metacity (the default GNOME window manager) and the GNOME taskbar with its own programs. Now Joe's taskbar only shows the windows he has minimized, similar to the Mac OS X dock. He can also drag the taskbar buttons to different places, and WindowLock will remember where he placed them so that next time he minimizes that program, it will go to the same place. Additionally, when Joe opens a program he has opened before, WindowLock remembers the last state of the window and puts the window back in that state. Joe is happy because his programs, as he puts it, "stay where he puts them."

Tasks: (Add the task numbers to the use case diagram).
1.	 Organize where minimized windows will appear on the taskbar.

2.	 Quickly switch between running applications.

3.	 Set where frequently-used applications will appear on the screen when they are opened.

User type:
Experienced GNOME user

User description:
This user is used to working with GNOME on a day-to-day basis, but may not be experienced with command lines or UNIX. He or she has worked with the GNOME desktop environment enough to have developed a usage pattern that is comfortable.

Use case scenario
Jen is a magazine editor who uses GNOME on her workstation at the office. At any given time, she has Gaim (IM client), Evolution (email/groupware client), OpenOffice Writer (word processor), Firefox (web browser), and Rhythmbox (music player) open at once. She makes use of the Rhythmbox and Gaim system tray applets to hide these applications most of the time, so she only has the Evolution, Firefox, and OpenOffice windows showing in her taskbar (2 + [number of word processor documents open at the current time] windows). This allows her to locate windows quickly enough to not notice the gulf of evaluation involved in finding the correct taskbar button to click on.

Jen notices her co-worker, Tom, using the WindowLock Desktop Environment and asks him about it. He raves about the ability to keep his IM client locked into one side of the screen, where it takes up virtually no screen real estate unless he is paying attention to it at the moment. Jen installs WindowLock on her own computer and finds that feature very useful, but is annoyed that only minimized windows appear in the taskbar. She wonders if WindowLock is configurable in the same way that the GNOME taskbar is, so she tries right-clicking on the taskbar handle and selecting "Taskbar Preferences." As she hoped, the taskbar has a preferences dialog with a prominently-displayed pair of radio buttons, which allow her to choose between "Only show minimized windows in the taskbar" and "Show all windows in the taskbar." She also chooses the "Group windows from the same program" checkbox, which causes windows from the same application to appear as one taskbar button, which pops up a menu asking which window to select.

Jen used to use very specific sets of keyboard shortcuts in Metacity for tasks such as switching between applications or shading windows. Although her settings for these shortcuts did not automatically migrate over to WindowLock, she is pleased to discover that she can set new shortcuts for WindowLock using the standard GNOME Keyboard Shortcuts control panel.

Tasks:
1.	 Lock windows onto sides of the screen with automatic hiding.

2.	 Select window display policy on the taskbar.

3.	 Set keyboard shortcuts for window management tasks.

User type:
Experienced UNIX command line user

User description:
This user is very comfortable working with the UNIX command shell. In all probability, he or she began using UNIX before full desktop environments became available. He or she may use a GUI environment full-time at this point, but still primarily interacts with the computer by means of command prompts.

Use case scenario
True story: Jonathan has a dual-screen monitor setup in his college dorm room. He uses mostly GNOME applications, but does not use a full GNOME environment, preferring to use the ROX file, session, and window managers in conjunction with the GNOME panel (taskbar). He rarely takes his hands off the keyboard, because he has set up keyboard shortcuts to launch terminals. If he wants to open GIMP, for example, he presses the key to launch a terminal and types "gimp &", then presses Ctrl-D to close the terminal. He makes extensive use of virtual desktops, and has designated one of his monitors as his primary display and the other as his secondary.

Hypothetical story: Jonathan's roommate Nat develops the WindowLock desktop environment, and Jonathan agrees to beta-test it. Because ROX is GNOME-compatible, WindowLock can work with his existing desktop environment. Jonathan's typical usage patterns mean that windows almost never overlap, so the locking feature is a natural fit for his needs. He also uses the "pinning" feature to put a terminal permanently on the desktop, which automatically sits on the background with no window decorations to take up extra screen real estate. He then sets the properties of this window so that it will appear on all virtual workspaces. He does all these things without taking his hands off the keyboard. Additionally, he finds WindowLock's multiple monitors configuration applet useful for switching between different modes of monitor usage.

Tasks:
1.	 Perform all window-management tasks using intuitive keyboard shortcuts.

2.	 Pin windows to the desktop background.

3.	 Set windows to appear on all workspaces.

4.	 Switch between different multiple monitor modes and configure multiple monitor layouts.

3. Needs

Identify the needs (for each user). What are the needs each user has based on each of the tasks you listed in part 2.

Inexperienced GNOME user - Organize where minimized windows will appear on the taskbar.

· User needs to be able to identify which taskbar button belongs to which window.

· User needs to be able to set where that button will appear relative to other buttons, including ones that may not yet be visible.

Inexperienced GNOME user - Quickly switch between running applications.

· User needs to be able to identify whether or not an application is currently running.

· User needs to be able to identify which taskbar button belongs to which application (note: this is different from which button belongs to which window).

· User needs to be able to quickly bring an application to the foreground.

Inexperienced GNOME user - Set where frequently-used applications will appear on the screen when they are opened.

· User needs to be able to move windows around the screen.

· User needs to be able to resize windows.

· User needs to be able to minimize and maximize windows.

Experienced GNOME user - Lock windows onto sides of the screen with automatic hiding.

· User needs to be able to set a window to "lock" mode on whichever side of the screen they wish.

· User needs to be able to set a window to auto-hide once it's locked.

· User needs to be able to force a window to hide itself, even if it is taking up the entire screen.

· User needs to be able to unset auto-hide mode once it is set.

· User needs to be able to unlock a window that has been locked.

Experienced GNOME user - Select window display policy on the taskbar.

· User needs to be able to find and bring up the taskbar preferences dialog.

· User needs to be able to set whether all windows, or just the minimized ones, should appear on the taskbar.

· User needs to be able to set whether or not windows from the same application should be grouped together on the taskbar.

Experienced GNOME user - Set keyboard shortcuts for window management tasks..

· User needs to be able to find and bring up the keyboard shortcuts preferences applet.

· User needs to be able to locate the task for which they want to set a keyboard shortcut.

· User needs to be able to set a keyboard shortcut for a task.

· User needs to be able to clear existing keyboard shortcuts.

Experienced UNIX command line user - Perform all window-management tasks using intuitive keyboard shortcuts.

· User needs to be able to minimize, unminimize, maximize, unmaximize, move, shade, unshade, and switch between windows without touching the mouse.

· User needs to be able to figure out intuitively what they keyboard shortcuts might be, possibly from experience with other WMs.

Experienced UNIX command line user - Pin windows to the desktop background.

· User needs to be able to set any window to pinned mode.

· User needs to be able to unpin a pinned window.

Experienced UNIX command line user - Set windows to appear on all workspaces.

· User needs to be able to set whether a window appears on only one workspace or multiple workspaces.

· User needs to be able to quickly visually recognize the difference between windows that appear on only one workspace and windows that appear on multiple workspaces.

Experienced UNIX command line user - Switch between different multiple monitor modes and configure multiple monitor layouts.

· User needs to be able to find and bring up the multiple desktops configuration dialog.

· User needs to be able to drag the multiple monitors into the correct positions relative to one another.

· User needs to be able to set one monitor as a clone of another monitor.

· User needs to be able to set the number and size of virtual workspaces to use.

· User needs to be able to drag the virtual workspaces into the correct positions relative to one another.

· User should not have to move the virtual workspaces if they don't want to - i.e. the program should provide sensible default positions.

4. Requirements

Identify the system requirements for each of the tasks you identified in part 2. List as many requirements as you think are necessary to support your claim. Most of your requirements will be functional. See if you can find environmental or social requirements.

NOTE: In the "Related task ids" field, I have used the following abbreviations for identifying the user type that particular task is taken from: IGU = Inexperienced GNOME User, EGU = Experienced GNOME user, ECU = Experienced UNIX command line user.

Requirement id:
1
Related task ids:
IGU-1, IGU-2, EGU-2

Requirement name:
Organize and set policy for running applications in the taskbar.

Requirement type
Functional

Description
The product should allow the user to specify where in the taskbar currently-running applications should appear, and under what circumstances they should be placed there (e.g. should only minimized applications appear? should the taskbar group application windows into a single button?).

Rationale:
The best way to allow users to locate applications quickly in the taskbar is to allow them to organize the applications in the way that makes the most sense to that particular user.

Source:
User

Dependencies
None.

Conflicts
None.

Supporting Materials
None.

Requirement id:
2
Related task id:
IGU-3

Requirement name:
Identify windows and remember the states in which they were left.

Requirement type
Functional

Description
The window manager should provide some method of storing the state of a window (that is, its position, size, and minimized/maximized/pinned/locked/stuck information). When a new window is opened, its stored state should be restored if a stored state exists.

Rationale:
Current desktop environments do this to a limited extent, but, at least in GNOME, the policy of whether to remember size and position is left up to the application itself rather than the WM. There is no reason why different applications should behave differently in this regard.

Source:
User

Dependencies
None

Conflicts
None

Supporting Materials
None

Requirement id:
3
Related task id:
EGU-1

Requirement name:
Lock and auto-hide windows.

Requirement type
Functional

Description
The window manager should provide a method for locking windows to the sides of the screen. It need not be possible, at least initially, to lock multiple windows to the same side of the screen. It should also be possible to set a locked window in a mode in which it will automatically hide itself until the user mouses over it, similar to the taskbar in Windows. There must also be a method for unlocking and un-autohiding windows.

Rationale:
This functionality is already semi-provided by some applications, such as Gaim for Windows. It is useful for programs that are typically left running in the background, but need not be constantly monitored, because it frees up screen space for other tasks, but allows the user to quickly call up the application when they need to. There is no reason the WM should not provide this functionality for all applications, rather than leaving different apps to do it differently or not at all.

Source:
User

Dependencies
None

Conflicts
None

Supporting Materials
None

Requirement id:
4
Related task id:
EGU-3, ECU-1

Requirement name:
Set keyboard shortcuts for all window management functions.

Requirement type
Functional

Description
The WM should provide the capability to bind keyboard shortcuts to every function that could be done with the mouse, including moving, maximizing/unmaximizing, minimizing/unminimizing, locking/unlocking, autohiding/un-autohiding, pinning/unpinning, and sticking/unsticking windows.

Rationale:
Many power users want to be able to use the keyboard for everything, never having to touch the mouse. Furthermore, they will want to have as much control over their environment as possible.

Source:
User

Dependencies
1, 2, 3, 6, 7

Conflicts
None

Supporting Materials
None

Requirement id:
5
Related task id:
ECU-1

Requirement name:
Sensible defaults for all keyboard shortcuts.

Requirement type
Social

Description
Where possible, the default keyboard shortcuts should be intuitive and easy to figure out. This means they should follow patterns and be similar to existing environments where applicable.

Rationale:
Although it is nice to be able to set custom keyboard shortcuts (see req. 4), it is even nicer not to have to do so for many tasks.

Source:
GNOME HIG, Chapter 10

Dependencies
4

Conflicts
None

Supporting Materials
GNOME Human Interface Guidelines v2.0

Requirement id:
6
Related task id:
ECU-2

Requirement name:
Pin and unpin windows.

Requirement type
Functional

Description
The user should be able to set any window into a "pinned" state - i.e. one in which the window will effectively become part of the desktop. There also needs to be a way to undo this operation.

Rationale:
This would be very convenient for people who use, e.g. a program like Apple Dashboard or gDesklets to put status notifications on their desktop.

Source:
User

Dependencies
None

Conflicts
None

Supporting Materials
None

Requirement id:
7
Related task id:
ECU-3

Requirement name:
Stick and unstick windows.

Requirement type
Functional

Description
The user should be able to set any window to appear on all virtual desktops. There also needs to be a way to undo this operation.

Rationale:
Certain windows, such as the IM buddy list, should be available at all times, no matter what desktop you are viewing.

Source:
User

Dependencies
None

Conflicts
None

Supporting Materials
None

Requirement id:
8
Related task id:
ECU-4

Requirement name:
Configure multiple desktops and multiple monitors.

Requirement type
Functional

Description
The user should be able to create an unlimited number of virtual desktops. Additionally, the user should be able to set the relationship of different displays to one another and to multiple desktops.

Rationale:
Most modern PCs support multiple displays by default, but in order to configure them in GNOME, one needs to go through complicated configuration-file-level processes. Also, multiple displays do not interact sanely with virtual desktops in GNOME - the only way to set it up is to treat both monitors as one desktop. This is not necessarily the best behavior.

Source:
User

Dependencies
None

Conflicts
None

Supporting Materials
None

5. Task analysis

For each of the tasks you identified in part A you must create both a hierarchical task analysis list and corresponding graphical box-in-line notation. (p. 232):

Hierarchical task analysis for IGU-1

Organize where minimized windows will appear on the taskbar.

 Open an application window.

 Go to the Applications menu.

 Locate the application to open.

 Click on the application title.

 Place the new window where you want it on the taskbar.

 Locate the newly-opened window's button on the taskbar.

 Move the button to where you want it.

Hierarchical task analysis for IGU-2

Quickly switch between running applications.

 Locate the application you want to switch to on the taskbar.

 Click on the application button on the taskbar.

Hierarchical task analysis for IGU-3

Set where frequently-used applications will appear on the screen when they are opened.

 Open an application window.

 Go to the Applications menu.

 Locate the application to open.

 Click on the application title.

 Move and size the newly-opened window as appropriate.

 Store the window state information.

Hierarchical task analysis for EGU-1

Lock windows onto sides of the screen with automatic hiding.

 Bring the desired window to the foreground.

 Locate the desired window on the taskbar.

 Click on the application button on the taskbar.

 Lock the window to a side of the screen.

 Select which side of the screen to lock the window onto.

 Set that window to lock to the desired side of the screen.

 Set the window to auto-hide mode.

Hierarchical task analysis for EGU-2

Select window display policy on the taskbar.

 Bring up the taskbar configuration dialog.

 Choose the desired options.

 Close the dialog.

Hierarchical task analysis for EGU-3

Set keyboard shortcuts for window management tasks.

 Bring up the keyboard shortcuts dialog.

 Set a shortcut for an action. (Repeat as many times as necessary)

 Locate the action to set a shortcut for in the list.

 Double-click the action.

 Press the key to set as the shortcut for this action.

 Close the dialog.

Hierarchical task analysis for ECU-1

Perform all window-management tasks using intuitive keyboard shortcuts.

 Choose a window-management task to perform.

 Remember, or intuit, the proper key combination.

 Press the appropriate keys.

Hierarchical task analysis for ECU-2

Pin windows to the desktop background.

 Bring the desired window to the foreground.

 Locate the desired window on the taskbar.

 Click on the application button on the taskbar.

 Set the window to pinned mode.

 Minimize all other windows covering the desktop in order to view the pinned window.

Hierarchical task analysis for ECU-3

Set windows to appear on all workspaces.

 Choose a window-management task to perform.

 Bring the desired window to the foreground.

 Locate the desired window on the taskbar.

 Click on the application button on the taskbar.

 Set the window to sticky mode.

 Verify that the window is indeed on all workspaces.

 Switch to another workspace.

 See that the window is on this workspace as well.

Hierarchical task analysis for ECU-4

Switch between different multiple-monitor modes and configure multiple monitor layouts.

 Bring up the multiple displays/desktops configuration dialog.

 Set the relation of one display to another. (Repeat as necessary)

 In the display configuration section, select the display to be moved.

 Move that display to the position it should be in relative to the other.

 Optionally, resize the display to the desired relative size.

 Set the size/shape of desktops relative to the display matrix.

 Set the relation of one desktop to another. (Repeat as necessary)

 In the desktops configuration section, select the desktop to be moved.

 Move that desktop to the position it should be in relative to the other.

 Close the dialog.

Part B

1. Conceptual models

Tell us what the three different conceptual models are, and why they include the functionality.

· Model 1: Maximum Affordances Model
In this model, every feature the software supports must be made explicitly obvious using some sort of affordance (i.e. button, visible handles for dragging, etc). This model has the advantage of making it easy for the user both to see what features the program has, and to figure out how to use these features. Disadvantages include the problem of lost screen real estate, and the fact that all these affordances clutter the view, making it difficult to distinguish useful information. This model is similar to the menu-based approach to UI design, in that it makes explicit every single piece of functionality present in the software.

· Model 2: Intuit What I Mean Model
In this model, the window manager attempts to figure out what the user wants based on patterns of usage. It uses heuristics-based algorithms to detect what the most common placement for windows is, and where windows should go in relation to which other windows, and places things on the taskbar accordingly. Advantages include a very simple and stark user interface that allows the actual programs that are running to take up most of the screen, and that when the software works, the user will feel as if the computer knows what he wants without him having to tell it. Disadvantages include the fact that the software is more opaque, resulting in less of an internal locus of control. This model is similar to the agent approach, because the computer makes decisions for the user in many cases.

· Model 3: Spatial Model
So-called because it closely mimics the way real objects in space behave, the spatial model posits that all objects the user interacts with should remain exactly where he puts them. In this model, the user primarily interacts with the computer through direct manipulation of screen items, which can all be moved with the mouse. Advantages of this model include that it might be more intuitive for many users, particularly those used to the Mac OS X Finder. Disadvantages are that much of the program's functionality is hidden to users who do not know it exists.

2. Storyboard

Please give us a short description of each of the storyboards. We encourage you to add the storyboard as a jpeg file below accompanied by the description.

Storyboard 1: User locks a window to the side of the screen, and sets it to auto-hide.

[image: image1.png]
Storyboard 2: User temporarily pops up an auto-hidden window.

[image: image2.jpg]
Storyboard 3: User rearranges the order of buttons on the taskbar.

[image: image3.jpg]

What interesting feedback did you get from the users you showed the storyboards to?

Most users were slightly underwhelmed by the functionality in question, saying that although they thought it was cool, they couldn't see themselves using it on a daily basis. One ECU suggested that it might be better to have a taskbar on each side of the screen, and let users drag windows from one to the other or to the desktop.

3. Prototypes

Please tell us briefly about each prototype. We encourage you to add the cards and post-it notes as a picture (jpeg file) here below accompanying the description.

TASKBARS

1) A taskbar using the Maximum Affordance model. It shows little arrows next to each button to make it obvious that you can move the buttons around.

2) Intuit What I Mean model – moves window buttons around the taskbar based on where you actually have the windows onscreen relative to each other.

3) Spatial model – just like the taskbar in storyboard #3. It allows you to drag buttons around and position them on the taskbar itself.

[image: image4.jpg]
WINDOW BORDERS

1) A window border using the Maximum Affordance model. Every window management function has a button on the window border.

2) A window border using either of the other two models. Functionality is accessible either through the menu (the left button) or by dragging the window into the appropriate place, as in Storyboard #1.

[image: image5.jpg]
LOCKED WINDOWS

1) A locked window using the Maximum Affordance model. All possible functions of a locked window have buttons on the left side.

2) A locked window using either of the other two models. Similar to Storyboard #1 and #2.

[image: image6.jpg]
WORKSPACE CONFIGURATION DIALOG

1) My first try at this dialog. Displays are “cloned” by dragging the cloned display into its source. There is a section for selecting which size each virtual desktop will have (1 or 2 screens large). Finally, virtual desktops can be added, removed, and positioned using the lower section.

[image: image7.jpg]
2) My second try at this dialog. The desktop size feature is gone, since every user I showed it to was extremely confused by it. Users were also confused by the idea of dragging one display into another to clone it, so I instead used letters to indicate distinct screens. Users can select which screen each display shows. The bottom section allows users to select the number of screens.

[image: image8.jpg]
3) My final attempt at this dialog. The virtual desktops section is entirely separated onto a different tab, because it has not much to do functionally with the virtual displays/displays sections. These two sections are combined, with virtual display count being on top. That way, users can easily see the effect of dragging the slider to a different number.

[image: image9.jpg]

What interesting feedback did you get from the users you showed the prototype to? Did it differ from the feedback you got after showing the storyboards?

Users agreed that taskbar #1 was a bad design, because the arrows would be either too hard to click on or take up too much space. Not everyone agreed between taskbars #2 and #3, though – some people liked #2 because it let them do the least work to rearrange their taskbar, but some people liked #3 because it put them in full control of the system. With regard to window borders and locked windows, almost everyone preferred option #2, with less buttons and therefore less clutter. Some people indicated that they liked having all options visible at once, but this was too much.

4. Advanced prototype

Include your prototype in this assignment as screenshots (jpeg). Accompany the screenshot prototypes with descriptive text that tell us what we are looking at.

The following screenshot shows a locked window. Note the hide handle on the left side.

[image: image12.png]
The following two shots are an actual screenshot of the workspace configuration dialog, prototyped above, which have been created with Glade2.

[image: image10.jpg]
[image: image11.png]

