Sphinx-4: A Flexible Open Source Framework
for Speech Recognition

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,
Rita Singh, Evandro Gouvea, Peter Wolf, Joe Woelfel

Sphinx-4: A Flexible Open Source Framework
for Speech Recognition

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,
Rita Singh, Evandro Gouvea, Peter Wolf, and Joe Woelfel

SMLI TR-2004-139 November 2004

Abstract:

Sphinx-4 is a flexible, modular and pluggable framework to help foster new innovations
in the core research of hidden Markov model (HMM) speech recognition systems. The
design of Sphinx-4 is based on patterns that have emerged from the design of past
systems as well as new requirements based on areas that researchers currently want
to explore. To exercise this framework, and to provide researchers with a “research-
ready” system, Sphinx-4 also includes several implementations of both simple and
state-of-the-art techniques. The framework and the implementations are all freely
available via open source.

W. Walker, P. Lamere, and P. Kwok are with Sun Microsystems
E. Gouvea and R. Singh are with Carnegie Mellon University
B. Raj, P. Wolf, and J. Woelfel are with Mitsubishi Electric Research Labs

email addresses:

% william.walker@sun.com

&%& paul.lamere@sun.com

@f un philip.kwok@sun.com
microsystems bhiksha@merl.com

rsingh@cs.cmu.edu
] egouvea@cs.cmu.edu
16 Network Circle wolf@merl.com

Menlo Park, CA 94025 woelfel@merl.com

© 2004 Sun Microsystems, Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun
Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permigsion of t
copyright owner.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trade-
mark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@sun.com>.All technical
reports are available online on our website, http://research.sun.com/techrep/.

1

Sphinx-4: A Flexible Open Source Framework
for Speech Recognition

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Ritan§h,
Evandro Gouvea, Peter Wolf, Joe Woelfel

. INTRODUCTION

HEN researchers approach the problem of core speech réicognesearch, they are

often faced with the problem of needing to develop an entistesn from scratch, even
if they only want to explore one facet of the field. Open sowspeech recognition systems are
available, such as HTK [1], ISIP [2], AVCSR [3] and earliersiens of the Sphinx systems [4]—
[6]. The available systems are typically optimized for egignapproach to speech system design.
As a result, these systems intrinsically create barrierfutiore research that departs from the
original purpose of the system. In addition, some of thestesys are encumbered by licensing
agreements that make entry into the research arena diffauiton-academic institutions.

To facilitate new innovation in speech recognition reseamwe formed a distributed, cross-
discipline team to create Sphinx-4 [7]: an open source @latfthat incorporates state-of-the
art methodologies and also addresses the needs of emeegie@rch areas. Given our technical
goals as well as our diversity (e.g., we used different dpegasystems on different machines,
etc.), we wrote Sphinx-4 in the JadVprogramming language, making it available to a large
variety of development platforms.

First and foremost, Sphinx-4 is a modular and pluggable é®mank that incorporates design
patterns from existing systems, with sufficient flexibility support emerging areas of research
interest. The framework is modular in that it comprises s@pla components dedicated to
specific tasks, and it is pluggable in that modules can béyeagilaced at run time. To exercise
the framework, and to provide researchers with a workingesys Sphinx-4 also includes a
variety of modules that implement state-of-the-art speeclgnition techniques.

The remainder of this document describes the Sphinx-4 frarieand implementation, and
also includes a discussion of our experiences with Sphitx-date.

[I. SELECTED HISTORICAL SPEECHRECOGNITION SYSTEMS

The traditional approach to speech recognition systemgdelsas been to create an entire
system optimized around a particular methodology. As exidd by past research systems such
as Dragon [8], Harpy [9], Sphinx and others, this approach fraved to be quite valuable in
that the resulting systems have provided foundational austlior speech recognition research.

In the same light, however, each of these systems was ladgdycated to exploring a
single specific ground breaking area of speech recognifian. example, Baker introduced
hidden Markov models (HMMs) with his Dragon system, [8], JJdhd earlier predecessors

W. Walker, P. Lamere, and P. Kwok are with Sun Microsystems
E. Gouvea and R. Singh are with Carnegie Mellon University
B. Raj, P, Wolf, and J. Woelfel are with Mitsubishi Electriesearch Labs

Application 4—\

D
/ L Recognizer \

4 Decoder

FrontEnd Linguist

SearchManager
AcousticModel
ActiveList

LanguageModel

x ‘/

ConfigurationManager
N ¢ 3 v

Fig. 1. Sphinx-4 Decoder Framework. The main blocks are tlomtEnd, the Decoder, and the Linguist. Supporting blocks
include the ConfigurationManager and the Tools blocks. Tmrounication between the blocks, as well as communicatitm w
an application, is depicted.

of Sphinx explored variants of HMMs such as discrete HMMs Bgmicontinuous HMMs [5],
and continuous HMMs [11]. Other systems explored spe@dlgearch strategies such as using
lex tree searches for large N-Gram models [12].

Because they were focused on such fundamental core thetivéesreators of these systems
tended to hardwire their implementations to a high degreeekample, the predecessor Sphinx
systems restrict the order of the HMMs to a constant valueadswlfix the unit context to a single
left and right context. Sphinx-3 eliminated support for taxt free grammars (CFGs) due to the
specialization on large N-Gram models. Furthermore, theodieg strategy of these systems
tended to be deeply entangled with the rest of the system. isdt of these constraints, the
systems were difficult to modify for experiments in otheraae

Design patterns for these systems emerged over time, howevexemplified by Jelinek’s
source-channel model [13] and Huang’s basic system aotbiee[14]. In developing Sphinx-4,
one of our primary goals was to develop a framework that supgddhese design patterns, yet
also allowed for experimentation in emerging areas of metea

[1l. SPHINX-4 FRAMEWORK

The Sphinx-4 framework has been designed with a high dedréexibility and modularity.
Figure 1 shows the overall architecture of the system. Eaobléd element in Figure 1 represents
a module that can be easily replaced, allowing researchezggeriment with different module
implementations without needing to modify other portiorighe system.

There are three primary modules in the Sphinx-4 framewdnk: FrontEnd the Decoder
and theLinguist The FrontEnd takes one or more input signals and pararpetethem into a
sequence oFeatures The Linguist translates any type of standard language matteng with

nput % DaProsesor | = Daa = DlaProsesr > ...
Cnput > Dairosesor | - Daa = Dlrocesor > ...

Fig. 2. Sphinx-4 FrontEnd. The FrontEnd comprises one orenparrallel chains of communicating DataProcessors.

pronunciation information from thBictionary and structural information from one or more sets
of AcousticModelsinto a SearchGraphThe SearchManagein the Decoder uses the Features
from the FrontEnd and the SearchGraph from the Linguist tdopma the actual decoding,
generatingResults At any time prior to or during the recognition process, tipplacation can
issueControlsto each of the modules, effectively becoming a partner irrésegnition process.

The Sphinx-4 system is like most speech recognition sysiantisat it has a large number
of configurable parameters, such as search beam size, fogtthee system performance. The
Sphinx-4 ConfigurationManagelis used to configure such parameters. Unlike other systems,
however, the ConfigurationManager also gives Sphinx-4 thiétyato dynamically load and
configure modules at run time, yielding a flexible and pludgalystem. For example, Sphinx-4
is typically configured with a FrontEnd (see Section 1V) tpavduces Mel-Frequency Cepstral
Coefficients (MFCCs) [15]. Using the ConfigurationManadeever, it is possible to recon-
figure Sphinx-4 to construct a different FrontEnd that pstuPerceptual Linear Prediction
coefficients (PLP) [16] without needing to modify any souooele or to recompile the system.

To give applications and developers the ability to trackodier statistics such as word error
rate [17], run time speed, and memory usage, Sphinx-4 pesvadnumber ofools As with the
rest of the system, the Tools are highly configurable, algwisers to perform a wide range of
system analysis. Furthermore, the Tools also provide araantive run time environment that
allows users to modify the parameters of the system whilesyils¢em is running, allowing for
rapid experimentation with various parameters settings.

Sphinx-4 also provides support foltilities that support application-level processing of recog-
nition results. For example, these utilities include supfar obtaining result lattices, confidence
scores, and natural language understanding.

IV. FRONTEND

The purpose of the FrontEnd is to parameterizéngut signal (e.g., audio) into a sequence of
outputFeatures As illustrated in Figure 2, the FrontEnd comprises one orengarallel chains
of replaceable communicating signal processing moduldsdc®ataProcessors Supporting
multiple chains permits simultaneous computation of défee types of parameters from the
same or different input signals. This enables the creatiosystems that can simultaneously
decode using different parameter types, such as MFCC and &ld°even parameter types
derived from non-speech signals such as video [3].

Like the ISIP [2] system, each DataProcessor in the Fronfiadides an input and an output
that can be connected to another DataProcessor, permattiarily long sequences of chains.
The inputs and outputs of each DataProcessor are gdbatambjects that encapsulate processed
input data as well as markers that indicate data classdica&vents such as end-point detection.
The last DataProcessor in each chain is responsible forupnogl a Data object composed of
parameterized signals, callé@atures to be used by the Decoder.

Like the AVCSR system [3], Sphinx-4 permits the ability tooguce parallel sequences of
features. Sphinx-4 is unique, however, in that it allowsdormrbitrary number of parallel streams.

The communication between blocks follows a pull designhveipull design, a DataProcessor
requests input from an earlier module only when needed, pessal to the more conventional
push design, where a module propagates its output to theesdic module as soon as it is
generated. This pull design enables the processors torpetoffering, allowing consumers to
look forwards or backwards in time.

The ability to look forwards or backwards in time not only ipéts the Decoder to perform
frame-synchronous Viterbi searches [18], but also alldvesdecoder to perform other types of
searches such as depth-first and A* [19].

Within the generic FrontEnd framework, the Sphinx-4 pregica suite of DataProcessors
that implement common signal processing techniques. Thmegkementations include support
for the following: reading from a variety of input formatsrfbatch mode operation, reading
from the system audio input device for live mode operatiorgemphasis, windowing with
a raised cosine transform (e.g., Hamming and Hanning wisyiodiscrete Fourier transform
(via FFT), mel frequency filtering, bark frequency warpimtiscrete cosine transform (DCT),
linear predictive encoding (LPC), end pointing, cepstrabmnormalization (CMN), mel-cepstra
frequency coefficient extraction (MFCC), and perceptuagdir prediction coefficient extraction
(PLP).

Using the ConfigurationManager described in Section llgeresan chain the Sphinx-4 Dat-
aProcessors together in any manner as well as incorpordePaessor implementations of
their own design. As such, the modular and pluggable nattiu®pbinx-4 not only applies to
the higher-level structure of Sphinx-4, but also appliesh® higher-level modules themselves
(i.e., the FrontEnd is a pluggable module, yet also consistiuggable modules itself).

V. LINGUIST

TheLinguistgenerates the SearchGraph that is used by the decoder theisgarch, while at
the same time hiding the complexities involved in geneggatims graph. As is the case throughout
Sphinx-4, the Linguist is a pluggable module, allowing geofm dynamically configure the
system with different Linguist implementations.

A typical Linguist implementation constructs the Seardqtbr using the language structure
as represented by a given LanguageModel and the topologficadture of the AcousticModel
(HMMs for the basic sound units used by the system). The Lisiguay also use a Dictionary
(typically a pronunciation lexicon) to map words from thengaageModel into sequences of
AcousticModel elements. When generating the SearchGraphl.inguist may also incorporate
sub-word units with contexts of arbitrary length, if proeal

By allowing different implementations of the Linguist to p&igged in at run time, Sphinx-
4 permits individuals to provide different configuratiors fdifferent system and recognition
requirements. For instance, a simple numerical digitsgeitimn application might use a simple
Linguist that keeps the search space entirely in memoryh®mwother hand, a dictation application
with a 100K word vocabulary might use a sophisticated Lisgthat keeps only a small portion
of the potential search space in memory at a time.

The Linguist itself consists of three pluggable componetiits LanguageModel, the Dictio-
nary, and the AcousticModel, which are described in theofaithg sections.

A. LanguageModel

The LanguageModel module of the Linguist provides wordeléanguage structure, which can
be represented by any number of pluggable implementatiimsse implementations typically
fall into one of two categories: graph-driven grammars atatlastic N-Gram models. The
graph-driven grammar represents a directed word graphembach node represents a single
word and each arc represents the probability of a word tiansiaking place. The stochastic
N-Gram models provide probabilities for words given theesliation of the previous n-1 words.

The Sphinx-4 LanguageModel implementations support aetaof formats, including the
following:

« Si npl eWor dLi st G anmmar : defines a grammar based upon a list of words. An optional
parameter defines whether the grammar “loops” or not. If tla@ngnar does not loop, then
the grammar will be used for isolated word recognition. & girammar loops, then it will
be used to support trivial connected word recognition teahe equivalent of a unigram
grammar with equal probabilities.

o JSGFG anmar : supports the Jav¥Speech APl Grammar Format (JSGF) [20], which
defines a BNF-style, platform-independent, and vendoepeddent Unicode representation
of grammars.

« LM& ammar : defines a grammar based upon a statistical language moklbrammar
generates one grammar node per word and works well with smatligram and bigram
grammars of up to approximately 1000 words.

o FSTGr anmar : supports a finite-state transducer (FST) [21] in the ARPA Egammar
format.

« Si mpl eNG amVvbdel : provides support for ASCIl N-Gram models in the ARPA format
The SimpleNGramModel makes no attempt to optimize memogagesso it works best
with small language models.

o LargeTri gramVvbdel : provides support for true N-Gram models generated by th&JCM
Cambridge Statistical Language Modeling Toolkit [22]. TlkergeTrigramModel optimizes
memory storage, allowing it to work with very large files ofOMB or more.

B. Dictionary

The Dictionary provides pronunciations for words found in the Languagedlod@he pro-
nunciations break words into sequences of sub-word unitedan the AcousticModel. The
Dictionary interface also supports the classification ofdgoand allows for a single word to be
in multiple classes.

Sphinx-4 currently provides implementations of the Dintoy interface to support the CMU
Pronouncing Dictionary [23]. The various implementatiopsimize for usage patterns based on
the size of the active vocabulary. For example, one impleatiem will load the entire vocabulary
at system initialization time, whereas another implem@mawill only obtain pronunciations on
demand.

C. AcousticModel

The AcousticModelmodule provides a mapping between a unit of speech and an Hh\M t
can be scored against incoming features provided by thetEndn As with other systems, the
mapping may also take contextual and word position infoimnainto account. For example, in
the case of triphones, the context represents the singleephes to the left and right of the given

phoneme, and the word position represents whether theotrgols at the beginning, middle, or
end of a word (or is a word itself). The contextual definitigmbt fixed by Sphinx-4, allowing
for the definition of AcousticModels that contain allophseres well as AcousticModels whose
contexts do not need to be adjacent to the unit.

Typically, the Linguist breaks each word in the active vadaby into a sequence of context-
dependent sub-word units. The Linguist then passes the and their contexts to the Acoustic-
Model, retrieving the HMM graphs associated with thosesuriitthen uses these HMM graphs
in conjunction with the LanguageModel to construct the Se@raph.

Unlike most speech recognition systems, which representiM graphs as a fixed structure
in memory, the Sphinx-4 HMM is merely a directed graph of otgeln this graph, each node
corresponds to an HMM state and each arc represents thebiigbaf transitioning from one
state to another in the HMM. By representing the HMM as a de@graph of objects instead
of a fixed structure, an implementation of the AcousticModah easily supply HMMs with
different topologies. For example, the AcousticModel ifgees do not restrict the HMMs in
terms of the number of states, the number or transitions baing state, or the direction of
a transition (forward or backward). Furthermore, Sphinatbws the number of states in an
HMM to vary from one unit to another in the same AcousticModel

Each HMM state is capable of producing a score from an obdefeature. The actual code
for computing the score is done by the HMM state itself, thighng its implementation from
the rest of the system, even permitting differing probapitiensity functions to be used per
HMM state. The AcousticModel also allows sharing of vari@masnponents at all levels. That
is, the components that make up a particular HMM state sudBaassian mixtures, transition
matrices, and mixture weights can be shared by any of the HM%S to a very fine degree.

As with the rest of Sphinx-4, individuals can configure Sphinwith different implemen-
tations of the AcousticModel based upon their needs. Sphimxrrently provides a single
AcousticModel implementation that is capable of loading aising acoustic models generated
by the Sphinx-3 trainer.

D. SearchGraph

Even though Linguists may be implemented in very differeaiysvand the topologies of the
search spaces generated by these Linguists can vary gtbatsearch spaces are all represented
as a SearchGraph. lllustrated by example in Figure 3, thecB@saph is the primary data
structure used during the decoding process.

The graph is a directed graph in which each node, callS&archStaterepresents either an
emittingor anon-emittingstate. Emitting states can be scored against incoming acdeatures
while non-emitting states are generally used to represghehlevel linguistic constructs such as
words and phonemes that are not directly scored againsttening features. The arcs between
states represent the possible state transitions, each iohwias a probability representing the
likelihood of transitioning along the arc.

The SearchGraph interface is purposely generic to allovafaide range of implementation
choices, relieving the assumptions and hard-wired constrdound in previous recognition
systems. In particular, the Linguist places no inherentric®ns on the following:

« Overall search space topology

« Phonetic context size

« Type of grammar (stochastic or rule based)

« N-Gram language model depth

HMM for W/ HMM for /AX/ HMM for /N/D\

HMM for /T/ HMM for /O0/

Fig. 3. Example SearchGraph. The SearchGraph is a direatgzh gcomposed of optionally emitting SearchStates and
SearchStateArcs with transition probabilities. Eachestiathe graph can represent components from the LanguageNedrds
in rectangles), Dictionary (sub-word units in dark cirgles AcousticModel (HMMs).

A key feature of the SearchGraph is that the implementatfaihe SearchState need not be
fixed. As such, each Linguist implementation typically pd®s its own concrete implementation
of the SearchState that can vary based upon the characge$tthe particular Linguist. For
instance, a simple Linguist may provide an in-memory Searaph where each SearchState is
simply a one-to-one mapping onto the nodes of the in-memaoaplg A Linguist representing
a very large and complex vocabulary, however, may build apamninternal representation of
the SearchGraph. In this case, the Linguist would genehatesét of successor SearchStates by
dynamically expanding this compact representation on deima

The manner in which the SearchGraph is constructed afféetsrtemory footprint, speed,
and recognition accuracy. The modularized design of Sphjhowever, allows different Search-
Graph compilation strategies to be used without changihgraispects of the system. The choice
between static and dynamic construction of language HMM®dds mainly on the vocabulary
size, language model complexity and desired memory fautpii the system, and can be made
by the application.

E. Implementations

As with the FrontEnd, Sphinx-4 provides several implemgong of the Linguist to support
different tasks.

The Fl at Li ngui st is appropriate for recognition tasks that use context-fyemmmars
(CFG), finite-state grammars (FSG), finite-state transdu(eST) and small N-Gram language
models. The FlatLinguist converts any of these externajdage model formats into an internal
Grammar structure. The Grammar represents a directed waph gvhere eacltrammarNode
represents a single word, and each arc in the graph repsabenprobability of a word transition
taking place. The FlatLinguist generates the SearchGragetly from this internal Grammar
graph, storing the entire SearchGraph in memory. As suehfFtatLinguist is very fast, yet has
difficulty handling grammars with high branching factors.

The Dynami cFl at Li ngui st is similar to the FlatLinguist in that is is appropriate for
similar recognition tasks. The main difference is that thgn&micFlatLinguist dynamically
creates the SearchGraph on demand, giving it the capatailitgndle far more perplex grammars.
With this capability, however, comes a cost of a modest @serén run time performance.

TheLexTr eeLi ngui st is appropriate for large vocabulary recognition tasks tisa large
N-Gram language models. The order of the N-Grams is arpjteard the LexTreeLinguist will

support true N-Gram decoding. The LexTreeLinguist orgasithe words in a lex tree [6], a
compact method of representing large vocabularies. Th@&reekinguist uses this lex tree to
dynamically generate SearchStates, enabling it to harelg karge vocabularies using only a
modest amount of memory. The LexTreeLinguist supports A&@H binary language models
generated by the CMU-Cambridge Statistical Language Mogldloolkit [22].

VI. DECODER

The primary role of the Sphinx-Decoder block is to use Features from the FrontEnd
in conjunction with the SearchGraph from the Linguist to gate Result hypotheses. The
Decoder block comprises a pluggal8earchManageand other supporting code that simplifies
the decoding process for an application. As such, the meatasting component of the Decoder
block is the SearchManager.

The Decoder merely tells the SearchManager to recognizead Beature frames. At each step
of the process, the SearchManager creat®esultobject that contains all the paths that have
reached a final non-emitting state. To process the resulin®g also provides utilities capable
of producing a lattice and confidence scores from the Rebullike other systems, however,
applications can modify the search space and the Resulttahj&etween steps, permitting the
application to become a partner in the recognition process.

Like the Linguist, the SearchManager is not restricted tp particular implementation. For
example, implementations of the SearchManager may per$earch algorithms such as frame-
synchronous Viterbi, A*, bi-directional, and so on.

Each SearchManager implementation uses a token passiogtiahg as described by Young
[24]. A Sphinx-4 token is an object that is associated with earBhState and contains the
overall acoustic and language scores of the path at a given jporeference to the SearchState,
a reference to an input Feature frame, and other relevamiation. The SearchState reference
allows the SearchManager to relate a token to its state buligtribution, context-dependent
phonetic unit, pronunciation, word, and grammar state.rfepartial hypothesis terminates in
an active token.

As illustrated in Figure 1, implementations of a SearchMgmanay construct a set of active
tokens in the form of arActiveListat each time step, though the use of ActivelListis not
required. As it is a common technique, however, Sphinx-4ides a sub-framework to support
SearchManagers composed of AactivelList a Pruner and aScoret

The SearchManager sub-framework generates ActivelLista frurrently active tokens in the
search trellis by pruning using a pluggalf®euner. Applications can configure the Sphinx-
4 implementations of the Pruner to perform both relative abdolute beam pruning. The
implementation of the Pruner is greatly simplifed by thebgae collector of the Java platform.
With garbage collection, the Pruner can prune a complete lpamerely removing the terminal
token of the path from the ActiveList. The act of removing tieeminal token identifies the
token and any unshared tokens for that path as unused, afjaine garbage collector to reclaim
the associated memory.

The SearchManager sub-framework also communicates wélStdorer a pluggable state
probability estimation module that provides state outpengity values on demand. When the
SearchManager requests a score for a given state at a giwentltie Scorer accesses the feature
vector for that time and performs the mathematical opematio compute the score. In the case
of parallel decoding using parallel acoustic models, ther&cmatches the acoustic model set
to be used against the feature type.

The Scorer retains all information pertaining to the staigpot densities. Thus, the Search-
Manager need not know whether the scoring is done with coatis, semi-continuous or discrete
HMMs. Furthermore, the probability density function of kd8MM state is isolated in the same
fashion. Any heuristic algorithms incorporated into thersog procedure for speeding it up can
also be performed locally within the scorer. In additiorg Htorer can take advantage of multiple
CPUs if they are available.

The current Sphinx-4 implementation provides pluggablplé@mentations of SearchManagers
that support frame synchronous Viterbi [18], Bushderbyj,[2Bd parallel decoding [26]:

« Si npl eBr eadt hFi r st Sear chiManager : performs a simple frame synchronous Viterbi
search with pluggable Pruner that is called on each frame.dEfiault Pruner manages both
absolute and relative beams. This search manager prodesedtfkthat contains pointers
to active paths at the last frame processed.

« Wor dPr uni ngBr eadt hSear chManager : performs a frame synchronous Viterbi search
with a pluggable Pruner that is called on each frame. Insdéathnaging a single ActiveList,
it manages aset of ActivelLists, one for each of the state types defined by theglist.
Pruning is performed in the decomposition and sequence ofdbe state types as defined
by the Linguist.

« Bushder bySear chManager : performs a generalized frame-synchronous breadth-first
search using the Bushderby algorithm, performing clasgibos based on free energy as
opposed to likelihoods.

. Paral | el Sear chManager : performs a frame synchronous Viterbi search on multiple
feature streams using a factored language HMM approach@sseg to the coupled HMM
approach used by AVCSR [3]. An advantage of the factoredckearthat it can be much
faster and far more compact than a full search over a compbilmil.

VII. DISCUSSION

The modular framework of Sphinx-4 has permitted us to do stmr&ys very easily that
have been traditionally difficult. For example, both theghiet and Bushderby SearchManager
implementations were created in a relatively short peridithoe and did not require modification
to the other components of the system.

The modular nature of Sphinx-4 also provides it with the igbito use modules whose
implementations range from general to specific applicatiohan algorithm. For example, we
were able to improve the run time speed for the RM1 [27] resjosstest by almost 2 orders of
magnitude merely by plugging in a new Linguist and leaving tést of the system the same.

Furthermore, the modularity of Sphinx-4 also allows it tgpart a wide variety of tasks.
For example, the various SearchManager implementatido &phinx-4 to efficiently support
tasks that range from small vocabulary tasks such as'T2® and TIDIGITS [29] to large
vocabulary tasks such as HUB-4 [30]. As another examplevdhieus Linguist implementations
allow Sphinx-4 to support different tasks such as tradélodFG-based command-and-control
applications in addition to applications that use stogbhdahguage models.

The modular nature of Sphinx-4 was enabled primarily by the of the Java programming
language. In particular, the ability of the Java platfornidad code at run time permits simple

1T146 refers to the NIST CD-ROM Version of the Texas Instrutsetteveloped 46-Word Speaker-Dependent Isolated Word
Speech Database.

2TIDIGITS refers to the NIST CD-ROM Version of the Texas Imstrents-developed Studio Quality Speaker-Independent
Connected-Digit Corpus.

10

Test WER RT
Sphinx-3.3] Sphinx-4| Sphinx-3.3| Sphinx-4 (1 CPU)| Sphinx-4 (2 CPU)
TI146 (11 words) 1.217 0.168 0.14 0.03 0.02
TIDIGITS (11 words) 0.661 0.549 0.16 0.07 0.05
AN4 (79 words) 1.300 1.192 0.38 0.25 0.20
RM1 (1000 words) 2.746 2.739 0.50 0.50 0.40
WSJ5K (5000 words) 7.323 7.174 1.36 1.22 0.96
HUB-4 (64000 words)| 18.845 18.878 3.06 4.40 3.80
TABLE |

SPHINX-4 PERFORMANCE WORD ERRORRATE (WER) IS GIVEN IN PERCENT REAL TIME (RT) SPEED IS THE RATIO OF
UTTERANCE DURATION TO THE TIME TO DECODE THE UTTERANCEFOR BOTH, A LOWER VALUE INDICATES BETTER
PERFORMANCE DATA GATHERED ON A DUAL CPU 1015Miz ULTRASPARGR)III WITH 2G RAM

support for the pluggable framework, and the Java programgitainguage construct of interfaces
permits separation of the framework design from the impletatéon.
The Java platform also provides Sphinx-4 with a number oéotdvantages:

« Sphinx-4 can run on a variety of platforms without the needrézompilation

« The rich set of platform APIs greatly reduces coding time

« Built-in support for multithreading makes it simple to exipeent with distributing decoding
tasks across multiple threads

« Automatic garbage collection helps developers to conaenton algorithm development
instead of memory leaks

On the downside, the Java platform can have issues with myefootprint. Also related to
memory, some speech engines will directly access the phatfmemory directly in order to
optimize the memory throughput during decoding. Directeascto the platform memory model
is not permitted with the Java programming language.

A common misconception people have regarding the Java @moging language is that it is
too slow. When developing Sphinx-4, we carefully instruteeinthe code to measure various
aspects of the system, comparing the results to its presi@ceSphinx-3.3. As part of this
comparison, we tuned Sphinx-3.3 to get its optimal perforceafor both real-time speed (RT)
and word error rate (WER). We then tuned Sphinx-4 to matchettebthe WER of Sphinx-4,
comparing the resulting RT speeds. Table | provides a sugnofahis comparison, showing that
Sphinx-4 performs well in comparison to Sphinx-3.3 (fortb@ER and RT, a lower number
indicates better performance).

An interesting result of this comparison helps to demonsstitze strength of the pluggable and
modular design of Sphinx-4. Sphinx-3.3 has been designechéwe complex N-Gram language
model tasks with larger vocabularies. As a result, Sphiedes not perform well for “easier”
tasks such as TI46 and TIDIGITS. Because Sphinx-4 is a phlggand modular framework,
we were able to plug in different implementations of the Liis§ and SearchManager that were
optimized for the particular tasks, allowing Sphinx-4 tafpem much better. For example, note
the dramatic difference in WER and RT performance numbershi® TI146 task.

Another interesting aspect of the performance study shavehat raw computing speed is
not our biggest concern when it comes to RT performance. k@R2tCPU results in this table,
we used a Scorer that equally divided the scoring task adhessvailable CPUs. While the
increase in speed is noticeable, it is not as dramatic as weceed. Further analysis helped
us determine that only about 30 percent of the CPU time istsp@ng the actual scoring of

11

the acoustic model states. The remaining 70 percent is sj@ng non-scoring activity, such
as growing and pruning the ActiveList. Our empirical reswtso show that the Java platform’s
garbage collection mechanism only accounts for 2-3 peroktite overall CPU usage.

VIIl. FUTURE WORK

Sphinx-4 currently provides just one implementation of theousticModel, which loads
Sphinx-3.3 models created by the SphinxTrain acoustic intbdimer. The SphinxTrain trainer
produces HMMs with a fixed number of states, fixed topology faxed unit contexts. Further-
more, the parameter tying [5] between the SphinxTrain HMMg their associated probability
density functions is very coarse. Because the Sphinx-4evasrk does not have these restrictions,
it is capable of handling HMMs with an arbitrary topology owan arbitrary number of states
and variable length left and right unit contexts. In addifithe Sphinx-4 acoustic model design
allows for very fine parameter tying. We predict that takimlyantage of these capabilities will
greatly increase both the speed and accuracy of the decoder.

We have created a design for a Sphinx-4 acoustic model tréva® can produce acoustic
models with these desirable characteristics [31]. As vhth $phinx-4 framework, the Sphinx-4
acoustic model trainer has been designed to be a modulggaiile system. Such an undertaking,
however, represents a significant effort. As an interim ,séether area for experimentation is
to create FrontEnd and AcousticModel implementations shigiport the models generated by
the HTK system [1].

We have also considered the architectural changes thatvsuheeded to support segment-
based recognition frameworks such as the MIT SUMMIT speexdognizer [32]. A cursory
analysis indicates the modifications to the Sphinx-4 aechiire would be minimal, and would
provide a platform to do meaningful comparisons betweemsegal and fixed-frame-size sys-
tems.

Finally, the SearchManager provides fertile ground for lenpenting a variety of search
approaches, including A*, fast-match, bi-directionaldanultiple pass algorithms.

IX. CONCLUSION

After careful development of the Sphinx-4 framework, weateel a number of differing
implementations for each module in the framework. For eXanthe FrontEnd implementations
support MFCC, PLP, and LPC feature extraction; the Lingunngtlementations support a variety
of language models, including CFGs, FSTs, and N-Grams;la@ecoder supports a variety of
SearchManager implementations, including tradition&knNii, Bushderby, and parallel searches.
Using the ConfigurationManager, the various implementatiof the modules can be combined
in various ways, supporting our claim that we have develapdiéxible pluggable framework.
Furthermore, the framework is performing well both in spead accuracy when compared to
its predecessors.

The Sphinx-4 framework is already proving itself as beings&arch ready,” easily supporting
various work such as the parallel and Bushderby SearchMasag well as a specialized Linguist
that can apply “unigram smear” probabilities to lex trees. Wéw this as only the very beginning,
however, and expect Sphinx-4 to support future areas of eeech recognition research.

Finally, the source code to Sphinx-4 is freely availableama BSD-style license. The license
permits others to do academic and commercial research atevébop products without requiring
any licensing fees. More information is availablehdtt p: / / crrusphi nx. sour cef or ge.
net / sphi nx4.

12

ACKNOWLEDGMENTS

The authors would like to thank Prof. Richard Stern at CMUp&®b Sproull at Sun Mi-
crosystems Laboratories, and Joe Marks at MERL for making tdam possible. We also
thank Sun Microsystems Laboratories and the current mamagefor their continued support
and collaborative research funds. Rita Singh was spondoyetthe Space and Naval Warfare
Systems Center, San Diego, under Grant No. N66001-99-5-8B0e content of this paper
does not necessarily reflect the position or the policy ofWh8. Government, and no official
endorsement should be inferred.

(1]
(2]

(3]

(4]
(5]
(6]
(7]

(8]
(9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

REFERENCES

S. Young, “The HTK hidden Markov model toolkit: Design drphilosophy,” Cambridge University Engineering
Department, UK, Tech. Rep. CUED/F-INFENG/TR152, Sept.4199

N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picond, n Ordowski, “A public domain speech-to-text system,” in
Proceedings of the 6th European Conference on Speech Cdoation and Technologyvol. 5, Budapest, Hungary, Sept.
1999, pp. 2127-2130.

X. X. Li, Y. Zhao, X. Pi, L. H. Liang, and A. V. Nefian, “Audievisual continuous speech recognition using a coupled
hidden Markov model,” irProceedings of the 7th International Conference on Spokemgliage Processindenver, CO,
Sept. 2002, pp. 213-216.

K. F. Lee, H. W. Hon, and R. Reddy, “An overview of the SPEXINpeech recognition systemlEEE Transactions on
Acoustics, Speech and Signal Processi@. 38, no. 1, pp. 3545, Jan. 1990.

X. Huang, F. Alleva, H. W. Hon, M. Y. Hwang, and R. Rosewuffel'The SPHINX-II speech recognition system: an
overview,” Computer Speech and Languagel. 7, no. 2, pp. 137-148, 1993.

M. K. Ravishankar, “Efficient algorithms for speech rgoition,” PhD Thesis (CMU Technical Report CS-96-143),
Carnegie Mellon University, Pittsburgh, PA, 1996.

P. Lamere, P. Kwok, W. Walker, E. Gouvea, R. Singh, B. Rad P. Wolf, “Design of the CMU Sphinx-4 decoder,” in
Proceedings of the 8th European Conference on Speech Cdoation and TechnologyGeneve, Switzerland, Sept. 2003,
pp. 1181-1184.

J. K. Baker, “The Dragon system - an overview,”IBEE Transactions on Acoustic, Speech and Signal Proogssih 23,

no. 1, Feb. 1975, pp. 24-29.

B. T. Lowerre, “The Harpy speech recognition system,”.[Phdissertation, Carnegie Mellon University, Pittsburgt,
1976.

J. K. Baker, “Stochastic modeling for automatic speanterstanding,” irSpeech RecognitipiR. Reddy, Ed. New York:
Academic Press, 1975, pp. 521-542.

P. Placeway, S. Chen, M. Eskenazi, U. Jain, V. ParikhRBj, M. Ravishankar, R. Rosenfeld, K. Seymore, M. Siegler,
R. Stern, and E. Thayer, “The 1996 HUB-4 Sphinx-3 systemPrioceedings of the DARPA Speech Recognition Workshop
Chantilly, VA: DARPA, Feb. 1997. [Online]. Available: htiiiwww.nist.gov/speech/publications/darpa97/pdipiaal.pdf
M. Ravishankar, “Some results on search complexity esueacy,” in Proceedings of the DARPA Speech Recognition
Workshop Chantilly, VA: DARPA, Feb. 1997. [Online]. Available: Iptt/www.nist.gov/speech/publications/darpa97/pdf/
ravishal.pdf

F. Jelinek,Statistical Methods for Speech RecognitioitCambridge, MA: MIT Press, 1998.

X. Huang, A. Acero, F. Alleva, M. Hwang, L. Jiang, and M.aljan, “From SPHINX-II to Whisper: Making speech
recognition usable,” irAutomatic Speech and Speaker Recognition, Advanced Tdpidse, F. Soong, and K. Paliwal,
Eds. Norwell, MA: Kluwer Academic Publishers, 1996.

S. B. Davis and P. Mermelstein, “Comparison of parametepresentations for monosyllable word recognition in
continuously spoken sentences,” [IBEE Transactions on Acoustic, Speech and Signal Proagssol. 28, no. 4, Aug.
1980.

H. Hermansky, “Perceptual linear predictive (PLP) lgsis of speech,’Journal of the Acoustical Society of America
vol. 87, no. 4, pp. 1738-1752, 1990.

NIST. Speech recognition scoring package (score)lif@h Available: http://www.nist.gov/speech/tools

G. D. Forney, “The Viterbi algorithm,Proceedings of The IEEBl. 61, no. 3, pp. 268—-278, 1973.

P. Kenny, R. Hollan, V. Gupta, M. Lenning, P. Mermelsteand D. O’Shaugnessy, “A*-admissible heuristics of rapid
lexical access,IEEE Transactions on Speech and Audio Processimog 1, no. 1, pp. 49-59, Jan. 1993.

“Java speech APl grammar format (JSGF).” [Online]. iadle: http://java.sun.com/products/java-media/spée
forDevelopers/JSGF/

M. Mohri, “Finite-state transducers in language an@éeh processing,Computational Linguisticsvol. 23, no. 2, pp.
269-311, 1997.

[22]
(23]
[24]
[25]
[26]

[27]

(28]
[29]

[30]

[31]

[32]

13

P. Clarkson and R. Rosenfeld, “Statistical languageleling using the CMU-cambridge toolkit,” iRroceedings of the
5th European Conference on Speech Communication and Tleggn&hodes, Greece, Sept. 1997.

Carnegie Mellon University. CMU pronouncing dictiaga [Online]. Available: http://www.speech.cs.cmu.exlyifbin/
cmudict

S. J. Young, N. H. Russell, and J. H. S. Russell, “Tokesspay: A simple conceptual model for connected speech
recognition systems,” Cambridge University EngineeringpD) UK, Tech. Rep. CUED/F-INFENG/TR38, 1989.

R. Singh, M. Warmuth, B. Raj, and P. Lamere, “Classifmatwith free energy at raised temperatures,Piroceedings of
the 8th European Conference on Speech Communication ahddiegy Geneve, Switzerland, Sept. 2003, pp. 1773-1776.
P. Kwok, “A technique for the integration of multiple radlel feature streams in the Sphinx-4 speech recognitystes,”
Master's Thesis (Sun Labs TR-2003-0341), Harvard Unitgr§lambridge, MA, June 2003.

P. Price, W. M. Fisher, J. Bernstein, and D. S. Palletth¢ DARPA 1000-word resource management database for
continuous speech recognition,”froceedings of the International Conference on Acous8pgech and Signal Processing
vol. 1. IEEE, 1988, pp. 651-654.

G. R. Doddington and T. B. Schalk, “Speech recognitidarning theory to practice JEEE Spectrumvol. 18, no. 9, pp.
26-32, Sept. 1981.

R. G. Leonard and G. R. Doddington, “A database for spealdependent digit recognition,” iRroceedings of the
International Conference on Acoustics, Speech and SigradeBsingvol. 3. |EEE, 1984, p. 42.11.

J. Garofolo, E. Voorhees, C. Auzanne, V. Stanford, and.@d, “Design and preparation of the 1996 HUB-4 broadcast
news benchmark test corpora,” Rroceedings of the DARPA Speech Recognition WorkshBhantilly, Virginia: Morgan
Kaufmann, Feb. 1997, pp. 15-21.

E. Gouvea, B. Raj, R. Singh, and P. Moreno. (2003, Marphifx-4 trainer design. [Online]. Available:
http://www.speech.cs.cmu.edu/cgi-bin/cmusphinx/tivikw/Sphinx4/Train%erDesign

J. R. Glass, “A probablistic framework for segmentdzhspeech recognitionComputer Speech and Languagel. 17,

no. 2, pp. 137-152, Apr. 2003.

14

About the Authors

Willie Walker is the lead of the Speech Integration Group in Sun Labs whemadated and
led the FreeTTS and Sphinx-4 open source projects. WilBe ghrticipated in the creation of
the WoiceXML and Java Speech API standards for speech. liti@ado working on speech
technology, Willie created and led the design of the SPOGitmcture for the Meeting Central
project in the Labs and also participated in a variety of ptlebs projects. Prior to joining Sun
Labs, Willie spent nearly a decade working on enabling teldgies for people with disabilities.
Willie holds a Bachelor’s in Computer Science from Virgifiach.

Paul Lamere is a member of the Speech Integration Group in Sun Labs whenednrked
on Sphinx-4 as well as FreeTTS. Paul has also contributed nongber of speech standards
including VoiceXML and the Java Speech API. Paul holds a ekegn Computer Science from
Boston University and a degree in Chemistry from St. Anselfiege.

Philip Kwok is a member of the Speech Integration Group at Sun Labs anidipated in
the creation of Sphinx-4 as well as FreeTTS. Prior to thatliiPlwas part of the Sun Labs
Awarenex project, building the speech and telephony compisn Before joining Sun, Philip
was involved with the SSFNet research project doing simaradf computer networks and IP
routing. He holds a Bachelor's degree from Hampshire Cellagd a Master's degree from
Harvard University.

Dr. Bhiksha Raj joined Mitsubishi Electric Research Labs (MERL) as a StafeStist. He
completed his PhD from Carnegie Mellon University (CMU) irai2000. Dr. Raj works mainly
on algorithmic aspects of speech recognition, with spesigbhasis on improving the robustness
of speech recognition systems to environmental noise. atést work is on the use of statistical
information about speech for the automatic design of fdied-sum microphone arrays. Dr. Raj
has over fifty conference and journal publications and isenuly in the process of publishing
a book on missing-feature methods for noise-robust spesmignition.

Dr. Rita Singh is a past member of the research faculty in the School of Ctenf&cience
at Carnegie Mellon University (CMU), and a visiting sciettat both the Media Labs and the
Laboratory of Computer Science at the Massachusettsutestif Technology (MIT). Dr. Singh
is an expert on the design and development of algorithms ditonaatic speech recognition,
and in particular on noise robust speech recognition. Sthéhle effort on advancing the CMU
Sphinx speech recognition for several years, and was irgehafr all of CMU’s submissions to
various DAPRA and NRL organized evaluations of speech maitiog system, including the first
and second Speech in noisy environment (SPINE) evaluatitiish CMU won handily. In her
spare time Dr. Singh has started a new journal and organizet-af-a-kind web-based course
on speech recognition with international enroliment. Ong® is also an expert on non-linear
dynamical systems and holds a PhD in Geophysics from theoh&dtinstitute of Geophysical
Research Insitute, one of the premier CSIR research labedia.I Dr. Singh is currently the
founder and president of Haikya Corporation, a start-ugespeecognition company.

Dr. Evandro Gouvea is a research associate in the Electrical and Computer Eaegny
Department at Carnegie Mellon University (CMU). He is al$idiated with the Sphinx Speech
Group and the Project Listen in the School of Computer SeieRdor to joining CMU as a staff
member, he worked at Vocollect, Inc., where he was the maimieal lead in the development
of their state of the art speech recognition system. Evamneceived his PhD from CMU in

15

1999.

Peter Wolf is an expert in Speech Technologies and a broad range of &eftiangineering
tools and practices. While Peter’s role at Mitsubishi Hiecds often that of a technical expert
and principal engineer, his main interest is the definitiowd @reation of new products and
services made possible by new technologies. Peter is ¢lyrrexploring the use of speech

recognition to retrieve information with applications foellphones, PDAs, automobiles and
home entertainment.

Joe Woelfel worked at Dragon Systems, where he led small the developaofiemt extensible
voice architecture. In the years before that, Joe devel@tedranuc’s statistical process control
software package, and the Galileo Company’s Catpac TextyAisasoftware, both of which
continue to be widely used today. Joe earned a B.S. in Phiysits SUNY Albany and an M.S.
in Communication and Information Science from Rutgers @rsity. Joe is currently working at
Mitsubishi Electric Research Labs (MERL), exploring the ug speech recognition to retrieve
information with applications for cellphones, PDAs, autdites and home entertainment.

	Sphinx-4: A Flexible Open Source Framework for Speech Recognition
	Abstract
	Copyright
	I. INTRODUCTION
	II. SELECTED HISTORICAL SPEECH RECOGNITION SYSTEMS
	III. SPHINX-4 FRAMEWORK
	IV. FRONTEND
	V. LINGUIST
	A. LanguageModel
	B. Dictionary
	C. AcousticModel
	D. SearchGraph
	E. Implementations

	VI. DECODER
	VII. DISCUSSION
	VIII. FUTURE WORK
	IX. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	About the Authors

