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ABSTRACT
Amid today’s proliferation of Web content and mobile phones with
broadband data access, interacting with small-form factor devices
is still cumbersome. Spoken interaction could overcome the in-
put limitations of mobile devices, but running an automatic speech
recognizer with the limited computational capabilities of a mobile
device becomes an impossible challenge when large vocabularies
for speech recognition must often be updated with dynamic con-
tent. One popular option is to move the speech processing resources
into the network by concentrating the heavy computation load onto
server farms. Although successful services have exploited this ap-
proach, it is unclear how such a model can be generalized to a large
range of mobile applications and how to scale it for large deploy-
ments. To address these challenges we introduce the AT&T speech
mashup architecture, a novel approach to speech services that lever-
ages web services and cloud computing to make it easier to com-
bine web content and speech processing. We show that this new
compositional method is suitable for integrating automatic speech
recognition and text-to-speech synthesis resources into real multi-
modal mobile services. The generality of this method allows re-
searchers and speech practitioners to explore a countless variety of
mobile multimodal services with a finer grain of control and richer
multimedia interfaces. Moreover, we demonstrate that the speech
mashup is scalable and particularly optimized to minimize round
trips in the mobile network, reducing latency for better user expe-
rience.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services; H.5.3
[Group and Organization Interfaces]: Web-based interaction;
H.5 [Information Interfaces and Presentation]; D.2.11 [Software
Architectures]

General Terms
Experimentation, design

Keywords
Mashups, speech mashup, speech services, speech system architec-
ture, web services, multimodal
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1. INTRODUCTION
Accessing information and services over the web is a daily rou-

tine for professionals and casual web surfers. Users track parcels in
real time, find a nearby business, or check a restaurant review, all
by typing a few keystrokes on a desktop and without paying much
attention to the rather complex web services orchestration hidden
behind the curtains. Thanks to the proliferation of service-oriented
architecture (SOA) [21] and public web-based interfaces, produc-
ing new web services has become much easier, within reach of or-
dinary developers. Major web industry players are now opening
up the “walled garden” of proprietary content to allow consumers
to access their technology to play with maps, track order informa-
tion, receive real-time news feeds, and create new services simply
by combining existing web services.

Recently published web service interfaces such as Google Maps,
Yahoo! Flickr, Amazon Web Services, and YELLOWPAGES.COM™,
greatly simplified the creation of third-party applications by hiding
the complexity of the technology into the network. A classic exam-
ple is the use of geographic information from Google Maps1 and
real estate data from CRAIGLIST2 to generate a new distinct ser-
vice where houses for rent or sale are visualized on an interactive
map of the USA3. The process of merging several data sources in
a single integrated application has been defined as mashup or web
application hybrid [27] and has become a popular method for com-
bining public application programming interfaces (API) and RSS4

data feeds.
Conversely, traditional speech-enabled services rely on a well-

established telephony programming model and architecture. Media
resources, such as automatic speech recognition (ASR) engines,
text-to-speech (TTS) synthesis engines, audio players, recorders,
and touch-tone detectors, are tightly bound together with the tele-
phony interface by an event-driven media resource manager [12].
Typically, an orthogonal control layer manages the fine-grained de-
tails of media synchronization, resource allocation, audio stream-
ing routing, and telephony signaling. VoiceXML-based systems [24],
for instance, hide these mechanical details by exposing a higher-
level API that handles most of the resource management minu-
tiae [12].

However, developers are still required to understand the under-
lying reactive nature of the media resource interaction [6]. For ex-
ample, prompts in VoiceXML are queued and played only when the
execution reaches an input state implicitly defined in the form exe-
cution. The semantics of VoiceXML markup interpretation hinges
on the controversial Form Interpretation Algorithm (FIA), which

1maps.google.com
2www.craiglist.org
3www.housingmaps.com
4Really Simple Syndication data format.
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spans across the combined resources execution and implicitly de-
fines a complex state machine execution. Other approaches to speech
services such as XHTML+Voice (X+V) [4] and the neglected Mi-
crosoft’s Speech Application Language Tags (SALT) [26] intro-
duce multimodality into the equation so that, in addition to speech,
input and output can be conveyed through a graphical user interface
usually hosted by a web browser. Input modalities are integrated by
explicitly synchronizing speech grammars and text form inputs.

In this sense, speech services design depends upon a monolithic
architecture and closely coupled components that make it difficult
to use the speech components in a context different from the tra-
ditional telephony execution environment. In the web application
domain, the concept of loosely coupled and interoperable compo-
nents, as found in many SOAs, has been a successful programming
paradigm for reliable and scalable service composition. Distributed
resources are made available as independent services through sim-
ple communications protocols and API publication mechanisms
(SOAP, WSDL, UUDI, etc. see [3, Chapter 6] for a detailed de-
scription).

These considerations suggest that techniques developed in the
area of web services could be beneficial to speech service when the
data channel is used as a communication link. More specifically,
can speech processing be seamlessly integrated into a web environ-
ment to leverage such broadly accepted programming paradigms
and facilitate the creation of new mobile multimodal services? Can
speech processing resources be decoupled and made stateless build-
ing blocks available through the network with simple APIs? The
AT&T speech mashup architecture addresses these challenges by
integrating speech and web services into one consistent network-
hosted application framework for multimedia devices with broad-
band access (iPhone, BlackBerry®, IPTV set-top box, SmartPhones,
etc.) without the need to install, configure, or manage speech pro-
cessing software and equipment. Speech mashups allow researchers
and speech practitioners to easily and rapidly develop new speech
and multimodal mobile services as well as new web-based services
by combining speech processing and web services similarly to the
web mashup approach.

The rest of the paper is organized as follows. Section 2 de-
scribes the overall AT&T speech mashup architecture. Section 3
pinpoints issues related to the use of data streaming over the wire-
less network, the network APIs, and the supported data formats.
Section 4 shows the possible architecture configurations, while 5
describes the web portal used for speech resource management.
Section 6 illustrates the mobile clients currently supported, and
section 7 shows some sample applications implemented with this
framework. Some preliminary evaluation of the network latency
is reported in section 8. Finally, section 9 compares the speech
mashup framework with existing similar architectures, and section
10 summarizes the paper.

2. ARCHITECTURE
The AT&T speech mashup is a web service that implements

speech technologies, including both automatic speech recognition
and text-to-speech synthesis, for web applications. This enables
users of an application to use voice commands to make requests
or to convert text to audio. Speech mashups work by relaying au-
dio or text from an application running on a mobile device or a web
browser to servers at the AT&T network where the appropriate con-
version takes place. The result of the process, either text or audio,
is returned to the client application. Speech mashups can be created
for almost any mobile device, including the iPhone, as well as web
browsers running on a PC or Mac, or any network-enabled device
with audio input/output capabilities.

The concept behind the speech mashup technology is intuitive
and similar to the familiar web application approach. Communica-
tion between devices and the service platform is established over
the packet-switched network; no traditional circuit switching ses-
sions take place. As pictured in Figure 1, in a typical speech recog-
nition interaction, the speech is first captured on the mobile device
(the client) through the microphone and compressed using one of
the available speech codecs (for example the Adaptive Multi-Rate5

codec at 12.2 kbits/s). Then an HTTP (Hypertext Transfer Proto-
col) [7] connection (the transport) is established with the speech
mashup manager (the server), which delivers the bit stream to the
AT&T WATSON speech recognizer engine [16] along with a set
of parameters including the reference to the grammar or language
model used to recognize the utterance. The recognition results are
then returned back to the client and used by the client to take the
next action. Depending on the complexity of the task, a semantic
interpretation could be added to the results so that natural language
variation of the same user’s intent can be interpreted properly. Op-
tionally, an application or web mashup server could provide addi-
tional service logic that is not strictly related to speech processing.

The speech mashup manager (SMM) layer implements a multi-
user, multi-application hosting platform with two main functions:
1) run-time resource allocation management, 2) off-line user ac-
count management. In the former case, it makes the AT&T WAT-
SON speech recognition engine and the AT&T Natural Voices text-
to-speech synthesis engine accessible through any network as web
services and exposes them through an HTTP-based API. In the lat-
ter function, the SMM provides web interfaces to upload and com-
pile users’ grammars, data loggers to trace the service activities,
and tools for utterance transcription.

Figure 1: AT&T speech mashup architecture

From the architecture perspective, a speech mashup application
consists of three main components:

1. the AT&T speech mashup server (SMS), including the speech
mashup manager (SMM), the WATSON servers for ASR,
and the Natural Voices servers for TTS. The SMM opens and
manages direct connections to the appropriate AT&T speech
servers on behalf of the client, including resolving device-
dependency issues and performing authentication and gen-
eral accounting.

2. A speech mashup client that relays audio to the AT&T speech
mashup servers and accepts the recognition result and/or a
client that receives audio buffers and plays them through the

5en.wikipedia.org/wiki/Adaptive_multi-rate_
compression
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audio interface. Examples of speech mashup clients are avail-
able for Java ME6 devices, the iPhone, and the Safari browser
on the Mac OS X.

3. A main application server (e.g., Apache or Tomcat) or a web
mashup server (e.g., WSO2 Mashup Server7) that provides
access to the application’s back-end database, performs data
aggregation processing with other application servers, and,
depending on the adopted mashup configuration, could im-
plement the application logic.

The SMM component is implemented as a Java servlet with a re-
lational database back-end, while the other components are native
Linux processes. No special hardware is required; all processes
run on Linux servers and have been tested in the Amazon Elastic
Compute Cloud (Amazon EC28) for large-scale deployments.

3. NETWORK TRANSPORT
As broadband access becomes available for mobile devices, de-

livering speech over data channels is a natural choice for speech
applications. However, streaming of continuous media over wire-
less links is a difficult problem due to the real-time nature of the
media generated by wireless clients.

3.1 Speech over the data network
A variety of protocols are available for real-time media transmis-

sion over IP networks. The Media Resource Control Protocol ver-
sion 2 (MRCPv2) [25], for example, is an IETF recommendation
for speech servers communication that relies on Real Time Stream-
ing Protocol (RTSP) and Session Initiation Protocol (SIP). While
MRCPcv2 has been designed to deliver real-time media over IP, it
was not expressly designed for the wireless network. Moreover, the
implementation complexity of both client and server side might be
overkill for mobile applications.

The wireless 3rd generation (3G) network specifies a maximum
data rate of 2.4 Mbits/s on the download link and 153.6 kbits/s on
the upload link shared by all users within a single cell sector. These
are usually ideal bandwidth conditions that tend to degrade due to
environmental conditions such as fading and interferences or other
conditions like the device travel speed and the density of devices
per cell. To deliver media over wireless networks, it is important
that mobile clients be carefully designed to reduce latency by com-
pressing media and reducing the number of retransmissions.

Based on the previous considerations, HTTP [7] has been se-
lected as the transport protocol for the speech mashup framework.
HTTP has been originally designed to support HTML, but with
the recent version 1.1 extensions, it has been often used as main
choice for media protocol on the web. HTTP 1.1 supports persis-
tent connections, allowing sockets to be reused over lengthy trans-
missions, eliminating the overhead of creating new connections for
every transaction. HTTP 1.1 also implements chunked encoding,
which permits HTTP messages to be broken into several parts. This
is very important for delivering and receiving speech segments as
they are produced or consumed by the wireless client. Although
real-time streaming is not guaranteed, message chunking and per-
sistent connections greatly reduce latency, achieving real-time per-
formance in the majority of working conditions (see section 8 for
latency evaluation). In essence, HTTP, although not strictly de-
signed for real-time media streaming, turn out to be a practical
trade-off between simplicity and efficiency.
6Java Micro Edition - java.sun.com/javame
7wso2.org/projects/mashup
8aws.amazon.com/ec2/

Table 1: ASR REST API (partial list)
Parameter Value Description
uuid string Required. Unique user ID assigned at registration.
resultFormat string Optional. Result format, which can be EMMA, JSON,

XML.
appname string Required. Name of application directory.
cmd string Required. One of the following command strings:

oneshot, rawoneshot
Starts ASR in stateless mode; the request body will con-
tain the entire audio stream.
start Starts ASR in stateful mode; the audio stream will
be sent using one or more audio or rawaudio requests.
stop Stops stateful ASR and returns the result.
audio, rawaudio, Sends a chunk of audio for stateful
ASR

audioFormat String Optional. This specifies the format of the audio data
supplied by the client. Possible values are:
amr Adaptive Multi-Rate (AMR), narrow-band only
au Sun AU, µ-law or 16-bit linear
caf Apple Core Audio Format, mu-law or linear
wav Microsoft/IBM Wave, µ-law or linear
...

3.2 REST-based APIs
The speech mashup API follows the Representational State Trans-

fer (REST) [15] network architecture principles. REST refers to re-
sources in the network as uniquely identified by a global identifier
(e.g., a URI or Uniform Resource Identifier on HTTP). For example
http://service.research.att.com/smm/asr?uuid=[uuid]&grammar=

citystate&format=emma is a request directed to the speech recog-
nizer resource (/smm/asr) with the grammar citystate by the
registered user identified by the unique user ID (uuid). Requests
for resource manipulation are sent to components in the network
that are responsible for responding to the request with a represen-
tation of the request, for instance an XML document containing the
result of the speech recognition process following the Extensible
MultiModal Annotation (EMMA) markup language [18] standard
and declared as format=emma in the previous example. In the case
of a speech recognition interaction, a RESTful call is carried out
by the client over an HTTP POST request where the API param-
eters are in the HTTP header and the speech data attached to the
HTTP body. Multiple chunks of data are fleshed out in a sequence
of HTTP POSTs by the client as the speech is captured by the mi-
crophone. When the utterance is completed, the server generates
a response in the specified output format. Table 1 summarizes the
main APIs for the ASR.

In the simplest form, a client request can be carried out by the
traditional Unix wget command (Figure 2) where the input speech
is stored in a file (sample-speech.amr) and the result written as
EMMA document in a text file (response.emma).

wget \
--post-file=sample-speech.amr \
--header ’Content-Type: audio/amr’ \
--server-response ’http://service.research.att.com/smm/asr? \

grammar=citystate&uuid=[uuid]&result=emma’ \
-O response.emma

Figure 2: wget speech recognition client request

Conversely, a TTS interaction starts by posting the text to synthe-
size and the server responds with chunked data stream over a per-
sistent data connection. TTS bookmarks can be interleaved with
the speech chunks as well. The client has the responsibility for
playing the speech with the proper sample rate and for dispatching
the bookmarks at the proper time. Table 2 shows the REST API for
the TTS resource.
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Table 2: TTS REST API (partial list)
Parameter Value Description
uuid string Required. Unique user ID assigned at registration.
text string Optional. Text may also be supplied in the body of a

POST request.
audioFormat string Optional. This specifies the format of the audio data

supplied by the client. Possible values are:
amr Adaptive multi-rate (AMR), narrow-band only
mulaw AU with mu-law encoding
alaw AU with A-law encoding
linear AU, 16-bit linear

voice string Optional. Crystal (default) or Mike.
sampleRate integer Optional. The audio data sample rate. Defaults to 8000

Hz. Note that AMR-NB has a fixed sample rate of 8000
Hz, so specifying a different sampleRate will produce
odd-sounding results.

ssml True or
False

Optional. Set this parameter to True when text contains
SSML tags. (When set to the default, False, each word
is pronounced, including SSML tags).
...

3.3 Supported data formats
The SMM returns or accepts structured data related to the exe-

cution of a specific speech processing task to or from the client.
For an ASR task, speech recognition results and detailed infor-
mation about the parameter values and settings used during the
recognition are described in different equivalent formats that can
be selected based on the client capabilities or preferences. There
are three standard output formats: XML, JavaScript Object Nota-
tion (JSON) [11], and EMMA markup language [18]. JSON is a
data serialization format that maps directly into JavaScript objects
and it is particularly convenient in a browser-based client environ-
ment where a JavaScript interpreter is natively available. EMMA
is a richer notation recommended by W3C for interoperable input
format representation for multimodal systems. EMMA facilitates
plug-and-play of systems components and is suitable for annotat-
ing various stages of the processing of the user’s input. An ex-
ample of EMMA document is shown in Figure 3. In this case,
the ASR recognized the utterance “a large pizza with pepperoni
sausage two Diet Pepsi and a Root Beer” which is captured in the
element emma:interpretation both as literal text (i.e., attribute
emma:token) and semantically tagged interpretation (i.e., body of
the element interpretation with semantic XML markups).

For a TTS task, the input text follows the W3C Speech Synthesis
Markup Language (SSML) [9] standard. SSML is an XML markup
language for modifying the way text is processed by TTS engines.
The SSML tags are instructions for normalizing text and control-
ling emphasis and other speaking qualities (prosody). For example,
the attribute type = telephone treats the text as a telephone num-
ber so that the SSML fragment <say-as type = "telephone">
9081234567 </say-as> is synthesized as “nine zero eight [pause]
one two three [pause] four five six eight”.

4. SPEECH MASHUP CONFIGURATIONS
Speech mashups can be configured in different ways depending

on the application complexity, the wireless network latency, and
the level of client authentication required. Figure 4 shows a typi-
cal client-side configuration where the N clients (C1, ...,CN ) imple-
ment the logic of the application and are responsible for the com-
munication between the speech mashup server (SMS) and the ap-
plication / web mashup servers (AS). All the network connections
are originated by the mobile clients in the wireless packet-switched

<emma:emma version="1.0">
<emma:grammar id="gram1" ref="smm:grammar=ipizza&amp;UUID=[uuid]"/>
<emma:model id="model1" ref="smm:file=pizzahut.xsd&amp;UUID=[uuid]"/>
<emma:info>

<session_id>33C07738-DA61-4814-B60D-4D374F143D8D</session_id>
</emma:info>
<emma:one-of id="one-of1" emma:medium="acoustic"

emma:mode="voice" emma:function="dialog"
emma:verbal="true" emma:lang="en-US"
emma:start="1246437000" emma:end="1246437008"
emma:grammar-ref="gram1"
emma:signal="smm:UUID=[uuid]&amp;file=audio-454907.amr"
emma:signal-size="8070"
emma:media-type="audio/amr; rate=8000"
emma:source="smm:platform=null&amp;device_id=null"
emma:process="smm:type=asr&amp;version=watson-6.3.0000"
emma:duration="6150"
emma:model-ref="model1"
emma:dialog-turn="33C07738-DA61-4814-B60D-4D374F143D8D:1">

<emma:interpretation id="nbest1" emma:confidence="1.0"
emma:tokens="a large pizza with pepperoni sausage two

Diet Pepsi and a Root Beer">
<item>a
<size_LG>large</size_LG>
<type_own>pizza with
<topm_MPE>pepperoni </topm_MPE>
<topm_MIS>sausage</topm_MIS>
</type_own>

</item>
<item>
<qt_2>two</qt_2>
<drinks_DP>Diet Pepsi</drinks_DP>

</item>and
<item>
<qt_1>a</qt_1>
<drinks_RB>Root Beer</drinks_RB>

</item>
</emma:interpretation>
</emma:one-of>
</emma:emma>

Figure 3: Sample EMMA document

network (typically a GPRS9 or an EDGE10 network). Speech data
requests (dotted arrows) are directed to the SMS component and
text data requests (solid arrows), such as database queries, are sent
to the AS modules. Each service is identified by a URL and, as
described in section 3.2, HTTP is the communication link between
the client and the speech mashup server.

Figure 4: Client-side speech mashup

If the wireless network is congested, creating an HTTP link could
take a significant amount of time, limiting the use of this configura-
tion to simpler applications where the number of client round trips
is small or a faster wireless network (WiFi) is available. Also, de-
vice authentication, when required, is delegated to the SMM com-
ponent which may involve some application-dependent authentica-
tion model directly implemented in the speech mashup server.
9General Packet Radio Service

10Enhanced Data Rates for GSM Evolution
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Figure 4 illustrates a server-side configuration. Here the mobile
devices are connecting directly to the main application server where
the content aggregation with other content servers takes place. In
this case, the clients are facing one server with a single URL al-
lowing the application to reuse the connections for multiple inter-
actions, saving on the cost of creating multiple connections. The
main application server can use the faster IP network to aggregate
the data, format the output for specific device display capabilities,
and saving further round trips and processing time on the device.
The disadvantage in this configuration is that the speech chunks
delivered over HTTP by the client (or produced by the TTS from
SMS) have to be relayed to the SMS component (or transferred
from the SMS to the client) through the application server. The
application server has to implement the HTTP chunking streaming
module to pass the speech to the SMS (or vice versa for the TTS)
in a timely manner.

Figure 5: Server-side speech mashup

Finally, Figure 6 sketches the back-to-back configuration. As
previously mentioned, multiple handset client connections (i.e., HTTP
sessions) are significantly more expensive than one connection to
accomplish a given task. Passing a large amount of data from a
server to a handset for the purpose of forwarding that data to an-
other server (server-side configuration) is far more expensive than
having an intermediate server act as a data broker. To address these
concerns, SMS allows a single incoming HTTP POST request from
a client to specify a preprocessing URL, a speech action (such as
a recognition), and a postprocessing URL. The preprocessing and
postprocessing URLs are optional. When the SMS receives a re-
quest, it first makes an HTTP POST request to the preprocessing
URL, passing the body of incoming request as the body of the
POST.

Figure 6: Back-to-back speech mashup

SMM performs the speech action using the response from the
preprocessing URL. Then it makes a POST request to the postpro-
cessing URL, passing the result of the speech action as the body

of the POST. Finally, it returns the response from this POST to the
client as the HTTP response to the client’s initial request. This is
equivalent to piping requests from the wireless network to the IP
network and minimizes the number of roundtrips over the wireless
network.

4.1 Same origin security policy limitations
Web browser-based access to data implements a sand-box mech-

anism called same origin policy, to forbid access to resources dif-
ferent from the originating site. This is an important security fea-
ture that avoids access to authentication information (HTTP cook-
ies) by malicious sites through cross-site scripting (XSS) attacks [19].
When using a browser-based client, the back-to-back configura-
tion helps to mitigate possible XSS attacks by allowing SMM to
act as trusted proxy for cross-domain communication. In this way,
only predefined sites can be referred by SMM, avoiding malicious
JavaScript code injections from extraneous sites.

5. SPEECH MASHUP PORTAL
In order to centralize the speech processing resources into the

network, a web-based portal has been created to manage user’s ac-
counts, ASR grammars, disk space quota management, load bal-
ancing across ASR and TTS servers, and logging. Typically, once
the speech mashup user registers to the portal, a unique account
ID is emailed to the user, a grammar compilation area is created
and the user can immediately start using the ASR by referring to
the default built-in grammars and the TTS by selecting the avail-
able voices. The portal supports any language model that can be
represented as weighted finite state machine (FSM), and compiles
both rule-based and stochastic grammars into FSMs. In general,
rule-based grammars are used for lower complexity tasks and when
training data is not available or scarce. Examples of rule-based
grammars included in the portal are dates, times, confirmation,
phone numbers, and US city/states . Rule-based grammars can be
either represented in SRGS (Speech Recognition Grammar Specifi-
cation) [20] format or in a more compact proprietary representation
similar to the Backus Naur Form notation. Corpus-based stochas-
tic language models are used for more complex tasks like customer
care call routing or voice search and are compiled into a weighted
FSM with Katz back-off smoothing [2] (other smoothing methods
are also available). A typical natural language customer care task
requires an average of 5,000 transcribed utterance samples to reach
operational performances (>75% word accuracy).

Each grammar can be assigned to a different user’s account scope:

• My grammars. User’s grammars that are not accessible to
anyone else.

• Shared grammars. Grammars created by others and then
made available to all speech mashup users.

• Built-in grammars. English and Spanish grammars included
with the speech mashup including grammars for US cities,
digits, account numbers, and US last names.

The portal also exposes logging files for debugging and tracing
purposes and a web-based transcription tool to listen and transcribe
the recorded utterances in real time. Utterance transcriptions can
be periodically downloaded and used as training data to improve
the speech recognition performances.

6. MOBILE CLIENTS
A speech mashup client (Figure 8) is the part of a speech-enabled

application that runs on the user’s mobile device or, in principle,
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Figure 7: AT&T speech mashup portal grammar manager and
utterance transcription screenshots

on any voice-enabled and networked device. Its role is to capture
and relay speech or text to the speech mashup manager, which in
turn handles authentication, accounting, and communication with
the AT&T speech servers. The AT&T speech mashup portal web
site provides the following client examples downloadable in source
code through the sample code link:

• A Java ME client that can be used for most Java-enabled mo-
bile devices.

• A native client application for the iPhone.

• A web browser (Safari) plug-in for Mac OS. The plug-in
streams audio from the desktop microphone to the SMM
and implements a JavaScript API integrated with the HTML
browser environment.

Figure 8: Typical speech mashup mobile client architecture for
Java ME and Mac OS browsers

The client code samples include three main modules: 1) an audio
manger to capture real-time speech from the device microphone; 2)

a REST client that implements HTTP and the speech mashup server
API; 3) a simple graphical user interface (GUI manager) that en-
ables a ‘Speak’ button on the device (either an actual button on the
mobile keypad or a touch screen soft button). After the user hits
the speak button, the audio capture process starts and the speech
samples are streamed over HTTP to the ASR through the speech
mashup server. When the button is released, the mashup returns an
XML or JSON document containing the speech recognition results
which is simply displayed on the device screen. In general, an in-
teraction manager would be responsible for taking the next action
to present to the user.

7. SAMPLE APPLICATIONS
This section illustrates three multimodal mobile examples imple-

menting the three architecture configurations described in section 4.
Input modalities are either speech or typed text. The first is a native
iPhone application for local business search freely available in the
Apple Store. The second is a prototype iPhone service for pizza
ordering. The last example is a version of mobile local business
search for BlackBerry phones.

7.1 speak4it
speak4it11 [14] is a native iPhone application for local business

search for accessing around 20M entries from the YELLOWPAGES.COM
search engine. It is based on the server-side configuration, where
the application server combines the speech requests with a local
business search engine and a map location information server. The
user inputs a request by holding the Push & Talk button and utter-
ing a natural language query such as “Find Japanese restaurants in
Glendale California”. Voice search queries can be either by busi-
ness name or category whereas a natural language understanding
module extracts the information needed to populate the query fields
for the search engine. If the location is omitted, the iPhone location
system information is used as default coordinates. The result of the
search is displayed in the form of a listing or as scrollable map. The
user can call any item in the list by tapping on the displayed phone
numbers.

7.2 iPizza
iPizza (Figure 9 and 10) implements a multimodal interface for

online pizza ordering based on the client-side configuration. It runs
as native application on an iPhone and combines speech and touch
inputs with graphical interaction to enable users to rapidly select
and edit menu items. Users can speak naturally by tapping on the
‘Talk’ button and request multiple items at the same time. For ex-
ample: “I’d like to order a pizza with mushrooms and ham, two diet
Pepsi and baked cinnamon sticks”. The graphical interface allows
easy navigation to update the items in the shopping cart by mixing
voice and touch inputs at any stage of the ordering process.

Items listed in the shopping cart (Figure 9) can be edited in de-
tails by tapping on a specific item to edit or by saying the new value
of a field (Figure 10) by using the talk button.

7.3 JME local business search
The JME local business search is similar to speak4it, but im-

plemented as Java ME application and it runs on the BlackBerry
family of smartphones. The user formulates the voice search query
by holding down the keypad call button for the duration of the ut-
terance. This example exercises the back-to-back configuration
where the speech recognition results are first analyzed by the natu-
ral language understanding component and then delivered to a post-

11www.speak4it.com
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Figure 9: iPizza - multimodal pizza ordering prototype - initial
screen and shopping cart example

Figure 10: iPizza - multimodal pizza ordering prototype - or-
dered item editing

processing URL where an application web service sends in turns
the speech recognition results to the local business search engine
and to the map location service. Then it combines the resulting
business listing and the mapping information into a format suitable
for the visualization capabilities of the device and returns the re-
sponse to the client though the same HTTP request.

8. NETWORK LATENCY EVALUATION
In order to evaluate the impact of the network latency on the

user experience, we instrumented the Java ME client available on
the speech mashup portal to measure the following experimental
parameters:

• the RF signal power level measured just before the data
transmission started. This gives an indication of the strength
of the radio signal from the cell tower. If the signal is weak,
the exchange of data packets slows down due to the high-
est packet retransmission rate (e.g., longer packet round-trip
time). We assumed that the power level remained substan-
tially stable for the duration of the input utterance.

• the network connection time (CT). This is the time required
by the mobile phone to open an HTTP connection and it is
measured from the instant the open command is issued to
the time the socket connection is established and ready to
transmit data.

• the overall response time (RT). This is the time elapsed be-
tween the last audio packet of audio transmission and the

Table 3: Latency measures on a 3G (EDGE) data network (CT:
network connection time in sec, RT: overall response time in
sec, t: sample average time, s: sample standard deviation)

Bars Power Level (dBm) Samples CT (sec) t / s RT (sec) t / s
5 > -76 54 0.006 / 0.003 0.426 / 0.633
4 > -87 < -75 20 0.006 / 0.003 0.400 / 0.598
3 > -93 < -86 11 0.007 / 0.002 0.727 / 0.786
2 > -102 < -92 8 0.006 / 0.002 1.750 / 0.886

time the response from the speech recognizer is received. It
gives an overall measure of the server processing time and
the uplink transmission time. The speech recognition pro-
cessing time did not affect this measure since all utterances
were processed in real time.

We ran the probing software client on a BlackBerry Curve 8320
with 3G network connectivity and sampled around one hundred
speech recognition interactions equally divided into three differ-
ent environmental conditions: 1) on a highway moving at 50-65
mph; 2) in an office environment; 3) on the lower-level floor of a
building and away from the cell tower. We used a large grammar
containing the US city/state pairs with 35,987 entries and a vocabu-
lary of 22,527 words. With an average utterance duration of 2.95 s,
the amount of data streamed over the wireless network was around
4.39 kBytes.

The initial set of experiments showed a substantial delay in cre-
ating the data connectivity link. To open a TCP socket connection
and start sending speech samples through HTTP, required between
0.5 and 3 s. We learned that the first step in establishing any data
connectivity in a 3G network is the creation of a Packet Data Pro-
tocol (PDP) context. The PDP context assignment validates the
mobile subscriber’s session and creates an IP address for the de-
vice by engaging several exchanges with the cell tower. This is a
time-consuming step, but once a PDP context has been created, it
exists until data traffic ends or some timeout expires (i.e., there is
some timeout between the end of the last TCP session teardown and
possibly a different timeout after a TCP packet is sent or received).

To reduce the PDP context creation time, we allocated a pool of
socket connections during the application startup time. Making the
active pool of sockets immediately available to the application for
data transmission reduced drastically the initial connectivity time.
Latency measures in table 3 show an average connection time of
6 ms across different signal power conditions. The response time
exhibits more variability across different RF signal conditions with
around 0.5 s delay in most of the cases and a maximum value of
3.77 s when the signal power degrades significantly and packet re-
transmission rate increases. Overall, the resulting latency is within
acceptable limits, but further studies are required to determine how
the latency would affect the user satisfaction.

9. RELATED WORK
There are similar works published in the recent literature such as

[1, 10, 5] addressing vertical applications for voice search that are
based on ad hoc architectures. The WAMI (Web-Accessible Mul-
timodal Applications) toolkit [17] proposes a general framework
for multimodal applications and it is closer to our model. How-
ever, some features are either partially addressed or missing. For
example, compared to WAMI, the speech mashups offers a com-
plete range of configurations (Section 4) and full support for a va-
riety of web and speech standards. Moreover, the speech mashup
framework implements fully scriptable portal APIs, stochastic lan-
guage models support, HTTP chunking, TTS bookmarking, and it
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has been tested on an industrial-strength cloud computing system.
Other interesting approaches described in [23, 8, 22] try to reuse the
existing VoiceXML infrastructure and expand it with multimodal
interaction based on a more traditional telephony model.

10. CONCLUSIONS
The speech mashup architecture proposes a general framework

for mashing up speech and web services in a multimodal mobile
environment. It provides a web service-based access to speech
processing resources (ASR and TTS) in the “cloud” and differ-
ent architecture configurations to minimize network latencies and
increase security. The web-based portal grants easy access to gram-
mar tools and service administration. Latency measures in a 3G
network show very promising results, although more experiments
should be conducted to evaluate other networks and devices. Ac-
cess to the platform is available for noncommercial use by register-
ing an account at https://service.research.att.com/smm/.
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