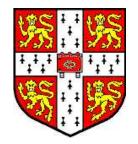
Recent Progress in Large Vocabulary Continuous Speech Recognition: An HTK Perspective

Mark Gales and Phil Woodland

15 May 2006



Cambridge University Engineering Department

ICASSP 2006 Tutorial

Outline/Introduction

- Introduction HTK, BN/CTS tasks, front-ends & normalisation
- Building Blocks Context Dependent HMMs, Language Models and Decoding
- Advanced Techniques
 - Discriminative training
 - Adaptation & adaptive training
 - Structured covariance models
 - Lightly supervised training
 - Confusion networks and system hypothesis combination
 - System performance examples (BN and CTS)
- Assume some background: basic HMMs (maximum likelihood) & N-gram language models
- HMMs use Gaussian mixture distributions: diagonal covariance matrix
- References are biased towards our own work: not aiming to be complete!

HTK Overview

- What is HTK?
 - Hidden Markov Model Toolkit
 - set of tools for training and evaluating HMMs: primarily speech recognition
 - implementation in ANSI C (Unix & Windows)
 - includes 300+ page manual [1], tutorial and system build examples
 - modular structure simplifies extension
- History (1989-)
 - Initially developed at Cambridge University (up to V1.5)
 - ... then Entropic ... (up to V2.2)
 - Since 2000 back at CU (V3 onwards)
 - Free to download from web, many 10's of 1000's of users
 - Latest version is V3.4 (an alpha release ...) and V3.3 stable
- Used extensively for reseach (& teaching) at CU
 - Built large vocabulary systems for NIST eveluations based on HTK

http://htk.eng.cam.ac.uk/

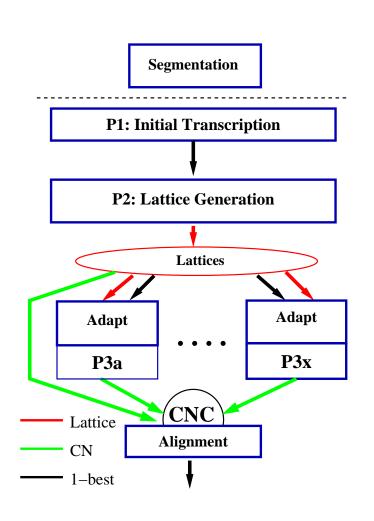
HTK Features

- LPC, MFCC and PLP frontends
 - cepstral mean/variance normalisation + Vocal Tract length normalisation
- supports discrete and (semi-)continuous HMMs
 - diagonal and full covariance models
 - context dependent cross-word triphones & decision tree state clustering
 - (embedded) Baum-Welch training
- Viterbi recognition and forced-alignment
 - support for N-grams and finite state grammars
 - Includes N-gram generation tools for large datasets
 - N-best and lattice generation/manipulation
- (C)MLLR speaker/channel adaptation & adaptive training
- From V3.4
 - Large vocabulary decoder HDecode: separate license
 - Discriminative training tools, MMI and MPE HMMIRest

BN and CTS Transcription tasks

- Conversational Telephone Speech (CTS)
 - Conversations on particular topics, normally between strangers
 - Switchboard corpora, Call Home, Fisher
 - Casual conversation style
 - Variable channels (incl. cellular)
 - Several hundred hours Switchboard1 acoustic training
 - Two thousand hours of Fisher data (2004 onwards)
 - Limited matched language model training data
 - Consists of conversation sides of typically 3 minutes (from 4-wire recordings)
- Broadcast News (BN)
 - Single audio stream with many talkers, styles, noise conditions, bandwiths
 - Much of it prepared speech from anchor speakers but some conversational
 - Need to segment for normalisation/adaptation
 - For English: 200h of careful transcripts, 1000's of hours of closed captions
 - Vocabulary changes with news stories!
 - Reasonable/large amount of fairly well-matched LM data

Overall Structure of Transcription Systems



- Initially segment audio
 - BN: find speakers and cluster
 - CTS: speech detection
- Multi-pass recognition architecture
- Initial hypotheses (P1) for adaptation
- Adapt and generate lattices (P2)
- Rescore lattices with more advanced acoustic and language models (P3x)
- Combine outputs from different branches
- Not so concerned about latency only throughput

Front-End Parameterisation

- Basic front end uses cepstral parameters (typically 12 cepstra + energy/c0)
 - Fits with diagonal covariance assumptions
- Add smoothed first/second order derivatives
 - Yields 39 dimensional feature vector
 - Add third-order derivatives if using dimensionality reduction (HLDA)
- HTK supports MFCC cepstra and a form of PLP (perceptual linear prediction)
 - PLP implementation uses mel-scale filterbank from standard MFCCs
- $\bullet\,$ Usual to normalise at sentence/segment/side level using CMN/CVN
 - Cepstral Mean Normalisation (CMN) removes the average cepstral value: reduces sensitvity to channel
 - Cepstral Variance Normalisation (CVN) makes each individual coef have fixed variance: adds some robustness to additive noise

Vocal Tract Length Normalisation

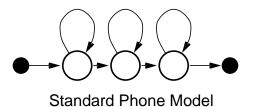
- Aim is to normalise data to account for differences in formant positions due to length of vocal tract
- Implement via adjusting filter centre frequencies
- Single parameter warp-factor chosen to maximise likelihood
- Procedure
 - 1. Generate word string for e.g. conversation side from P1
 - 2. Search over warp factors for maximum likelihood warp factor
 - 3. Likelihood varies smoothly so can speed up search
- Note that need to account for Jacobian in likelihood comparison
 - Use variance normalisation as approximation
- Widely applied for CTS transcription: good gains
 - Much harder to get improvements for BN [2]

BN Speaker Segmentation/Clustering

- Divide audio into set of acoustically homogeneous segments
 single speaker (or none) & single audio condition
- Initial classification labels data as wide bandwidth (WB) speech, narrow band (NB) speech or pure music/noise using GMMs
- Uses gender-dependent phone recogniser to find short speaker segments
- Uses segment clustering and smoothing rules to generate final segments [3]
- Clustering based on segment Gaussian statistics: bottom-up or top-down [3]
 used in acoustic model adaptation
- Alternative procedure (LIMSI) combines segmentation/clustering via GMMs
 [4]
- Applied after advert removal: looks for repeated audio over several days

Model Structure & Lexicon Design

• Use same model structure is used for each speech HMM



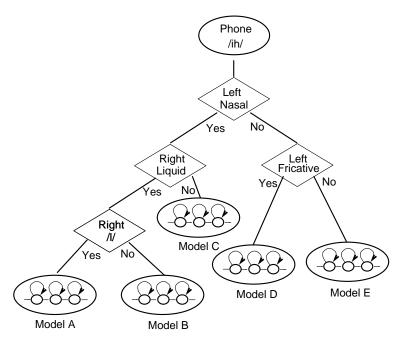
- Use ergodic model for silence and also short pause model (can be skipped)
- Low number of pronunciations per word (e.g. 1.2 for English). Only keep fairly common word variations

- Can use pronunciation probabilities with multiple pronunciations
- can use just a single pronunciation if carefully chosen!
- HTK puts optional inter-word silence in dictionary (extra variants)

Context-Dependent Acoustic Models

- Phone realisations are too variable to use Context Independent HMMs
- Make many Context Dependent versions of each phone by taking into account immediate left and right phonetic context (triphones).
- Can use wider context ± 2 yields quinphones/pentaphones
- Contexts can extend across word-boundaries (cross-word triphones)
- Issue: too many parameters / models, and most contexts are very rare
- Parameter-Tying uses the same model / state distribution for different contexts
- Allows the robust estimation of contexts for which there is little data
- Tying at the state-level is more effective than model level
 - Top-down decision-tree state tying allows contexts unseen in training to be tied.

Decision Tree-Based State Clustering



- One tree for each state position of each base phone
- Automatically built using linguistic question set and training data stats
- Use single-Gaussian stats from all context dependent versions in training [5]
- Assuming can use a single Gaussian model for the data at each level:
 - Start with all contexts in the root nodeleac
 - Iteratively split contexts to maximise estimated increase in likelihood
 - Spot when not enough data in node or likelihood gain too small
- Simple and efficient (even if tree is built sub-optimally ...)

N-Gram Language Modelling

- The Language Model (LM) gives probabilities of sentences
- $\bullet\,$ Use N-gram models so that the probability of a word string w is

$$P(w) = \prod_{k=1}^{T} P(w_k | w_{k-1} \dots w_{k-N+1})$$

i.e. treat all contexts with the same N-1 words as equivalent.

- Key issue is data sparsity
 - number of trigrams (N = 3)to cover a 60k word vocabulary is 2.2×10^{14} !
 - need to estimate N-grams not seen in training
- For LVCSR use back-off LM to integrate with decoder
 - count discounting and back-off e.g. Good-Turing, modified Kneser-Ney
- Use HLM tollkit in HTK or SRILM toolkit to build basic LMs [6]

Vocabulary Coverage

- Need to minimise the number of out-of-vocabulary (OOV) items
 - For each OOV word a recogniser typically makes 1.6 word errors [7]
- For English business newspaper text a 5k vocab would typically have a 9% OOV rate; 20k 2% and 65k 0.6%.
- Reduce OOVs if vocabulary tailored for a particular individual or topic
- Vocabulary must be kept "up-to-date" for BN
- For some morphologically productive languages need much larger vocab
 - Russian: need 800k vocab for 1%~OOV rate
 - Arabic: need 400k vocab for 1% OOV rate
 - Alternative is to model sub-word units ...
- For languages such as Chinese word boundaries not given so need to use a character to word segmenter

Practical LM build procedure

- Normalisation for each source of LM data (transcripts, web sources etc.)
 - remove non-text
 - sentence segmentation
 - convert numbers, web addresses etc. to spoken form
- select vocabulary to minimise expected OOV rate
 - use most likely words in training
 - take account of available dictionaries ...
- build LM for each source (selecting N-gram cut-offs)
- merge into a mixture model of N-grams from each source
- mixture weights found by minimising perplexity on dev test data
- prune final model to rely more on back-off structure (entropy pruning) to further control size [8]

LM scale factor

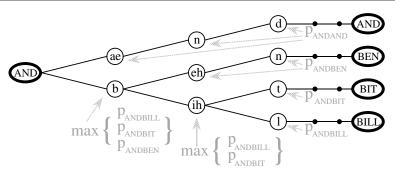
- During recognition, combine the LM probability with HMM likelihood
- In theory should just multiply together (or add the logs).
 - However HMM likelihood underestimated (independence assumptions)
 - Need to scale up (raise to a power) the LM probabilties
- Use

$$\log p(\mathbf{O}|w) + \alpha \log P(w) + \beta |w|$$

- α is the language model scale factor
- β is the word insertion penalty (|w| means the number of words in w)
- Typically for HTK (natural logs)
 - α in range 10 to 16
 - β in range 0 to -20

Decoding

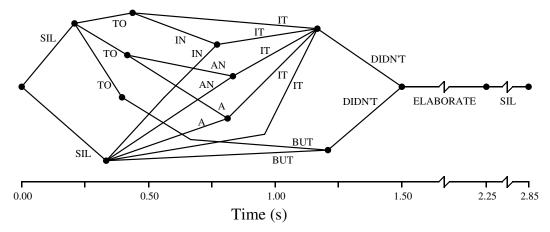
- Large vocabulary decoders deliver the recognition output
 - Find 1-best or N-best / lattice of recognition alternatives
 - Need to be able to use all acoustic / language models
 - Ideally want speed ... but flexibility more important in HTK!
 - HTK V3.4 decoders based on Viterbi-search of static networks
- Small/medium vocabulary HVite
 - Encode all problem constraints in the network structure
 - Linear lexicon
 - Handle cross-word triphones/bigram LM by full network expansion
 - Multiple tokens (heads of paths) to represent alternatives in a network state
 - In LV systems can be used to rescore lattices
- For large vocabulary HDecode need more efficiency
 - Use a tree-structured network topology (incl cross-word triphones)



- Word identity not unqiue in network states
- Incrementally apply the language model probability (bigram/trigram)
- Use multiple tokens (heads of paths) to represent possible language model states as well as recognition alternatives
- All decoders use various pruning settings to control search speed / accuracy
 - Overall beamwidth
 - Word-end pruning
 - Maximum number of active network states (dynamic beam)
- Cambridge research systems also other decoders (can't distribute ...)
 - More efficient search e.g. fast output probability computation, etc.
 - Use of quinphone/pentaphone models

Word Lattices

A typical word lattice structure is shown. This type of structure is generated by the multiple token decoders.



A general word lattice structure contains [7]:

- A set of nodes that correspond to points in time (or word-ends)
- A set of arcs that encode word-word transitions
 - Acoustic score (log likelihood) of arc
 - Language model score (log probability) of arc
- Many arcs may be replicated due to different acoustic context / timing

Some Lattice Operations

Most of these lattice operations are implemented in HLRescore

- Acoustic Recsoring
 - Reduce lattice to word-graph with LM probs
 - Re-run recogniser with word-graph as language model but new acoustic models
 - Often produce lattice output (for further processing)
 - Use HVite or HDecode
- LM Recsoring
 - Expand lattice with new LM scores e.g. bigram to 4-gram
 - Re-compute 1-best word hypothesis
- Lattice Quality [7]
 - Include all close alternatives to 1-best hypothesis
 - Aim to include correct answer

- Trade-off between size and coverage
- Measure oracle lattice word error rate
- Measure lattice density in arcs / second

• Pruning [7]

- Calulate the likelihood difference between most likely path that goes through a particular arc and overall lattice likelihood
- Prune out all arcs/nodes greater than a threshold away
- Use complete sentence likelihoods (via lattice foward-backward)
- Dramatically reduce lattice size with small effect on quality

• System Optimisation

- Vary grammar-scale factor / word-insertion penalty
- Find 1-best from lattice with particular settings
- Fast to tune these parameters

- Discriminative Training
 Standard HMM training uses maximum likelihood estimation (MLE)
- MLE optimisation criteria is

$$\mathcal{F}_{\text{MLE}}(\lambda) = \sum_{r=1}^{R} \log p_{\lambda} \left(\mathcal{O}_{r} | \mathcal{M}_{w_{r}} \right)$$

 w_r is the transcription for utterance r and \mathcal{M}_{w_r} the corresponding model.

- Would be optimal if several unrealistic assumptions met
 - Infinite training set size
 - Model correctness
- Neither condition met for speech recognition, hence interesting to investigate alternatives, especially discriminative schemes such as MMIE (& MPE)
- Lattice-based MMIE/MPE supported in HTK V3.4

MMIE Basics

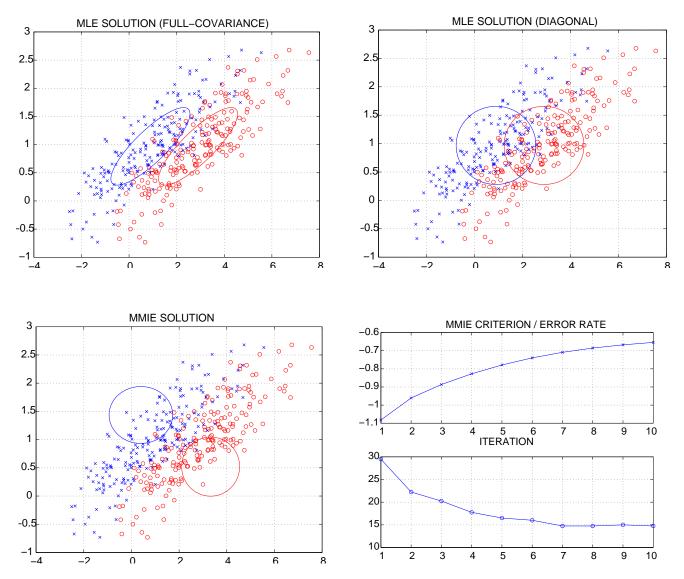
• Maximum mutual information estimation (MMIE) maximises the sentence level posterior : in log form

$$\mathcal{F}_{\text{MMIE}}(\lambda) = \sum_{r=1}^{R} \log \frac{p_{\lambda} \left(\mathcal{O}_{r} | \mathcal{M}_{w_{r}}\right) P\left(w_{r}\right)}{\sum_{w} p_{\lambda} \left(\mathcal{O}_{r} | \mathcal{M}_{w}\right) P\left(w\right)}$$

- Numerator is likelihood of data given correct transcription (as for MLE)
- Denominator expands total likelihood in terms of all word sequences
- Can compute denominator by finding likelihood through composite HMM with all recognition constraints (recognition model)
- Maximise ratio of numerator (MLE term) to denominator
- More closely related to word error rate than MLE

- Strictly Conditional Maximum Likelihood Estimator
 - but here MMI since LM fixed
- MMIE weights training data unequally (well classified small weight)
 - MLE gives all training samples equal weight
- Sensitive to outliers
 - Use of an error measure instead of MMIE would reduce sensitivity
- Simple example shows usefulness with incorrect model assumptions.
 - Two class static pattern recognition problem
 - Two dimensional data from full covariance Gaussian
 - Modelled with diagonal covariance Gaussian

Simple MMIE Example



Cambridge University Engineering Department

MMIE Issues for LVCSR

- Need to have effective optimisation technique that scales well to large systems.
- Optimisation: Extended Baum-Welch [9, 10]

$$\hat{\mu}_{jm} = \frac{\left\{\theta_{jm}^{\text{num}}(\mathcal{O}) - \theta_{jm}^{\text{den}}(\mathcal{O})\right\} + D\mu_{jm}}{\left\{\gamma_{jm}^{\text{num}} - \gamma_{jm}^{\text{den}}\right\} + D}$$

$$\hat{\sigma}_{jm}^2 = \frac{\left\{\theta_{jm}^{\text{num}}(\mathcal{O}^2) - \theta_{jm}^{\text{den}}(\mathcal{O}^2)\right\} + D(\sigma_{jm}^2 + \mu_{jm}^2)}{\left\{\gamma_{jm}^{\text{num}} - \gamma_{jm}^{\text{den}}\right\} + D} - \hat{\mu}_{jm}^2$$

- Gaussian occupancies (summed over time) are γ_{jm} .
- $\theta_{jm}(\mathcal{O})$ and $\theta_{jm}(\mathcal{O}^2)$ are sums of data and squared data respectively, weighted by occupancy.
- num and den denote correct word sequence, & recognition model respectively.

- Denominator requires computation of all sentence likelihoods: approximate with lattices [11]
- Require good generalisation
 - Can reduce training set error rate: need to reduce test-set errors!
 - Need to keep gains with large numbers of parameters
 - Need to increase "confusable" data for training
 - Use acoustic scaling to broaden posterior distribution across denominator
 [11]
 - Weakened language model to increase focus on acoustics [12]
- For discriminative training in HTK V3.4
 - Generate word lattices using MLE models
 - Mark HMM model boundaries (assumed fixed, used for pruning)
 - Re-estimate MMIE parameters (std mean/variance updates, modified mixture weights)
 - Uses Gaussian-specific ${\cal D}$ for fast convergence

MPE Objective Function

• Maximise the following function for MPE [13]:

$$\mathcal{F}_{\text{MPE}}(\lambda) = \sum_{r}^{R} \sum_{w} P(w|\mathcal{O}; \mathcal{M}) \text{RawAccuracy}(w)$$

- RawAccuracy(w) is number of correct phones in sentence w i.e. the number of correct phones in w inserted phones in w
- *F*_{MPE}(λ) is weighted average of RawAccuracy(w) over all w.
 MPE is smoothed approx to phone error in a word recognition context
- Can use lattice-based implementation (requires time-based alignments for errors) and new statistics computation to still use EBW update formulae
- Minimum Word Error (MWE) [13] just counts errors differently
- MPE and MWE train to minimise the Bayes' Risk with particular loss functions

Improved Generalisation using I-smoothing

- Use of discriminative criteria can easily cause over-training
- Get smoothed estimates of parameters by combining Maximum Likelihood (ML) and MPE objective functions for each Gaussian
- Rather than globally interpolate (H-criterion), amount of ML smoothing depends on the amount of data per Gaussian
- I-smoothing adds τ samples of the average ML statistics for each Gaussian. Typically $\tau\!=\!50.$
 - For MMI scale numerator counts appropriately
 - For MPE need ML counts in addition to other MPE statistics
- I-smoothing essential for MPE (& helps a little for MMI)

MMI/MPE CTS results & Summary			
	% WER Train	% WER eval98	% WER redn (test)
MLE baseline	47.2	45.6	—
MMIE	37.7	41.8	3.8%
MPE ($ au{=}100)$	34.4	40.8	4.8%
HMMs trained on 265br train. Train is lattice unigram			

mivitivis trained on 205nr train. Train is lattice unigram

- MPE/I-smoothing gives around 1% abs lower WER than MMIE results
- Gains from discriminative training increase for
 - Simpler models
 - Larger training sets (used up to 2,000 hours of training data)
- Many extensions e.g.
 - Discriminative MAP adaptation for task-porting [14]
 - Adaptation transform estimation [15]
 - Feature-space transforms (fMPE)

• Discriminative Training now used in all state-of-the-art LVCSR systems

Speaker Adaptation and Adaptive Training

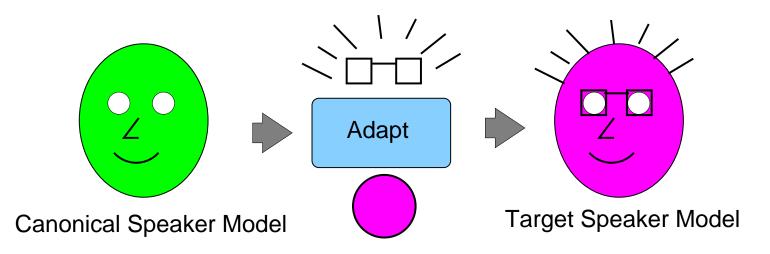
- Speaker/environment adaptation is an essential part of LVCSR systems
 - obtain the performance of a Speaker/Environment dependent system with orders-of-magnitude less data (30 seconds vs 2000 hours!)
- The mode of adaptation depends on the task being investigated
 - incremental: results are required causally, the adaptation data is not all available in one block dictation tasks, car navigation
 - batch: all the data is available (or can be used) in one block BN transcription, CTS transcription

In addition for batch adaptation the adaptation data may be

- supervised: the correct transcription of the adaptation data is known (dictation enrolment)
- unsupervised: no transcribed adaptation data available, transcription must be hypothesised (BN transcription)

General Adaptation Process

- Aim: Modify a "canonical" model to represent a target speaker
 - transformation should require minimal data from the target speaker
 - adapted model should accurately represent target speaker



- Need to determine
 - nature (and complexity) of the speaker transform
 - how to train the "canonical" model that is adapted

Form of the Adaptation Transform

- There are a number of standard forms in the literature[16]
 - Gender-dependent, MAP[17], EigenVoices[18], CAT[19] ...
- Dominant form for LVCSR are ML-based linear transformations
 - MLLR adaptation of the means (MLLRMEAN)[20]

$$\hat{oldsymbol{\mu}}_m = oldsymbol{A}oldsymbol{\mu}_m + oldsymbol{b}$$

- MLLR adaptation of the covariance matrices (MLLRCOV, MLLRVAR)[21]

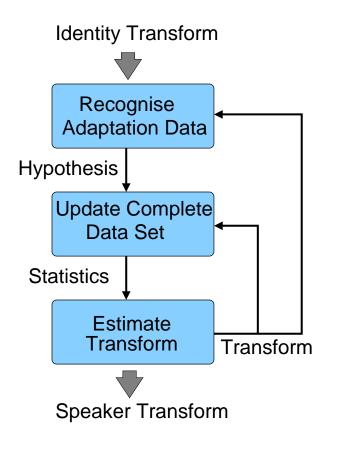
$$\hat{oldsymbol{\Sigma}}_m = oldsymbol{H} oldsymbol{\Sigma}_m oldsymbol{H}'$$

- Constrained MLLR adaptation (CMLLR)[21]

$$\hat{oldsymbol{\mu}}_m = oldsymbol{A}oldsymbol{\mu}_m + oldsymbol{b}; \quad \hat{oldsymbol{\Sigma}}_m = oldsymbol{A}oldsymbol{\Sigma}_m oldsymbol{A}'$$

Linear Transformation Estimation

- Estimation of all the transforms is based on EM[21]:
 - requires the transcription/hypothesis of the adaptation data
 - iterative process using "current" transform to estimate new transform



- Two iterative loops for estimation:
 - 1. estimate hypothesis given transform
 - 2. update complete-dataset given transform and hypothesis

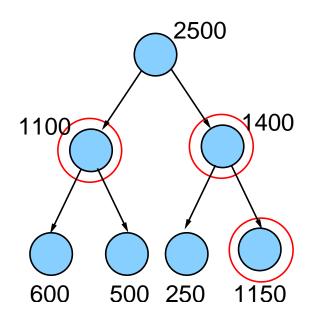
referred to as Iterative MLLR[22]

- For supervised training hypothesis is known
- Can also vary complexity of transform with iteration

Adaptation Transform Complexity

- Two aspects of transform complexity can be controlled:
 - structure of the transform: full, block, diagonal
 - number of transforms

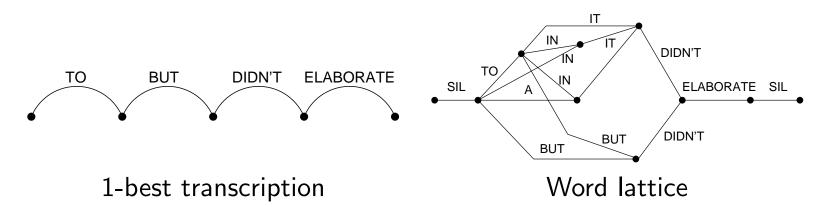
The structure is normally determined by an "expert"



- Regression Class trees often used[23] to determine number of transforms
- Example with a threshold of 1000 shown:
 - components clustered in acoustic space
 - compute occupancy count for each node
 - move down tree until node count below threshold
 - generate transform for parent node (or leaf node)

Lattice-Based MLLR

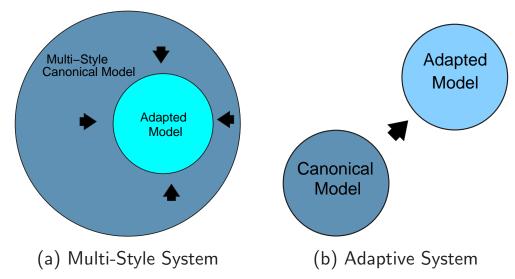
- For unsupervised adaptation hypothesis will be error-full
- Rather than using the 1-best transcription and iterative MLLR
 - generate a lattice when recognising the adaptation data
 - accumulate statistics over the lattice (Lattice-MLLR[24])



- The accumulation of statistics is closely related to obtaining denominator statistics for discriminative training
- No need to re-recognise the data
 - iterate over the transform estimation using the same lattice

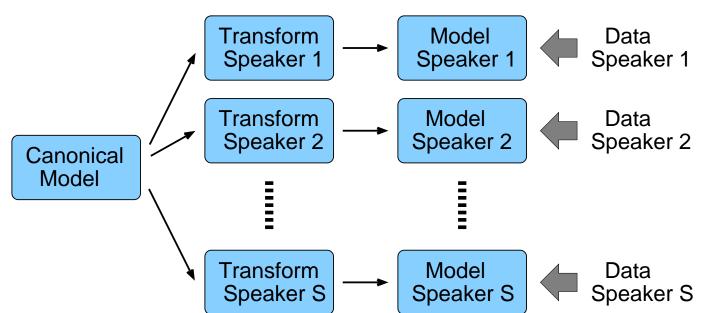
Training a "Good" Canonical Model

- Standard "multi-style" canonical model
 - treats all the data as a single "homogeneous" block
 - model represents acoustic realisation of phones/words (desired)
 - and acoustic environment, speaker, speaking style variations (unwanted)



Two different forms of canonical model:

- Multi-Style: adaptation converts a general system to a specific condition;
- Adaptive: adaptation converts a "neutral" system to a specific condition[25, 21]



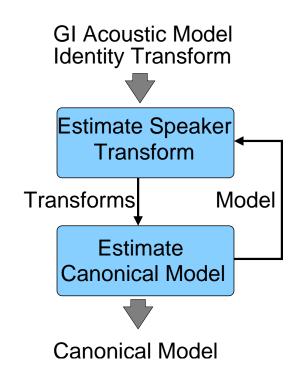
- In adaptive training the training corpus is split into "homogeneous" blocks
 - use adaptation transforms to represent unwanted acoustic factors
 - canonical model only represents desired variability
- All forms of linear transform can be used for adaptive training
 - CMLLR adaptive training highly efficient[21]

CMLLR Adaptive Training

• The CMLLR likelihood may be expressed as:

$$\mathcal{N}(oldsymbol{o};oldsymbol{A}oldsymbol{\mu}_m+oldsymbol{b},oldsymbol{A}\Sigma_moldsymbol{A}')=rac{1}{|oldsymbol{A}|}\mathcal{N}(oldsymbol{A}^{-1}oldsymbol{o}-oldsymbol{A}^{-1}oldsymbol{b};oldsymbol{\mu}_m,\Sigma_m)$$

same as feature normalisation - simply train model in transformed space



- Interleave Model and transform estimation
- For HTK V3.3/4 this process is:
 - estimate model given transforms as input and parent
 - estimate transform given model and input transform
- Adaptive canonical model not suited for unadapted initial decode
 - GI model used for initial hypothesis

Adaptation/Adaptive Training Summary

- Adaptation is an essential part of any state-of-the-art system
- CMLLR adaptive training efficiently handles non-homogeneous data
- Example performance on CTS task (MPE models, eval03 test set)

System	Adaptation	No adapt	Adapted
Multi-Style (GI)	CMLLR	29.2	27.1
SAT			26.8

- simple ASR systems larger gains
- more front-end normalisation (in above VTLN/CMN/CVN) smaller gains
- greater training/test mismatch larger gains
- Support in HTK V3.3/4 for
 - adaptation using MLLR on means and covariance matrices
 - CMLLR adaptation and adaptive training
 - cascades of transforms (using parent transforms)

Structured Covariance Matrix Modelling

• State output distribution normally modelled using a GMM

$$b_j(\boldsymbol{o}_t) = \sum_{m=1}^M c_{jm} \mathcal{N}(\boldsymbol{o}_t; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

- Covariance matrix is normally assumed to be diagonal
 - limits number of model parameters ($\mathcal{O}(d)$ rather than $\mathcal{O}(d^2)$)
 - but assumes that elements of the feature vector uncorrelated
- Various forms of structured covariance matrices have been proposed
 - factor-analysed HMMs[26], STC[27], SPAM[28], EMLLT[29] ...
 - precision-matrix (inverse covariance) models are popular due to efficiency

Semi-Tied Covariance Matrices

• STC[27] are closely related to MLLRCOV transformations

$$\hat{\boldsymbol{\Sigma}}_m^{-1} = \boldsymbol{A}' \boldsymbol{\Sigma}_m^{-1} \boldsymbol{A}$$

• Likelihood can then be computed as

$$\mathcal{N}(oldsymbol{o};oldsymbol{\mu}_m,\hat{oldsymbol{\Sigma}}_m) = |oldsymbol{A}|\mathcal{N}(oldsymbol{A}oldsymbol{o};oldsymbol{A}oldsymbol{\mu}_m,oldsymbol{\Sigma}_m)$$

 $oldsymbol{A}$ can be efficiently estimated using EM[27]

- Multiple transformation matrices \boldsymbol{A} may also be used
 - cluster components in similar fashion to regression classes for adaptation
 - makes adaptation more complex[30]
- Small increase in # parameters, as # transforms << # components

Basis Superposition

- A general framework for precision matrix modelling:
 - component-specific basis interpolation weights $oldsymbol{\lambda}_m$
 - P global symmetric basis matrices: $oldsymbol{S}^{(1)},\ldots,oldsymbol{S}^{(P)}$
- Precision matrix modelled as

$$\hat{\boldsymbol{\Sigma}}_m^{-1} = \sum_{i=1}^P \lambda_{mi} \boldsymbol{S}^{(i)}$$

- General ML and MPE update formulae can be derived[31]
- STC can be written as

$$\hat{\boldsymbol{\Sigma}}_{m}^{-1} = \sum_{i=1}^{P} \frac{1}{\sigma_{mi}^{2}} \begin{bmatrix} a_{i1} \\ \vdots \\ a_{id} \end{bmatrix} \begin{bmatrix} a_{i1} & \dots & a_{id} \end{bmatrix}$$

can also describe SPAM, EMLLT

Heteroscedastic LDA

- HLDA[32] is related to LDA and STC
 - LDA without the constraint that all within-class covariances are the same
 - STC with additional sub-vector tying of the means and variances
- HLDA estimated using ML in same fashion as STC except constrain[27]

$$oldsymbol{A}oldsymbol{\mu}_m = \left[egin{array}{c} ilde{oldsymbol{\mu}}_{m[p]} \ ilde{oldsymbol{\mu}} \end{array}
ight], \quad oldsymbol{\Sigma}_m = \left[egin{array}{c} oldsymbol{\Sigma}_{m[p]} & 0 \ 0 & oldsymbol{\Sigma} \end{array}
ight], \quad oldsymbol{A} = \left[egin{array}{c} oldsymbol{A}_{[p]} \ oldsymbol{A}_{[d-p]} \end{array}
ight]$$

d-p dimensional parameters $\tilde{\pmb{\mu}}$ and $\pmb{\Sigma}$ tied over all components

• Likelihood calculated as

$$|m{A}|\mathcal{N}(m{A}m{o};m{A}m{\mu}_m,m{\Sigma}_m) = \left(|m{A}|\mathcal{N}(m{A}_{[p]}m{o}; ilde{m{\mu}}_{m[p]},m{\Sigma}_{m[p]})
ight)\mathcal{N}(m{A}_{[d-p]}m{o}; ilde{m{\mu}},m{\Sigma})$$

- as the final d-p dimensions are all tied, no discrimination
- effectively projected from $d \rightarrow p$ dimensions

Structured Covariance Matrix Summary

- Semi-tied covariances/HLDA used in many state-of-the-art systems
- Global transforms efficient to train, adapt and use in decoding
- Example performance on BN-English task (ML models, dev03 test set)

Front-end	WER(%)
MF-PLP	19.1
+HLDA	16.8

- Performance gains on LVCSR systems normally around 10% relative reduction
- Support in HTK V3.3/4 limited
 - no estimation of STC or HLDA in current distribution
 - support for global InputXForm including projections

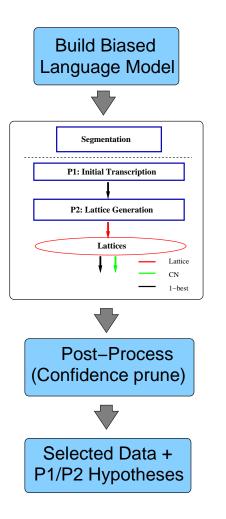
Found Data and Closed Captions

- There is a vast quantity of found audio data
 - radio, television, podcasts etc
 - but expensive to produce manual transcriptions (takes 5-10 times RT)
- USA FCC requires that 95% of new TV programs include Closed Captions
 - accurate transcriptions typically include:
 exact word level transcription, non-speech events, speaker id
 - CC transcriptions typically reflect the meaning, but typically hesitations/repetitions not marked, possible word order changes
 - NIST found level of disagreement of the order of 12%

Can these rough CC be used to train an ASR system? How to select appropriate audio data for training?

• Current approaches use the closed caption to generate a biased LM[33, 34, 35]

Lightly-Supervised Training Routine



1. Biased Language Model (lm_b) generation

build a LM on CC data only (lm_{cc}) interpolate CC LM with a general language (lm_{gen})

 $\texttt{lm}_b = 0.1 \times \texttt{lm}_{\texttt{gen}} + 0.9 \times \texttt{lm}_{\texttt{cc}}$

- 2. Recognise audio data using P1/P2 5xRT system
- 3. Select data for training selection may use
 - confidence pruning (from CNs)
 - match between CC and hypothesis
 - date/nature of show
- 4. Use selected data and hypotheses from (2)

Lightly	Supervised	Training	for	BN-E	
---------	------------	----------	-----	------	--

Data	Trans.	#States/Avg	eval03	
(hours)		Components	ML	MPE
144	Manual	7K/16	16.0	13.7
+ 230	CC	7K/16	14.8	12.5
+ 375	СС	7K/16	14.8	12.1
+ 373		7K/32	14.2	11.8
+ 600	СС	9K/32	13.9	11.2

- Use of CC data reduced WER for both ML and MPE training
- As quantity of data increase, complexity of system increased
 - increase average number of components/state
 - increase number of states
- 1350 hours of data used in the final system

Found Data and Closed-Captions Summary

- Large quantities of "found" data available for "free"
- High quality transcriptions normally not available
 - closed captions (and related) are available for many sources
 - these CC and related transcriptions may be used for training system
- Large performance gains obtained using large quantities of CC data
- How to rapidly select data from the possible sources an open question
 - normally build a system on various subsets and test performance on development data

Minimum Bayes Risk Decoding

- The aim in LVCSR is to minimise WER (interesting statement ...);
 - the equivalent expected loss (MWE discriminative training)[13, 11]

$$\mathcal{F}(\mathcal{M}) = \sum_{\mathcal{H}} P(\mathcal{H}|\boldsymbol{O}; \mathcal{M}) \mathcal{L}(\mathcal{H}, \tilde{\mathcal{H}})$$

where the loss function $\mathcal{L}(\mathcal{H},\tilde{\mathcal{H}})$ is costed at a word level

• For standard decoding the hypothesis is estimated using

$$\hat{\mathcal{H}} = \arg \max_{\mathcal{H}} \left\{ P(\mathcal{H} | \boldsymbol{O}; \mathcal{M}) \right\}$$

this is the equivalent of having a cost function at the sentence level

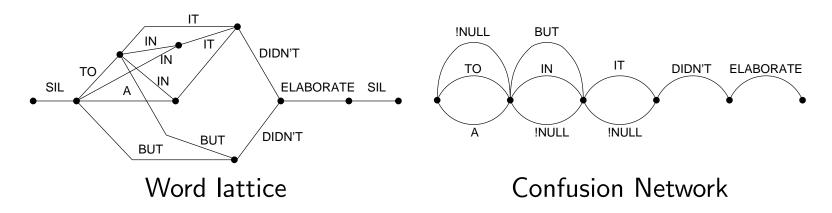
• Is it possible to match the decoding with WER minimisation?

Confusion Network Decoding

• If the confusions could be split at the word level, could use:

$$\hat{\mathcal{H}} = \sum_{i=1}^{L} \arg \max_{\mathcal{W}^{(i)}} \left\{ P(\mathcal{W}^{(i)} | \boldsymbol{O}; \mathcal{M}) \right\}$$

this should minimise the WER rather than sentence error rate.



- Confusion networks[36] are one approach to this
 - use standard HMM decoder to generate word lattice;
 - iteratively merge links to form confusion networks (CN) from word lattice.

Complementary System Generation/Combination

- It is hard to produce a single system that performs well on all data
- A standard machine learning approach is to build multiple, complementary, systems (e.g. ADABoost)

How to build/select systems that are complementary? How to combine multiple systems together?

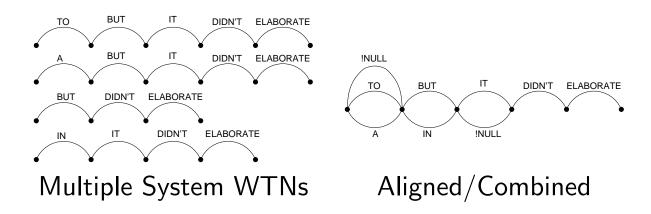
- Building explicitly complementary systems is still an open question, currently
 - build many diverse systems tri/quin-phone, MFCC/PLP, SAT/GD/GI
 - try combinations and pick the best

Not elegant, but it works! Diversity of models is important

- Range of options for combining systems:
 - cross-adaptation: hypothesis from one system used to adapt another[37]
 - explicitly combine the individual system hypotheses

System Hypothesis Combination

- Hope that errors made in one system are not made in another
 - combining systems has the chance to reduce the number of errors
- Two standard approaches: ROVER[38] and CN Combination[39]
- ROVER takes the output from multiple recognition then:
 - convert outputs into Word Transition Networks (WTNs)
 - align and combine (WTNs) in a pre-specified order
 - using voting to decide between aligned WTNs
- A simple example output: BUT IT DIDN'T ELABORATE



Confusion Network Combination

- $\bullet\,$ In contrast to ROVER, align and combine CN
 - use word posteriors rather than voting-style approaches
 - combined "posterior" found by

$$P(\mathcal{W}_i|\boldsymbol{O};\mathcal{M}^{(1)},\ldots,\mathcal{M}^{(S)}) = \sum_{s=1}^{S} P(s)P(\mathcal{W}_i|\boldsymbol{O};\mathcal{M}^{(s)})$$

 $P(\boldsymbol{s})$ can be used to represent the global confidence in system \boldsymbol{s}

- CNC generally works slightly better than ROVER
 - system word posteriors, rather than 1-best helps
 - but alignment more complex not normally used with different segmentations

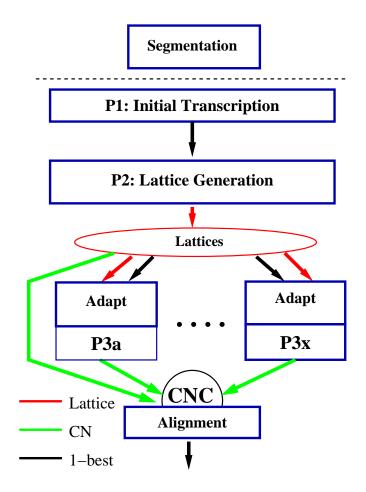
Confusion Networks and System Combination Summary

- Standard (Viterbi) decoding minimises sentence-level loss
- Confusion networks: an approach to minimising word-level loss
 - Example performance on CTS task (ML models, eval04 test set)

Decoding	WER(%)	SER(%)
Viterbi	29.9	32.9
CN	29.2	33.1

- reduces WER, increases Sentence Error Rate (SER)
- gains in WER varies (normally reduced when adaptation is used)
- System combination is used in most state-of-the-art systems
 - system combined either using ROVER or CNC
 - Performance gains depend on systems making different errors
- No confusion network support in HTK V3.4 currently

CU-HTK Multi-Pass/Combination Framework



- P1 used to generate initial hypothesis
- P1 hypothesis used for rapid adaptation
 - LSLR, diagonal variance transforms
- P2: lattices generated for rescoring
 - apply complex LMs to trigram lattices
- P3 Adaptation
 - 1-best CMLLR
 - Lattice-based MLLR
 - Lattice-based full variance
- CN Decoding/Combination
- Segmentation/P1-P2 branches runs in < 5xRT, full configuration < 10xRT.

General CU-HTK System Description

• Front-end:

- base front-end 12 MF-PLP plus normalised log-energy (13 dim)
- segment-level Cepstral Mean Normalisation (CMN)
- delta, delta-delta, delta-delta-delta appended (52 dim)
- HLDA projection $52 \rightarrow 39$ dimensions

• Acoustic Models:

- state-clustered decision tree tri-phone models
- Gender-Independent (GI) models
- Gender Dependent (GD) models male/female component variances tied
- GMM used for state-output distributions
- all models MPE trained
- Language Models:
 - generate separate tri-gram, four-grams, class-based N-grams on sources
 - interpolate sources to minimise perplexity on development data

English Broadcast News System Description

- Segmentation and clustering:
 - LIMSI kindly supplied segmentation and clustering
- Acoustic Models:
 - 1350 hours of data (144hrs manual transcriptions)
- Language Models:
 - 928MWords of text split into 5 language models and interpolated
 - word and class-based four-gram LMs used in P2 lattice rescoring
- P3 Branch models:
 - GD multiple pron. dictionary model (P3b GD-MPron) contrast for P2
 - GD single pronunciation dictionary model[40] (P3c GD-SPron)
 - SAT multiple pronunciation dictionary model (P3a SAT-MPron)
- For more details see[41]

English Broadcast News Transcription

S	ystem	WER(%)			
		eval03	dev04	dev04f	eval04
P2-cn	GD-MPron	8.6	11.1	15.9	13.6
P3a-cn	SAT-MPron	8.2	10.6	15.3	13.3
P3b-cn	GD-MPron	8.2	10.6	15.4	13.4
P3c-cn	GD-SPron	8.1	10.4	15.2	13.0
P2+P3a	+P3c CNC	8.0	10.4	14.9	12.9

- Large variation in performance depending on test set
 - difficulty varies with sources
 - different levels of background noise/music, non-native speakers etc.
- Disappointing gains from system combination
 - using same CNC configuration gave 0.4% absolute on 2003 system
 - gains from system combination reduced with more data/complex system

Mandarin Broadcast News System Description

- Mandarin specific features (full description in[42] see ICASSP poster)
- Front-end:
 - pitch (plus delta, delta-delta) added after HLDA
 - optional GMM-based Gaussianisation[43] applied
- Acoustic Models:
 - tonal questions added to the set of decision-tree questions.
 - 148 hours of Mandarin, 11 hours of English (dual language system)
- Language Models;
 - best-first search for character-to-word segmentation
 - about 400M "Words" of text data word trigram only
- P3 Branch models:
 - GD HLDA front-end system (P3b GD-HLDA) contrast for P2
 - GD Gaussianised HLDA front-end system (P3d GD-GAUSS)
 - SAT Gaussianised HLDA front-end system (P3e SAT-GAUSS)

Mandarin Broadcast News Transcription

System		CER (%)
		eval04
P2-cn	GD-HLDA	17.6
P3b-cn	GD-HLDA	17.0
P3d-cn	GD-GAUSS	16.6
P3e-cn	SAT-GAUSS	16.4
P3e+P3d	CNC	16.3

- Recognition performance measured in Character Error Rate (CER)
- Use of P2 in CNC stage did not help
- Gaussianisation (GAUSS) helped over standard HLDA front-end
 - additional normalisation helps when using smaller training sets
 - SAT gave small further gains over GAUSS
- CNC gave only small gains

English Conversational Telephone Speech Description

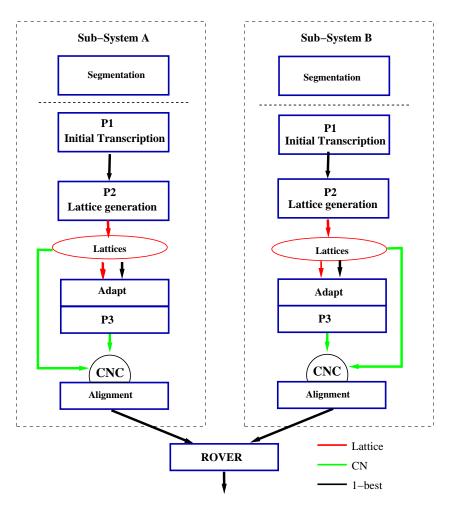
- Task-specific modifications to general system (full description in[44])
- Front-end:
 - Vocal Tract Length Normalisation (VTLN) applied
 - Cepstral Variance Normalisation (CVN) applied (Jacobian normalisation)
- Acoustic model training data:
 - about 2300 hours of data, quinphone and triphone models built
- Language model training data:
 - 1,000MWords of text split into 6 language models and interpolated
 - word and class-based four-gram LMs used in P2 lattice rescoring
- P3 Branch models:
 - GD multiple pronunciation dictionary model (P3b GD-MPron)
 - quinphone SAT single pron. dictionary model (P3e SAT-SPron-Quin)

English Conversational Telephone Speech

System		WER(%)
		eval04
P2-cn	GD-MPron	19.1
P3b-cn	GD-MPron	18.1
P3e-cn	SAT-SPron-Quin	18.3
P3b+P3e	CNC	16.9

- Error rates higher than for BN-English
 - harder to get language model data close to the task
- System combination works well very different models being combined
 - quinphone SAT single pronunciation and
 - a triphone GD multiple pronunciation system

Segmentation Diversity



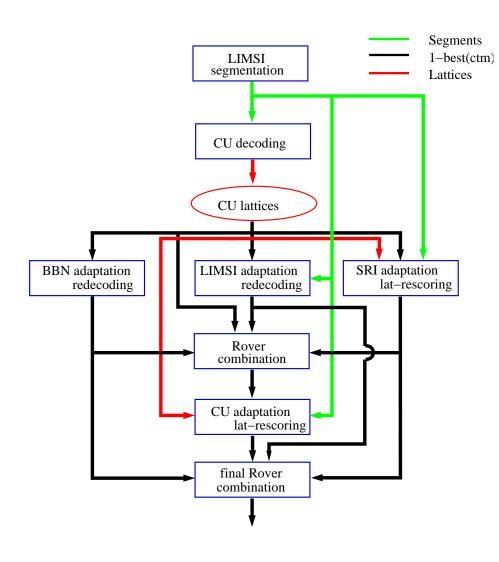
- Different segmentations/clusterings
- Each subsystem
 - P1/P2 branches
 - P3c GD-SPron models
- P3 Adaptation
 - 1-best CMLLR
 - Lattice-based MLLR
 - Lattice-based full variance
- CN Decoding
- P2+P3c Combination within branch
- ROVER combination cross branch
- Each branch runs in < 5xRT, full configuration < 10xRT.

Segmentation Diversity BN-English Results

System	Segment/		WER(%)
	Clustering		eval04
L0+P3c	LIMSI		12.8
B0+P3c	BBN	CNC	13.0
C0+P3c	CU		13.3
L0+P3c	OC0+P3c	ROVER	12.6
L0+P3c ⊕	∋ B0+P3c	NOVER	12.4

- Three segmentations and clusterings: CU, BBN and LIMSI (thanks to BBN and LIMSI)
 - all segmentations/clusterings very different (CU deliberately very different)
- Diversity in segmentation gives gains in combination
 - combining BBN and LIMSI 0.5% better than using general framework
- Framework used for the RT04f BN-English EARS evaluation

Cross-Site Diversity - "SuperEARS"

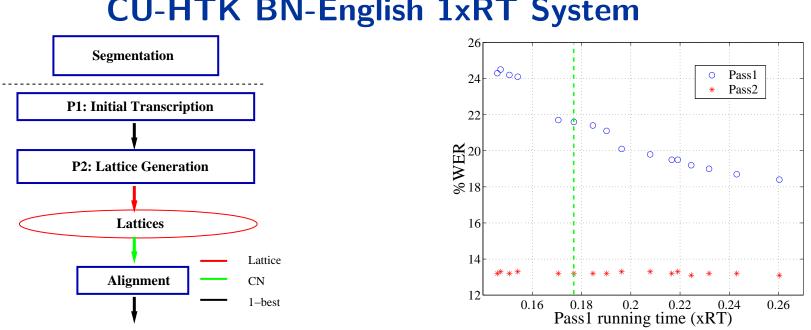


- Initial pass using CU P1/P2 system
- BBN P3 branch (P3B)
 - use 1-best output for adaptation
 - decode using BBN segmentation
- LIMSI P3 branch (P3L)
 - P3B except LIMSI segmentation
- SRI P3 branch (P3S)
 - use 1-best output for adaptation
 - rescore CU lattices
- CU P4 branch (P4)
 - $P2 \oplus P3B \oplus P3L \oplus P3S$ adaptation
 - rescore CU lattices

"SuperEARS" BN-English Results

	System		WER(%)
	System		
P2-cn	CU	MPron	13.6
P3B	BBN	decode	12.8
P3L	LIMSI	decode	14.0
P3S	SRI	rescore	14.6
P2⊕P3	B⊕P3L⊕P3S	ROVER	12.2
P4	CU	SPron	12.8
P3B⊕F	P3L⊕P3S⊕P4	ROVER	11.6

- Further system description in [45], ran in $< 10 \times RT$.
- Complementary systems built at different sites (BBN,LIMSI,SRI,CU)
 - 0.8% absolute better than using models from CU
 - performance on eval03 was 6.7%~WER
 - works well generally not that practical!



CU-HTK BN-English 1xRT System

• Can use multi-pass framework for 1×RT systems (for details see[41])

- initial pass (P1) for adaptation supervision, adapted decode in P2

- Modified version of $< 10 \times RT P1-P2$ system
 - P1: smaller acoustic and language models, heavily pruned search
 - P2: slightly smaller language model, pruned search
- Effect of P1 search vs WER% at P2 stage shown (dev04) little effect

System	RT	WER(%)	
	factor	eval03	eval04
RT03	< 10	10.6	
	< 1	9.8	15.3
RT04f-style	< 5		12.8
	< 10		12.4
SuperEARS	< 10	6.7	11.6

BN-English 1xRT Results

- RT04f < 1xRT system outperformed the RT03 < 10xRT system
- Using single branch of "segmentation diversity" ($< 5 \times RT$)
 - 16% relative reduction in WER compared to $< 1 \mathrm{xRT}$ system
- Both branches of "segmentation diversity" (< $10 \times RT$)
 - 3% relative reduction in WER compared to $<5\mathrm{xRT}$ system
- SuperEARS system significantly better than CU-HTK system

Summary

- Reviewed basic building blocks for speech recognition
- Described range of state-of-the-art techniques:
 - discriminative training
 - adaptation and adaptive training
 - structured precision matrices
 - lightly supervised training
 - confusion network decoding and system combination
- Described CU-HTK multi-pass combination frameworks
 - Languages: English and Mandarin
 - Tasks: Broadcast News and Conversation Telephone Speech transcription

LVCSR systems make use of large amounts of data LVCSR systems are complex involving many techniques

References

- S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. C. Woodland, *The HTK Book, version 3.4.* Cambridge, UK: Cambridge University Engineering Department, 2006.
- [2] D. Y. Kim, S. Umesh, M. J. F. Gales, T. Hain, and P. C. Woodland, "Using VTLN for Broadcast News transcription," in *Proc. Int. Conf. Spoken Lang. Process.*, Jeju island, South Korea, October 2004.
- [3] P. C. Woodland, "The development of the HTK Broadcast News transcription system: an overview," *Speech Communication*, vol. 37, pp. 47–67, 2002.
- [4] J.-L. Gauvain, L. Lamel, and G. Adda, "Partitioning and transcription of broadcast news data," in *Proc. Int. Conf. Spoken Lang. Process.*, vol. 4, Sydney, Australia, December 1998, pp. 1335–1338.
- [5] S. J. Young, J. Odell, and P. C. Woodland, "Tree-based state tying for high accuracy acoustic modelling," in *Proc. ARPA Human Language Technology Workshop*, 1994.
- [6] A. Stolcke, "SRILM an extensible language modeling toolkit," in *Proc. Int. Conf. Spoken Lang. Process.*, Denver, CO, September 2002.
- [7] P. C. Woodland, C. J. Leggetter, J. J. Odell, V. Valtchev, and S. J. Young, "The 1994 HTK large vocabulary speech recognition system," in *Proc. ICASSP*, 1995.
- [8] A. Stolcke, "Entropy-based pruning of backoff language models," in *Proc. DARPA News Transcription and Understanding Workshop*, 1998.
- [9] P. Gopalakrishnan, D. Kanevsky, A. Nádas, and D. Nahamoo, "An inequality for rational functions with applications to some statistical estimation problems," *IEEE Trans. Information Theory*, 1991.
- [10] Y. Normandin, "An improved MMIE training algorithm for speaker independent, small vocabulary, continuous speech recognition," in *Proc. ICASSP*, 1991.
- [11] P. C. Woodland and D. Povey, "Large scale discriminative training of hidden Markov models for speech recognition," *Computer Speech & Language*, vol. 16, pp. 25–47, 2002.
- [12] R. Schlüter, B. Müller, F. Wessel, and H. Ney, "Interdependence of language models and discriminative training," in *Proc. ASRU*, 1999.
- [13] D. Povey and P. C. Woodland, "Minimum phone error and I-smoothing for improved discriminative training," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.*, Orlando, FL, May 2002.

- [14] D. Povey, M. J. F. Gales, D. Y. Kim, and P. C. Woodland, "MMI-MAP and MPE-MAP for acoustic model adaptation," in *Proc. Eur. Conf. Speech Commun. Technol.*, Geneva, Switzerland, September 2003.
- [15] L. Wang and P. Woodland, "Discriminative adaptive training using the MPE criterion," in *Proc. ASRU*, 2003.
- [16] P. C. Woodland, "Speaker adaptation for continuous density HMMs: A review," in ISCA Adaptation Workshop., 2001.
- [17] J. L. Gauvain and C.-H. Lee, "Maximum a-posteriori estimation for multivariate Gaussian mixture observations of Markov chains," *IEEE Transactions Speech and Audio Processing*, vol. 2, pp. 291–298, 1994.
- [18] R. Kuhn, P. Nguyen, J.-C. Junqua, L. Goldwasser, N. Niedzielski, S. Fincke, K. Field, and M. Contolini, "Eigenvoices for speaker adaptation," in *Proceedings ICSLP*, 1998, pp. 1771–1774.
- [19] M. J. F. Gales, "Cluster adaptive training of hidden Markov models," *IEEE Transactions Speech and Audio Processing*, vol. 8, pp. 417–428, 2000.
- [20] C. J. Leggetter and P. C. Woodland, "Maximum likelihood linear regression for speaker adaptation of continuous density HMMs," *Computer Speech and Language*, vol. 9, pp. 171–186, 1995.
- [21] M. J. F. Gales, "Maximum likelihood linear transformations for HMM-based speech recognition," Computer Speech and Language, vol. 12, pp. 75–98, 1998.
- [22] P. C. Woodland, D. Pye, and M. J. F. Gales, "Iterative unsupervised adaptation using maximum likelihood linear regression," in *Proc. Int. Conf. Spoken Lang. Process.*, Philadelphia, 1996, pp. 1133–1136.
- [23] C. J. Leggetter and P. C. Woodland, "Flexible speaker adaptation for large vocabulary speech recognition," in *Proceedings Eurospeech*, 1995, pp. 1155–1158.
- [24] L. F. Uebel and P. C. Woodland, "Speaker adaptation using lattice-based MLLR," in *Proc. ITRW on Adaptation Methods for Speech Recognition*, 2001.
- [25] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, "A compact model for speaker-adaptive training," in *Proceedings* ICSLP, 1996, pp. 1137–1140.
- [26] A.-V. Rosti and M. J. F. Gales, "Factor analysed hidden Markov models for speech recognition," *Computer Speech and Language*, 2004.
- [27] M. J. F. Gales, "Semi-tied covariance matrices for hidden Markov models," IEEE Transactions Speech and Audio Processing, vol. 7, pp. 272–281, 1999.
- [28] S. Axelrod, R. Gopinath, and P. Olsen, "Modeling with a subspace constraint on inverse covariance matrices," in *Proc. ICSLP*, 2002.

- [29] P. A. Olsen and R. A. Gopinath, "Modeling inverse covariance matrices by basis expansion," in *Proceedings ICASSP*, 2002.
- [30] K. C. Sim and M. J. F. Gales, "Adaptation of precision matric models on large vocabulary continuous speech recognition," in *ICASSP*, 2005.
- [31] —, "Minimum phone error training of precision matrix models," *IEEE Transactions Audio, Speech and Language Processing*, 2006, to appear.
- [32] N. Kumar, "Investigation of silicon-auditory models and generalization of linear discriminant analysis for improved speech recognition," Ph.D. dissertation, John Hopkins University, 1997.
- [33] L. Lamel and J.-L. Gauvain, "Lightly supervised and unsupervised acoustic model training," *Computer Speech and Language*, vol. 16, pp. 115–129, 2002.
- [34] H. Y. Chan and P. C. Woodland, "Improving broadcast news transcription by lightly supervised discriminative training," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.*, Montreal, Canada, March 2004.
- [35] L. Nguyen and B. Xiang, "Light supervision in acoustic model training," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.*, Montreal, Canada, March 2004.
- [36] L. Mangu, E. Brill, and A. Stolcke, "Finding consensus among words: Lattice-based word error minimization," in *Proc. Eur. Conf. Speech Commun. Technol.*, 1999.
- [37] L. Nguyen, S. Abdou, M. Afify, J. Makhoul, S. Matsoukas, R. Schwartz, B. Xiang, L. Lamel, J. Gauvain, G. Adda, H. Schwenk, and F. Lefevre, "The 2004 BBN/LIMSI 10xRT English Broadcast News transcription system," in *Proc. Fall 2004 Rich Transcription Workshop (RT-04)*, Palisades, NY, November 2004.
- [38] J. G. Fiscus, "A post-processing system to yield reduced word error rates: Recogniser Output Voting Error Reduction (ROVER)," in *Proc. IEEE ASRU Workshop*, 1997.
- [39] G. Evermann and P. C. Woodland, "Posterior probability decoding, confidence estimation and system combination," in *Proc. Speech Transcription Workshop*, College Park, MD, May 2000.
- [40] T. Hain, "Implicit pronunciation modelling in ASR," in ISCA ITRW PMLA, 2002.
- [41] M. J. F. Gales, D. Kim, P. C. Woodland, H. Chan, D. Mrva, R. Sinha, and S. Tranter, "Progress in the CU-HTK Broadcast News transcription system," *IEEE Transactions Audio, Speech and Language Processing*, 2006, to appear.
- [42] R. Sinha, M. J. F. Gales, D. Kim, X. Liu, K. Sim, and P. C. Woodland, "The CU-HTK Broadcast News transcription system," in Proceedings ICASSP, 2006.

- [43] M. J. F. Gales, B. Jia, X. Liu, K. C. Sim, P. C. Woodland, and K. Yu, "Development of the CUHTK 2004 Mandarin conversational telephone speech transcription system," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.*, Philadelphia, PA, March 2005.
- [44] G. Evermann, H. Chan, M. J. F. Gales, B. Jia, X. Liu, D. Mrva, K. Sim, L. Wang, P. C. Woodland, and K. Yu, "Development of the 2004 CU-HTK English CTS systems using more than two thousand hours of data," in *Proc. Fall 2004 Rich Transcription Workshop* (*RT-04f*), 2004.
- P. C. Woodland, H. Y. Chan, G. Evermann, M. J. F. Gales, D. Y. Kim, X. A. Liu, D. Mrva, K. C. Sim, L. Wang, K. Yu, J. Makhoul, R. Schwartz, L. Nguyen, S. Matsoukas, B. Xiang, M. Afify, S. Abdou, J.-L. Gauvain, L. Lamel, H. Schwenk, G. Adda, F. Lefevre, D. Vergyri, W. Wang, J. Zheng, A. Venkataraman, R. R. Gadde, and A. Stolcke, "SuperEARS: Multi-site broadcast news system," in *Proc. Fall 2004 Rich Transcription Workshop (RT-04)*, Palisades, NY, November 2004.

