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Abstract— -gram language modeling typically requires large
quantities of in-domain training data, i.e., data that matches the
task in both topic and style. For conversational speech applica-
tions, particularly meeting transcription, obtaining large volumes
of speech transcripts is often unrealistic; topics change frequently
and collecting conversational-style training data is time-consuming
and expensive. In particular, new topics introduce new vocabulary
items which are not included in existing models. In this work, we
use a variety of data sources (reflecting different sizes and styles),
combined using mixture -gram models. We study the impact of
the different sources on vocabulary expansion and recognition ac-
curacy, and investigate possible indicators of the usefulness of a
data source. For the task of recognizing meeting speech, we obtain
a 9% relative reduction in the overall word error rate and a 61%
relative reduction in the word error rate for “new” words added to
the vocabulary over a baseline language model trained from gen-
eral conversational speech data.

Index Terms—Language modeling, mixture models, speech
recognition, text normalization, varied data sources.

I. INTRODUCTION

MANY state-of-the-art speech recognizers rely on sta-
tistical language models (LMs). These models are able

to automatically capture many characteristics of spontaneous
speech, but most systems need a large amount of in-domain
training data, on the order of millions of words. Good perfor-
mance is only achieved when the training data closely matches
the test data in terms of both content (topic) and style; such
“in-domain” data is expensive and time-consuming to acquire
for conversational speech. Written text is much more easily
available than transcribed speech, but its style is often not
well-suited for training language models for conversational
speech recognition. In this work, we attempt to improve speech
recognition performance for a conversational task by collecting
text data from a variety of sources, which we combine with a
general conversational speech language model.

The focus of our work is to improve recognition of “new” vo-
cabulary items, i.e., words that were not in the baseline language
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model. Simply adding words to the vocabulary of the recognition
system does not work; the new words need to be included in the
trainingdatainordertohaveahighenoughlanguagemodelproba-
bilitytoberecognized.Thuswecollectedtopic-matcheddatafrom
avarietyofsourcestoincludethesenewwordsinourtrainingdata.

The specific task we address is automatic transcription of
meetings. Since our goal is to have a system that can be used for
many types of meetings, we cannot assume that we will have
meeting-style training data for every possible topic. Instead, we
use small amounts of meeting data from a variety of meetings,
topic-specific text data, and style- and topic-specific data col-
lected from the World Wide Web to adapt a language model
from a more general, conversational-speech domain into one
that can be used for the meeting transcription task. We also use
automatic text normalization techniques to make the text data
more closely resemble spoken language. The results are ana-
lyzed in terms of overall word error rate and word error rate on
the new words, to provide insights into the usefulness of dif-
ferent types of data sources.

The remainder of this paper is organized as follows: Section II
provides background on language modeling and other work on
language model adaptation. Section III presents our general ap-
proach to this problem, with details of the target task domain
given in Section IV. Section V presents an analysis of style dif-
ferences between corpora. Experimental results follow in Sec-
tion VI. We summarize our findings and describe future direc-
tions in Section VII.

II. BACKGROUND

Statistical language models typically represent the proba-
bility of a word sequence as a product of the probability of each
word given its history

(1)

Considering the full history for each word is infeasible in prac-
tice, so truncated histories are used. This results in the most
commonly used statistical language model, the -gram model,
in which it is assumed that the word sequence is a Markov
process. The trigram model is a very popular language model,
where each word depends only on the preceding two words (a
Markov process with order 2). Thus, the probability of sequence

is given by

(2)

Despite its simplicity, the trigram model is very successful.
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Good language models require large amounts of training data
that are well-matched to the target task. In this work, we use
small amounts of in-domain data to adapt language models for
a more general conversational speech domain. Language model
adaptation can take several forms. In this work, we look at (off-
line) task-level adaptation, in which the models are adapted in
advance using data chosen for a particular task. This is different
from unsupervised cache adaptation techniques [1]–[3], where
the model changes at run-time based on the utterances that have
been recognized already. Since the error rates are relatively high
for recognizing speech in meetings (roughly 35–40%), having
a good initial model that covers new vocabulary items is impor-
tant. Hence, task-level adaptation is an appropriate choice for
this domain.

Previous task-level LM adaptation efforts include adding
unigram probabilities from data for the target domain to an
existing class bigram [4], using part-of-speech conditioning
for weighting the out-of-domain data [5], and selectively
weighting out-of-domain data based on word frequency counts
[6], probability (or perplexity) of word or part-of-speech
sequences [7], latent semantic analysis [8], and information
retrieval techniques [7], [9]. Perplexity-based clustering has
also been used for defining topic-specific subsets of in-domain
data [10]–[12], and test set perplexity has been used to prune
less useful documents from a training corpus [13]. In this work,
we do not vary the modeling or data selection methods, but
rather focus on obtaining different sources and analyzing their
impact in a mixture modeling framework.

In real meetings and many other potential speech transcrip-
tion applications, topics change frequently, making it impos-
sible to have enough “in-domain” transcribed speech training
data for any given topic. We consider training data to be “in-do-
main” if it matches the test data for a particular task in terms
of both content and style. For example, if we want to recognize
meetings from a particular research group, in-domain training
data would consist of transcripts of previous meetings from that
research group. For this and many other conversational tasks,
acquiring sufficient in-domain training data is prohibitively ex-
pensive, and we assume that only a small amount of such data
is available, i.e., for model tuning but not -gram training. Thus
we would like to be able to use out-of-domain data sources,
that may be mismatched in either topic or style, to enhance lan-
guage models trained on general speech data. In this example,
the out-of-domain data can come from transcripts of meetings
on other topics (style-matched data), written text on the same
topic as the meeting (content-matched data), or text collected
automatically from the World Wide Web.

Recently researchers have turned to the World Wide Web as
an additional source of training data for language modeling. For
“just-in-time” language modeling [14], adaptation data is ob-
tained by submitting words from initial hypotheses of user ut-
terances as queries to a Web search engine. Their queries, how-
ever, treated words as individual tokens and ignored function
words. Such a search strategy typically generates text of a more
formal written style, hence not ideally suited for recognition of
conversational speech. In [15], instead of downloading the ac-
tual Web pages, the authors retrieved -gram counts provided
by the search engine. Such an approach generates valuable sta-

tistics but limits the set of -grams to ones occurring in the base-
line model. In [16] the authors achieved significant word error
rate reductions by supplementing training data with text from
the Web and filtering it to match the style and/or topic of the
meeting recognition task. Here, we will use these Web texts as
an additional training source.

Although adding in-domain training data is an effective
means of improving language models [17], adding out-of-do-
main data is not always successful. In particular, the use of text
sources in training language models for conversational speech
can sometimes degrade recognition performance [7]. Hence, a
side goal of this work is development of guidelines for types of
data that are useful and criteria for assessing the value of a data
source. It turns out that a data source that is good for -gram
training may not be good for vocabulary expansion, and vice
versa. We look at previously proposed criteria (perplexity and

-gram hit rates) in the context of overall recognition perfor-
mance and performance on new vocabulary items. Recognizing
these new, often domain-specific words is important because
even if we cannot produce perfect transcripts on a new topic,
good coverage of new vocabulary items can benefit information
retrieval and extraction tasks.

III. GENERAL APPROACH

Given that there will never be enough transcribed speech
data to build task-dependent language models for most con-
versational speech tasks, it is important to be able to use other
data sources, which naturally would include text data. In order
to make better use of out-of-domain data sources, we apply
text normalization to written text, expand the vocabulary with
words from topic-matched sources, and use mixture techniques
to combine text and conversational speech language models, as
described below.

A. Data Sources for LM Training

We consider five categories of supplemental data: 1) “pub-
lished” text, which consists of hand-selected papers and Web
pages relating to the meeting recorder research group; 2) email,
consisting of archived mailing list messages sent to the target
group mailing list and to two other related mailing lists;1 3)
speech from meetings of groups other than the group repre-
sented in the test set; 4) conversational-style text from the Web;
and 5) Web-pages related to topics similar to what was dis-
cussed in the meetings. Table I lists the size of each supple-
mental corpus. Hand-selection of a small amount of topic-spe-
cific text data is realistic for this task; we envision a scenario
in which a group wishing to use this system could easily pro-
vide papers, memos, etc., relating to the topic of an upcoming
meeting. The supplemental meeting speech closely matches in
style but not so in topic, because it is associated with a different
group of people dealing with a different research problem.2 The
published and email text is drawn from resources associated

1Ideally we would just use the target group emails, but since this was early in
the project there was very little text available (only about 4000 words), so we
chose to augment this with messages from somewhat more general lists.

2Due to the nature of the corpus (primarily meetings that occurred at ICSI),
there is some speaker overlap between the training data and test data, so speaker-
specific dependencies may be inadvertently captured by this approach.
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TABLE I
SIZE OF CORPORA FOR TRAINING SUPPLEMENTAL LANGUAGE MODELS

with the target meeting group, so it is assumed to be topic-spe-
cific training data. The Web text is selected to roughly match
either style or topic, with a bias toward a more informal style.

Most of the text on the Web is nonconversational, but there
is a fair amount of chat-like material that is similar to conversa-
tional speech though often omitting disfluencies. This more in-
formal style of text was our primary target when extracting data
from the Web. Queries submitted to Google were composed of

-grams that occur most frequently in the switchboard training
corpus, e.g., “I never thought I would,” “I would think so,” etc.
We were searching for the exact match to one or more of these

-grams within the text of the Web pages. Web pages returned
by Google for the most part consisted of conversational-style
phrases like “we were friends but we don’t actually have a re-
lationship” and “well I actually I I really haven’t seen her for
years.”

We used a slightly different search strategy when collecting
topic-specific data from the Web. First we extended the base-
line vocabulary with words from the meeting data and then we
used -grams with these new words in our Web queries, e.g.,
“wireless mikes like,” “I know that recognizer.” Web pages re-
turned by Google mostly contained technical material related
to topics similar to what was discussed in the meetings, e.g.,
“we were inspired by the weighted count scheme… ,” “for our
experiments we used the Bellman-Ford algorithm…,” etc. The
selected topic-related data is also somewhat conversational, be-
cause these texts were extracted from newsgroups, which often
feature a chat-like dialogue between participants.

B. Text Normalization

The meeting data is transcribed speech and therefore may
be used directly for language model training with good results.
However, text corpora are unlike transcribed speech in a variety
of ways. In particular, written text also includes numbers
(e.g., 101, 1/2, VII, $3M), abbreviations (e.g., mph, gov’t),
acronyms (e.g., IBM, NIST), and other “nonstandard words”
(NSWs) which are not written in their spoken form. In order
to effectively use this text for language modeling, these items
must be converted to their spoken forms. This process has been
referred to as text conditioning or normalization and is often
used in text-to-speech systems.

Text conditioning has long been used in preparing text data
for language model training, and a set of text conditioning tools
are available from the Linguistic Data Consortium (LDC) [18].
The LDC tools perform text normalization using a set of ad hoc
rules, converting numerals to words and expanding abbrevia-
tions listed in a table. A more systematic approach to the NSW
normalization problem is introduced in [19], referred to here as

the NSW tools. These tools use models trained on data from sev-
eral categories: news text, a recipes newsgroup, a PC hardware
newsgroup, and real-estate ads. The NSW tools perform well in
a variety of domains, unlike the LDC tools which were devel-
oped for business news. Thus we hypothesized that these tools
would be more appropriate for conversational speech.

The NSW tools are built on a taxonomy of 23 categories, in-
cluding numeric and alphabetic labels. The alphabetic labels in-
clude: ASWD, indicating that a token should be said as a word;
LSEQ, meaning that a token is read as a sequence of individual
letters; and EXPN, indicating that a token is an abbreviation that
should be expanded to its full form. Other tokens refer to dif-
ferent types of numbers (e.g., dates, money, cardinal, ordinal).
The text normalization process involves first splitting complex
tokens using a simple set of rules, and then classifying all to-
kens as one of the 23 categories using a decision tree. After a
token is classified, it is expanded according to type-dependent
predictors. We used the NSW tools tuned on data from the PC
hardware newsgroup, since this was the most similar domain to
our task of recognizing technical research group meetings. We
also added 52 domain-specific abbreviation expansions after ex-
amining the output of the tools when used on our topic-specific
text. We compared the output of the NSW tools and the LDC
tools on our published text and email corpora. Of course, not all
sentences have perfect transcriptions, but a brief inspection sug-
gests that the NSW tools have fewer errors. In our initial work,
the LDC tools result in higher-perplexity language models [20],
so in this work we use the NSW tools exclusively.

The retrieved Web pages required a small amount of addi-
tional filtering prior to applying the NSW tools and using the
content of the pages for language modeling. First we stripped the
HTML tags and ignored any paragraphs with an out-of-vocab-
ulary (OOV) rate greater than 50%. This threshold was chosen
to filter sentences that were not in English or had large num-
bers of errors, without eliminating short sentences that had one
out-of-vocabulary word. We then piped the text through a max-
imum entropy sentence boundary detector [21] and performed
text normalization using the NSW tools.

C. Vocabulary Expansion

One of the main goals of this work is to improve recogni-
tion of “new” words, that is, words which are not in the base-
line language model and vocabulary. In addition to collecting
topic-specific training data which includes new words, we must
choose a list of words to add to the vocabulary of the speech rec-
ognizer. We did this by choosing words which occur at least 5
times in one of the supplemental data sources. The 5-occurrence
threshold was a simple heuristic used to avoid adding new words
that were simply typos. Pronunciations for the new words were
obtained from a larger dictionary when available, and generated
by hand for the relatively small number of words not covered in
that dictionary.

We only selected words from the supplemental sources that
were closely matched to the target domain: meetings, text,
and email. We chose not to add new words from the Web
corpora due to the high rate of incorrect spellings as well as
offensive words. For example, words “amature,” “becuase,”



SCHWARM et al.: ADAPTIVE LANGUAGE MODELING WITH VARIED SOURCES TO COVER NEW VOCABULARY ITEMS 337

“definately,” and “dumbass” were among the top candidates
from the topic-related Web text. There were also a fair number
of British spellings, e.g., “centre,” “colour,” etc.

Another reason for not using words selected from the Web
data is that we had to add many words from the Web sources
in order to get small improvements in the OOV rate. By adding
250 words from the Web sources, we only covered an additional
10 tokens in the test set. In order to get 50 hits, 1000 new words
were needed. In contrast, adding 86 words from the topic-related
text sources gave 131 hits. Since most of the new words from the
Web sources are not actually in the test data, it is not worth the
effort of adding so many of them. The closely matched sources
provided much higher gains with many fewer new words.

D. Mixture Language Models

A common technique for combining several language models
is a mixture model, a linear interpolation of two or more com-
ponent models considered at the -gram level [22], [23]. Mix-
ture components can include models from different corpora, as
used in this paper, or topic-dependent models trained on sub-
sets of a particular corpus. In the trigram case, each probability

in (2) is replaced with a weighted sum of
probabilities from individual models

(3)

The interpolation weights are estimated automatically using
the Expectation-Maximization algorithm to maximize likeli-
hood on a small held-out data set (or, equivalently, minimize
perplexity) with the constraint that . Note that the
mixture models require some in-domain training data in order
to estimate the mixture weights.

In this work, we combined a baseline language model for
conversational speech with supplemental LMs trained on sev-
eral different text and conversational speech data sources. The
baseline LM, which is also a mixture model, is described in
more detail in Section IV. All language models were estimated
using the SRI Language Modeling Toolkit [24] with the modi-
fied Kneser-Ney discounting scheme [25].

Combining several -grams can produce a model with a very
large number of parameters, which is costly in decoding. In such
cases -grams are typically pruned. In most of the work reported
here, the models are unpruned. However, in some of the exper-
iments involving Web data sources, the final mixtures were ag-
gressively pruned to about 20% of their original size. We use
entropy-based pruning [26] after combining unpruned models,
in all cases using the same threshold (entropy gain of ).

IV. TASK DOMAIN AND EXPERIMENT PARADIGM

Our work is part of the ICSI/UW Meeting Recorder project
[27], the goal of which is to develop a system for automati-
cally transcribing and browsing meeting speech. This target task
uses data collected by ICSI. Meetings in the corpus are regularly
scheduled group meetings at ICSI, i.e., real meetings that would
occur even if they were not being recorded for this project. This

work is based on a pilot release of meeting data which com-
prises our test data (five meetings from the meeting recorder
group), held-out data (four other meetings from this group) and
style-specific data from meetings on other topics used as sup-
plemental training data.

A. Test Sets

Our test data consists of meetings of the Meeting Recorder
project group at ICSI. For the results reported here, the evalu-
ation test set consists of five 1-hour meetings (approximately
44 000 words) from one group. We exclude speakers who are
not native speakers of American English, as in [27]. We also
used approximately 39 000 words of data from other meetings
of this group as a held-out set for LM mixture weight estimation
and optionally for pruning, and we had a separate development
test set of about 56 500 words.

B. Recognizer

For our recognition experiments, we used a modified ver-
sion of SRI’s large-vocabulary conversational speech recogni-
tion system from the March 2000 Hub-5 evaluation [23].3 The
current system uses new acoustic models trained using MMIE,
and the baseline language model, described below, has been
updated since the evaluation. There were also minor modifica-
tions for the meeting task, including downsampling the meeting
speech in order to use the telephone-band acoustic models from
the Hub-5 system [27]. This system processes the test data in
two passes. The first pass uses a relatively simple language
model to generate -best lists: lists of the most likely hy-
potheses for each utterance, consisting of an acoustic score and
a language model probability for each hypothesis. These lists
are rescored using a more complex model. In experiments de-
scribed in this paper, the first-pass recognizer used a bigram LM
to generate -best lists with , followed by a rescoring
pass using a trigram LM. The oracle error rate for the -best lists
was 22.7%.

C. Baseline LMs

Our baseline bigram and trigram language models were
an updated version of the LMs for the SRI Hub-5 recognizer
from the March 2000 evaluation, with the main changes being
inclusion of new training data and consistent smoothing using
the Kneser-Ney backoff. Both the bigram for the first-pass
search and the trigram used in rescoring models were mixtures
built from individual -gram models trained on data from the
Switchboard, CallHome, Switchboard-cellular and Broadcast
News corpora. The combined Switchboard and Callhome
corpora consisted of about 3 million words, and Broadcast
News was 150 million words. The baseline models as well as
our supplemental models use multi-words, lexical entries that
contain multiple words, e.g., “you_know” and “a_couple_of.”
Without multi-words, the baseline vocabulary is 34 898 words,
and including them it is 36 552. Both baseline mixtures were
pruned using a relative entropy gain threshold of .

3The March 2000 Hub-5 evaluation is one of a series of NIST-sponsored
benchmark tests of speech recognition for conversational speech over the tele-
phone.
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TABLE II
FREQUENCY OF SELECTED WORD TYPES IN SWITCHBOARD, MEETING DATA,

PUBLISHED TEXT SOURCES, EMAIL, AND WEB TEXTS DEMONSTRATING
DIFFERENCES BETWEEN THESE DOMAINS

TABLE III
FREQUENCY OF OCCURRENCE (%) OF SPECIFIC COORDINATING CONJUNCTIONS

AT THE BEGINNING OR END OF A SENTENCE

V. ANALYSIS OF DIFFERENCES BETWEEN CORPORA

A. Style Differences Between Corpora

The style of conversational speech differs greatly from
written text. This difference can be characterized in part by
variations in part-of-speech usage patterns, as illustrated in [7]
with a comparison of Switchboard, Broadcast News, and Wall
Street Journal data. Table II provides an analysis of selected
word categories in our data, to illustrate differences in the
corpora. Filled pauses are words that are typically used by the
speaker to hold the floor while thinking of the next word to
say, e.g., “um” and “uh.” Back-channels are words like “yeah,”
“uh-huh,” and “right” that are uttered by the listener while
someone else is speaking. Both filled pauses and back-channels
are relatively frequent in conversational speech, but rare in
text data.4 The pattern of more pronouns in speech and more
nouns in written text is consistent with that observed in [7]. We
also note that there are more coordinating conjunctions (“and,”
“so,” “but,” “or,” “nor,” “yet”) in speech than in text. Further
analysis of the location of specific coordinating conjunctions
shows that certain of these words (e.g., “and,” “but,” “so”)
occur frequently at the beginning or end of utterances5 in
conversational speech, while they almost never occur at the be-
ginning or end of sentences in written text. Table III shows the
percentage of all occurrences of the most common coordinating
conjunctions at the beginning or end of a sentence (in text) or
utterance (in speech). Data is not included for Web sources,
since sentence boundaries were tagged automatically so the
numbers may not be reliable. We also analyzed the location of

4Although they are typically markers of conversational speech, not text, filled
pauses and back-channels have nonzero probability in the text data because the
group studies conversational speech, so sometimes words like “uh-huh” and
“uh” are discussed.

5We use the term “utterance” to denote a sentence-like segment of speech,
since conversational speech often cannot be accurately divided into grammatical
sentences.

TABLE IV
OUT-OF-VOCABULARY (OOV) RATES ON MEETING TEST DATA USING

BASELINE VOCABULARY ALONE (36552 WORDS) AND SUPPLEMENTED WITH
WORDS FROM OTHER SOURCES

other coordinating conjunctions as well as filled pauses, but did
not find clear patterns of occurrence for these words.

Like Switchboard, meetings often include casual, conversa-
tional speech. In many cases, participants are friends as well
as colleagues. Based on the patterns seen here, we can classify
Switchboard and the meeting corpus as more stylistically sim-
ilar, while published text and email are more closely matched in
topic but not style. The two Web corpora tend to have POS pat-
terns that are somewhere between these extremes. Of course,
meetings have different styles—e.g., formal committee meet-
ings differ from research group brainstorming sessions—and
not all styles are represented in our data. In addition, the pat-
terns of usage of some of these conversational speech fillers can
be speaker-dependent [28].

B. Content Differences Between Corpora

Prior to building new language models for recognition exper-
iments, we looked at the effect of adding words from closely
matched supplemental sources to the baseline vocabulary (orig-
inally 36 552 words). For each supplemental data source, we
selected words that occurred at least 5 times in that source (to
avoid typos) but were not in the baseline vocabulary. The re-
sults tabulated in Table IV show that in all cases, the rate of oc-
currence of out-of-vocabulary (OOV) words was reduced. New
words from the meeting corpus reduced the OOV rate by the
same amount as words from published text, and almost as much
as words from email (the topic-specific sources). However, the
meeting corpus is ten times the size of the text corpus. By using
topic-specific text, we can reduce the OOV rate with a much
smaller amount of training data. Not surprisingly, adding words
from all three sources yielded the greatest reduction. In this case,
we added words that occurred at least 5 times across all the cor-
pora, including 56 words that occurred in multiple corpora but
occurred fewer than 5 times in any individual corpus. As dis-
cussed earlier, the Web data was not a good source of new words
and therefore is not included here.

In addition to OOV rate, two other measures of source mis-
match/content similarity between corpora are language model
perplexity and -gram hit rate. Perplexity is an information-
theoretic measure that, put simply, characterizes the branching
factor of a language model. It is often used as a quick way to
assess the quality of a model, although Iyer has shown that per-
plexity is not always an accurate measure when out-of-domain
data is used [29], [30]. -gram hit rate is a measure of how many

-grams in the target data are actually represented in the lan-
guage model. It has been suggested that -gram hit rate might
be another good way to easily assess language model quality.
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TABLE V
MEASURES OF SOURCE MISMATCH ON MEETING DEVELOPMENT SET:

PERPLEXITY (PP), -GRAM HIT RATE. MODELS ARE INDIVIDUAL
SUPPLEMENTAL MODELS, NOT MIXTURES (EXCEPT FOR THE BASELINE)

Table V shows perplexity, trigram hit rate, and bigram hit rate
for the individual component language models, measured on the
development set. As expected, there is a direct relationship be-
tween bigram and trigram hit rate. The hit rates also reflect the
size of the data set used to train the language model. The base-
line and Web LMs have the highest hit rates while the small
published text and email models have the lowest. The published
text and email LMs also have the highest perplexity, probably
because there was so little text available for those models. There
does not appear to be a high correlation between hit rate and
perplexity, in that the text and email LMs have lower hit rates
and higher perplexity than the baseline, while the conversational
Web LM has both a higher trigram hit rate and higher perplexity
and the meeting LM has a much lower hit rate but the same per-
plexity.

VI. EXPERIMENTAL RESULTS

For our work, we modified the baseline models by adding
413 new vocabulary entries taken from the closely-matched sup-
plemental sources and renormalizing the model. This made no
difference to baseline recognition performance, but it did affect
language model perplexity. Initially, we used a bigram version
of the baseline model in the first pass recognition to generate
the -best lists. Rescoring these -best lists with a trigram LM
gave an average word error rate (WER) of 39.1%. However, the
WER on the new vocabulary items was very high (85.0%), more
than double the overall WER. Since the new words did not occur
in the training data used to generate the baseline model, these
words did not have meaningful unigram probabilities assigned
to them and hence were largely excluded from the -best lists.
In order to have a better “starting point” we used a bigram mix-
ture of the baseline, text, email and meetings data sources to
recompute the -best lists, which were then rescored to pro-
duce the results reported in this section. This choice of the first
pass recognition LM provided us with a better framework to as-
sess the influence of different data sources on WERs among the
new vocabulary items, although the results for mixtures where
data sources did not include all of the above (i.e., baseline, text,
email, and meetings) may be overly optimistic.

Recognition results for the baseline LM and all the mixture
models are presented in Tables VI and VII for the full evaluation
test set and the subset of tokens that correspond to new words in
the vocabulary. In addition, perplexity and trigram and bigram
hit rates on the respective sets are reported. Each of the indi-
vidual supplemental sources provides at least a small improve-
ment, with larger gains for the mixtures that combine multiple
supplemental sources. An improvement of 3.4% absolute or 9%

TABLE VI
OVERALL WER RESULTS FOR RECOGNITION EXPERIMENTS, PLUS PERPLEXITY

(PP) AND -GRAM HIT RATES ON EVALUATION TEST SET. ALL MODELS
EXCEPT THE BASELINE ARE MIXTURES WITH THE BASELINE AS ONE

COMPONENT

TABLE VII
EVALUATION TEST SET WER RESULTS FOR THE SUBSET OF NEW WORD

TOKENS, PLUS PERPLEXITY (PP) AND -GRAM HIT RATES ON THIS
SUBSET. ALL MODELS EXCEPT THE BASELINE ARE MIXTURES WITH THE

BASELINE AS ONE COMPONENT

relative comes from using all the supplemental sources together,
compared to the baseline with new words added to the vocabu-
lary without being included in the training data (from 39.1% to
35.7% WER). There is a much larger improvement in word error
rate on the new vocabulary items – a 61% relative gain between
this baseline model and the mixture containing all supplemental
data sources (from 85.0% to 33.3% WER).

The conversational Web corpus is among the most useful
single sources for improving the overall WER, but it is the least
useful for improving recognition of new words. In contrast, the
topic Web data provides much greater gains in WER for new
words, with similar improvement in overall WER. While the
improvement is smaller with models from smaller corpora, the
text and email data also provide significant improvement in
WER on the new vocabulary items, showing that topic-matched
data is most important for the recognition of new words and
can be effective even in very small quantities. Recall also that
the Web data was not very useful for adding new vocabulary
items.

Fig. 1 shows the weights chosen for each mixture component
for different -gram orders, illustrating the relative importance
of each data source. For unigrams, the style of the data matters
most, as evidenced by the dominating weight of the meeting
data. For bigrams and trigrams, style still counts, but the size of
the data set becomes more important and the larger baseline and
Web corpora are given more weight.

Tables VI and VII also show the perplexity and -gram hit
rate statistics for the mixture models. Perplexity and -gram hit
rate have the benefit of being simple and quick to calculate, so
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Fig. 1. Relative weight of various data sources in mixtures of different -gram orders.

TABLE VIII
CORRELATING MIXTURE MODEL CHARACTERISTICS TO WORD ERROR
RATES ON THE FULL EVALUATION TEST SET AND ON THE SUBSET OF
NEW WORD (NEW-WD) TOKENS. CORRELATIONS ARE BASED ON 10

ENTRIES FOR EACH ROW

we would like them to be strongly correlated with WER in order
to use them as predictors of which models will perform well,
without the expense of conducting recognition experiments for
all possible models. We calculated correlation coefficients be-
tween these model characteristics and word error rate to further
analyze the usefulness of these predictors. In Table VIII we give
the correlation of overall WER (and WER on the subset of new
word tokens) with three characteristics of the mixture models
calculated on the test set: perplexity, bigram hit rate, and tri-
gram hit rate. Perplexity has the strongest correlation for both
overall WER and error rate on new words. The bigram hit rate
is also good for overall WER, but somewhat less useful for new
words. Trigram hit rate is least useful. Not surprisingly, bigram
and trigram hit rates on the subset of new words are better cor-
related with WER on that subset, but neither is as effective as
overall perplexity. Looking at the details in Tables VI and VII,
it appears that trigram hit rate mainly reflects corpus size for
the full vocabulary, but for the added words there is a clear im-
pact of topic match in both bigram and trigram hit rate. Topic
match also seems to matter more than size for perplexity com-
puted only on the subset of new words, but new word perplexity
is still not as useful as overall perplexity for predicting perfor-
mance on the new words.

We also analyzed the dependence of WER on evaluation data
with characteristics of the individual component models (from
Table V, calculated on the development set). Since there are only

6 data points for each case, we illustrate these in Fig. 2 to show
the relationships rather than give the correlation statistics. While
there is too little data to draw strong conclusions, it appears that
component-level measures are much less reliable as an indicator
of potential WER reduction than measures on the complete mix-
ture. This is not entirely surprising – it is difficult to assess im-
pact on overall WER when looking at a component model in
isolation. The new-word bigram hit rate seems to be somewhat
useful for predicting performance on new words, but perplexity
is not useful, even when computed only on the subset of new
words. The finding that perplexity of the component model is
not a good predictor may be related to the finding in [16] that
perplexity-based filtering of training data does not lead to im-
proved performance of the final system. This is not inconsistent
with the prior finding that the perplexity of the combined model
is a useful predictor, since the component model may not itself
have good perplexity but could lead to improvements in combi-
nation with other models if it offers coverage of a phenomenon
not well represented by the other models.

Since data collected from the Web can be huge in size, it can
lead to very large language models, which are often pruned
to reduce memory requirements. Hence, we also conducted
experiments using pruning for all the cases involving Web
data, where the size was reduced to about 20% of the original
using entropy-based pruning (as described earlier). (Other data
sources were so small that pruning was not necessary.) Pruning
led to a small loss in performance in most cases. Using all the
data, the overall WER increased from 35.7% to 36.1%, and
the error rate on new words increased from 33.3% to 34.6%.
Using pruning did not have a large impact on perplexity as
used for model assessment, but it did make trigram hit rate
effectively useless.

VII. CONCLUSION

In summary, we achieved significant reductions in overall
word error rate (9% relative) and, particularly, in recognition
of new vocabulary items (61% relative) by using data collected
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Fig. 2. Relationships between various model characteristics and WERs for the full test set (top row) and the subset of new word tokens (bottom row). The baseline
model is included only in the top row, since the training for this model does not cover the new words.

from out-of-domain sources: papers, email, other meetings,
and the World Wide Web. Text normalization and mixture
language models were used to successfully combine these data
with the baseline LM for a more general conversational speech
task. Using order-dependent mixture weights, we find that the
Web data is mainly useful for higher-order -grams (i.e., not
unigrams), and it is not very effective for vocabulary expansion.
Larger data sources give more gain in overall performance, but
topic match was more important than size for reducing WER
on new words.

We also showed that perplexity can be used to assess the com-
bined language model (but not component models) and that bi-
gram hit rate is somewhat useful for assessing new data sources
in terms of their impact on WER of targeted (new) vocabulary
items.

Opportunities for future work in this area include collecting
more training data from the Web and refining the existing text
normalization tools. Another potential direction is to combine
LMs from different domains using class-dependent interpola-
tion [16], where a larger number of mixture weights is estimated
(more than one per data source) in order to handle source mis-
match, specifically letting the mixture weights vary as a function
of the previous word class.
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