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ABSTRACT
In this paper, we describe methods to exploit search queries mined
from search engine query logs to improve domain detection in spo-
ken language understanding. We propose extending the label propa-
gation algorithm, a graph-based semi-supervised learning approach,
to incorporate noisy domain information estimated from search en-
gine links the users click following their queries. The main contribu-
tions of our work are the use of search query logs for domain classi-
fication, integration of noisy supervision into the semi-supervised la-
bel propagation algorithm, and sampling of high-quality query click
data by mining query logs and using classification confidence scores.
We show that most semi-supervised learning methods we experi-
mented with improve the performance of the supervised training, and
the biggest improvement is achieved by label propagation that uses
noisy supervision. We reduce the to error rate of domain detection
by 20% relative, from 6.2% to 5.0%.

Index Terms— Spoken language understanding, semi-supervised
learning, web search queries, label propagation, domain detection.

1. INTRODUCTION

In the last decade, a variety of practical goal-oriented spoken lan-
guage understanding (SLU) systems have been built for limited do-
mains. Three key tasks in such targeted understanding applications
are domain classification, intent determination and slot filling [1].
Domain classification is often completed first in SLU systems, serv-
ing as a top-level triage for subsequent processing. This modular
design approach has the advantage of flexibility; specific modifica-
tions (e.g., insertions, deletions) to one domain class can be imple-
mented without requiring changes to other domains classes. Also,
such an approach often yields more focused understanding in each
domain since the intent determination only needs to consider a rel-
atively small set of intent classes over a single (or limited set) of
domains. Such an approach can also be extended to hierarchical
SLU models with multiple levels of domains and subdomains. For
example, a SLU system in the travel assistance domain may hier-
archically represent related subdomains such as flight reservations,
hotel booking, and car rental domains.

Similar to intent determination, triage domain detection systems
are often framed as a classification problem. More formally, given
a user utterance or sentence xi, the problem is to associate a set
yi ⊂ C of semantic domain labels with xi, where C is the fi-
nite set of domains covered. To perform this classification task, the
class with the maximum conditional probability, p(yi|xi) is selected.
Usually, supervised classification methods are used to estimate these
conditional probabilities. Each domain class is trained from a set of
labeled utterances.

Collecting and annotating naturally spoken utterances to train
these domain classes if often costly, representing a significant barrier
to deployment both in terms of effort and finances. However, it may
be possible to overcome this hurdle by leveraging the abundance of
implicitly labeled web search queries in search engines. Large-scale
engines such as Bing or Google log more then 100M search queries
per day. Each query in the log has an associated set of URLs that
were clicked after the users entered the query. This user click in-
formation could be used to infer domain class labels and, therefore,
provide (noisy) supervision in training domain classifiers. For exam-
ple, the queries of two users who click on the same URL (such as,
http://www.hotels.com) are probably from the same domain
(“hotels” in this case).

Previous work on web search query intent classification bene-
fited from the use of query click logs for improving query intent
classification. For example, [2] used query click logs for determin-
ing the intent of the query (typically not in natural language) and
inferred class memberships of unlabeled queries from those of the
labeled queries. They formed a bipartite graph of the queries and
URLs the users clicked, then transferred labels from queries to URLs
and other queries using the label propagation algorithm [3, 4]. Note
that these approaches focused on transferring the labels without us-
ing the lexical content of the query. The aim in this work is to extend
previous work by (a) directly using lexical features of the query in
the similarity measure (b) leveraging noisy labels inferred from URL
clicks. Furthermore, we show how web search queries can be used to
improve the domain detection of more complex queries, specifically
naturally spoken utterances.

We assume that the clicked URL category can be assigned as
the domain label of the user query. For example, we assign the la-
bel “hotels” to the user query “Holiday Inn and Suites” when the
user has clicked on http://www.hotels.com. However most
click data is noisy and has low frequency. Hence, we also try to es-
timate successful clicks by mining query click logs to gather the set
of URLs the people who searched by using the same exact query.
Recently, [5] studied several features, such as query entropy, dwell
times and session length for mining high-quality clicks, and showed
that query entropy is the best single indicator feature for a successful
click. In [6], Hassan et al. studied user action patterns and dwell
time to estimate successful search sessions. We follow a similar ap-
proach, and use query entropy and frequency, and integrate other
features from domain detection, such as the probabilities assigned
by a domain detection model trained on labeled data to sample high
quality clicks both for adding as examples to the training set, and to
pre-sample the data for use in the label propagation.

Furthermore, we use the label propagation algorithm to transfer
domain annotations from labeled natural language (NL) utterances
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to unlabeled web search queries. We also consider the click infor-
mation as noisy supervision, and incorporate the domain label we
extract from the clicked URL category into the label propagation al-
gorithm.

In the next section, we first describe the criteria we use for min-
ing query click logs, the semi-supervised algorithms for estimating
domain labels for the search engine queries, and extension of the
label propagation algorithm. Then, in Section 3, we present experi-
ments on a set of natural language utterances from a spoken dialog
system application using these methods.

2. APPROACH

Query click data includes logs of search engine users’ queries and
the links they click from a list of sites returned by the search engine.
Previous work has shown that click data can be used to improve
search decisions [7]. However, most click data is very noisy, and
includes links that were clicked on almost randomly. We first pro-
pose a set of measures, some of which were also used in improving
search, to sample queries and domain labels from the clicked URLs
for use in domain detection. Then we include supervision from the
noisy user clicks into the label propagation algorithm that aims to
transfer domain labels from labeled examples to the sampled search
queries.

2.1. Mining Query Click Logs

We extract a set of queries, whose users clicked on the URLs that
are related to our target domain categories. We then mine the query
click logs to download all instances of these search queries and the
set of links that were clicked on by search engine users who entered
the same query. We use the following criteria to sample a subset of
these queries:

• Query Frequency: refers to the number of times a query
has been searched by different users in a given time frame.
The motivation for using this feature is that in spoken dialog
systems, users may ask the same things as web search users,
hence adding frequent search queries to the domain detection
training set may help to improve its accuracy.

• Query (Click) Entropy: aims to measure the diversity of the
URLs clicked on by the users of a query q, and is computed
as

E(q) = −
n∑

i=1

P (Ui)lnP (Ui)

where Ui, i = 1, ..., n are the set of URLs clicked by the
users of query q, and P (Ui) is the normalized frequency of
the URL Ui,

P (Ui) =
F (Ui)∑n
i=1 F (Ui)

where F (Ui) is the number of times the URL Ui is clicked.
Low click entropy may be a good indicator of the correctness
of the domain category estimated from the query click label.

• Query Length: refers to the number of words in the query.
The number of words in a query is usually a good indicator
of such NL utterances, and search queries that include natural
language utterances instead of simply a sequence of keywords
may be more useful for training data in SLU domain classifi-
cation.

We add the sampled queries with the domain labels estimated from
the clicked URLs to the labeled training set, or use these sampled
examples for semi-supervised learning approaches described below.

2.2. Semi-Supervised Learning Approaches

In this study, we compared two established semi-supervised learning
methods, namely self-training and label propagation. Furthermore
we propose an extension of the label propagation algorithm that also
exploits the domain information obtained from the URLs users have
clicked on.

2.2.1. Self-Training

Self-training involves training an initial classifier from the existing
manually labeled examples, and using it to automatically assign la-
bels for a larger set of unlabeled examples. Then the examples which
were assigned classes with high posterior probabilities are added to
the training data. This approach has been widely used in many lan-
guage and speech processing tasks [8, 9, among others]. It has been
shown that, when the training set is very limited, self-training im-
proves the performance however, typically, further iterations are not
effective.

2.2.2. Label Propagation

Label propagation (LP) is a graph-based, iterative algorithm com-
monly used for semi-supervised learning [3, 4, among others]. The
main idea of this algorithm is to propagate the labels through the
dataset along the high density areas defined by the unlabeled ex-
amples. This is conceptually similar to the well-known k-Nearest-
Neighbor (kNN) classification algorithm.

LP is intuitively a better semi-supervised learning method for
our task, since, in theory, it enables the classifier to see samples
which have no common phrases to the training set. For example,
if the training set has the phrase “hotel” but not “suites”, the exam-
ple query above “holiday inn and suites” may propagate the label
to another query, say “ocean-view suites”, which will propagate it
to others. In self-training, multiple iterations would have the same
effect, but since it results in overfitting, LP is usually a better choice.

The LP algorithm has been proven to converge and has a
closed form solution for easier implementation. More formally,
let {(x1, y1),
..., (xl, yl)} be the labeled data set, where YL = y1, ..., yl ∈
1, ..., |C| for |C| classes. Let {(xl+1, yl+1), ..., (xl+u, yl+u)} be
the unlabeled data set, where YU = {yl+1, ..., yl+u} is unknown.
The samples X = {x1, ..., xl+u} ∈ RD are from a D-dimensional
feature space.

The goal of label propagation is then to estimate YU from X
and YL. As the first step, a fully connected graph is created using
the samples as nodes. The edges between the nodes, wij represent
the Euclidean distance with a control parameter σ:

wij = exp

(
−

d2ij
σ2

)
= exp

(
−

∑D
d=1(x

d
i − xd

j )
2

σ2

)

where xd
i is the value of the dth feature of sample xi. This graph is

then represented using a (l + u) × (l + u) probabilistic transition
matrix T :

Tij = P (j → i) =
wij∑l+u

k=1 wkj

A corresponding (l + u)× |C| matrix is also defined for the labels.
The labels for the unlabeled samples are initially randomly set (since
they are not important, as shown in the convergence solution below).

The algorithm then iterates as follows:

1. Propagate labels 1 step: Y ← TY
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2. Normalize the rows of Y to maintain a probability distribu-
tion

3. Clamp, i.e., restore the labels of the labeled data

It has been shown that this algorithm converges to a fixed solu-
tion:

YU = (I − T̄uu)
−1T̄ulYL

where (T̄ ) is the row normalized matrix of T , such that T̄ij =
Tij/

∑
k Tik and T̄ul and T̄uu are the bottom left and right parts

of T̄ , obtained by splitting T̄ after the lth row and column into four
sub-matrices. See [3] for more details.

In this work, we use the natural language utterances labeled with
domain categories as the labeled example set, and the sampled set of
search queries as the unlabeled examples, and estimate their labels
using the LP algorithm. We then added the unlabeled examples that
are assigned a domain category with a high posterior probability by
LP and add them to the labeled training data set (Method 1).

2.3. Label Propagation with Noisy Supervision

Since the URLs that the users clicked on also provide a noisy label
for each query, we check the agreement between the domain cate-
gory assigned to each example by LP and the domain category of
the clicked URL. We added only those examples with high probabil-
ity labels from LP, that agree with the click label to the training data
set (Method 2).

As an alternative, the category of the clicked URL can also be
used as a feature in the representation of a query. This would al-
low for propagation of labels between queries that have the same
click labels with a higher weight in LP. This is inspired from ideas
on extending established feature transformation approaches, namely
the supervised latent Dirichlet allocation (sLDA) [10] incorporating
the correct labels and factored latent semantic analysis (fLSA) [11]
supporting the use of additional features.

In this work, more specifically, we include |C| binary features
for each domain, resulting in a D + |C|-dimensional feature space
and assigned a value of 1 to the feature corresponding to the click
label of the query, and 0 to all the others. This results in a straight-
forward extension of the computation of the Euclidean distance with
noisy supervision:

wij = exp

(
−

∑D+|C|
d=1 (xd

i − xd
j )

2

σ2

)

where xD+k
i is the binary feature indicating the click of the URL

for the kth domain. We then ran the LP and select the top scoring
examples for each domain to add to the classification training data
(Method 3).

3. EXPERIMENTS AND RESULTS

Similar to prior work on other utterance classification tasks, such as
dialog act tagging [12] and intent determination [13], our approach
relies on using icsiboost1, an implementation of the AdaBoost.MH
algorithm, a member of the boosting family of classifiers [14]. As
features, we use word unigrams, bigrams and trigrams as extracted
from the training set. No feature normalization is performed to tag
named entities (such as hotel or airline names in a travel system) as
the system must learn the domain from the content words instead of
entity types since their annotation is typically non-trivial and noisy.

1http://code.google.com/p/icsiboost/

Data Set Number of examples
Labeled training utterances 3,701
Labeled test utterances 1,014
Web search queries 2,024,550
Queries with all instances 5,000

Table 1. Data sets used in the experiments.

Training Set Avg. ER
Labeled Examples (LE) 6.2%
LE + 500 random examples 6.1%
LE + 1000 random examples 5.7%
LE + 5000 random examples 6.1%
LE + 500,000 random examples (accd. to prior) 9.9%
LE + all examples 16.6%

Table 2. Error rate, averaged over 3 random orderings, when using
query and click label pairs (QCL) in addition to the labeled exam-
ples.

3.1. Data Sets and Experiment Set-up

We used a set of over 4,000 natural language utterances from a spo-
ken dialog system application. These utterances belonged to five
different domain categories. Furthermore, we downloaded over 2
million queries from Bing web search logs, and the URLs clicked
on by users. For a 5,000 query subset of these, we mined the web
logs to extract all instances of the same exact query and the URLs
clicked on by all users. Table 1 summarizes the data sets used in our
experiments.

In each experiment, we split the test set into two and performed
two experiments where in each experiment, we used only one half
of the test for tuning the optimum number of boosting iterations and
used the other half as the previously unseen test set. We averaged
the performance figures on the unseen test sets from these two ex-
periments.

For evaluating each method, we compute the error rate (ER),
which is the number of examples for which the most probable do-
main category disagrees with manual annotation, divided by the total
number of examples.

3.2. Baselines

As the baseline experiment, we randomly selected the queries which
resulted in clicks to target domains. These queries are then added to
the training set with their click labels. Table 2 shows results with this
baseline approach. Note that, the experiments with 500, 1,000, and
5,000 unlabeled examples are repeated three times, each time with a
different random subset, and the average of the error rates from these
experiments is reported. Adding a small set of random examples to
the set of labeled examples for training improves domain detection
ER slightly, however when all the queries are added to the training
set, the error rate increases significantly. We also downsampled the
query set according to the prior probability of each domain label in
the labeled training set. This results in around 500,000 search query
examples, however the error rate is still significantly higher when
these examples are included in training.
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Criterion Avg. ER
Labeled Examples (LE) 6.2%
Query Frequency 5.2%
Query Entropy 5.2%
Query Length 6.0%

Table 3. Domain detection error rates when 1,000 examples are sam-
pled with various methods and are added to the training set.

Approach Avg. ER
Labeled examples (LE) 6.2%
LE + 1000 random examples 5.7%
Self-Training 5.8%
LE + top LP (Method 1) 5.4%
LE + top LP, agreeing (Method 2) 5.7%
LE + top noisy LP (Method 3) 5.0%

Table 4. Domain detection error rates with the proposed label prop-
agation methods.

3.3. Mining Query Click Logs

In order to select 1,000 examples from the search queries, we then
employ each of the criteria described in Section 2.1. The results of
experiments using the sampled examples as additional training and
as unlabeled examples for LP are in Table 3.

For, all methods discussed above, for sampling queries for do-
main detection help in decreasing the error rate, with query fre-
quency and query click entropy resulting in the most improvement.
The examples sampled according to query length reduce the error
rate only slightly. A combination of various similar criteria for min-
ing reliable and high-quality query and click data seems to be a
promising research direction for our purpose.

3.4. Semi-Supervised Learning

Results with various semi-supervised learning methods are pre-
sented in Table 4. In each experiment, 1,000 examples were sampled
randomly for semi-supervised learning. Each experiment is repeated
twice, with a different random set of initial 1,000 examples, and the
average ER from these experiments are reported.

The self-training learning approach decreases the error rate com-
pared to the baseline approach (from 6.2% to 5.8%), however, note
that randomly adding 1,000 examples actually helps more, decreas-
ing the error rate to 5.7%.

For LP experiments, the top 500 examples from the output of
LP are added to the training set. According to these results, the
agreement method (Method 2) is not very useful, decreasing the error
rate to 5.7%. Applying LP without requiring agreement resulted in
better performance of 5.4% error rate.

Incorporating noisy labels into LP results in the best perfor-
mance for all approaches, resulting in an error rate of 5.0%, a re-
duction of 20% relative to the initial error rate of 6.2% which was
obtained using only manually labeled examples in the training set.

4. CONCLUSIONS

We presented several methods for mining queries from search engine
query logs and used them in domain detection for spoken language
understanding. We demonstrated that search engine queries can be

labeled with categories estimated from the URLs clicked on by their
users and other user behavior measures extracted from query logs
can be used for sampling queries for use in domain detection. Fur-
thermore, we use raw queries with and without their noisy labels
in semi-supervised learning and reduce domain detection error rate
by 20% relative to supervised learning using only manually labeled
examples.

Future work in this area includes investigating new methods for
high quality query and click selection, incorporating these sampling
methods with label propagation. Another future direction is extend-
ing this work towards other spoken language processing tasks, such
as voice search.
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