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Abstract—This paper describes the progress made in the tran-
scription of broadcast news (BN) and conversational telephone
speech (CTS) within the combined BBN/LIMSI system from May
2002 to September 2004. During that period, BBN and LIMSI
collaborated in an effort to produce significant reductions in
the word error rate (WER), as directed by the aggressive goals
of the Effective, Affordable, Reusable, Speech-to-text [Defense
Advanced Research Projects Agency (DARPA) EARS] program.
The paper focuses on general modeling techniques that led to
recognition accuracy improvements, as well as engineering ap-
proaches that enabled efficient use of large amounts of training
data and fast decoding architectures. Special attention is given on
efforts to integrate components of the BBN and LIMSI systems,
discussing the tradeoff between speed and accuracy for various
system combination strategies. Results on the EARS progress
test sets show that the combined BBN/LIMSI system achieved
relative reductions of 47% and 51% on the BN and CTS domains,
respectively.

Index Terms—Hidden Markov models (HMMs), large training
corpora, speech recognition, system combination.

I. INTRODUCTION

I N May 2002, DARPA initiated a five-year research program
called EARS (Effective, Affordable, Reusable, Speech-to-

text). The major goal of the program was to reduce recogni-
tion word error rates (WERs) for broadcast news (BN) and con-
versational telephone speech (CTS) by a factor of five in five
years to reach the 5%–10% range while running in real-time on
a commodity computer with only a single processor. The drive
to lower WER and to real time was in several phases with mile-
stones to be achieved at the end of each phase. For example, the
performance target for BN systems developed during the second
phase of the program (2003–2004) was a WER of 10% at a
speed of ten times real-time (10 RT). Progress was measured
on a “Progress Test” in English which remained fixed for the
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five-year duration of the program. In addition, there were “Cur-
rent Tests” in each of the three languages (English, Arabic, and
Mandarin), which changed every year. These yearly evaluations
are referred to as the Rich Transcription benchmark tests (RT02,
RT03 and RT04). Collaboration across sites was strongly en-
couraged. BBN and LIMSI have been working closely together
and, wherever possible, submitted joint results.

For the BN domain, the transcription systems must be able to
deal with the nonhomogeneous data found in broadcast audio,
such as a wide variety of speakers and speaking styles, changing
speakers, accents, background conditions, and topics. The chal-
lenges for CTS at the acoustic level concern speaker normal-
ization, the need to cope with channel variability, spontaneous
speech, and the need for efficient speaker adaptation techniques.
On the linguistic side, the primary challenge is to cope with
the limited amount of language model training data. Although
substantially more CTS training data was made available under
the EARS program (see Section II), appropriate textual data for
training the language models are difficult to obtain.

There are notable differences in speaking style observed
in CTS and BN. Broadcast speech is much closer to written
language than conversational speech is, where different social
conventions are observed. For CTS, the acoustic conditions
are quite varied. The speech quality is affected by a variety
of different types of telephone handset, the background noise
(other conversations, music, street noise, etc.), as well as a
much higher proportion of interruptions, overlapping speech,
and third person interjections or side conversations. In terms
of linguistic content, there are many more speech fragments,
hesitations, restarts and repairs, as well as back-channel con-
firmations to let each interlocutor know the other person is
listening.

The first-person singular form is much more predominant in
conversational speech. Another major difference from BN is
that some interjections such as “uh-huh” and “mhm” (meaning
yes) and “uh-uh” (meaning no) that are considered as nonlexical
items in BN, need to be recognized since they provide feedback
in conversations and help maintain contact. The word “uhhuh,”
which serves both to signal agreement and a back-channel “I’m
listening,” accounts for about 1% of the running words in the
CTS data. The most common word in the English CTS data,
“I,” accounts for almost 4% of all word occurrences, but only
about 1% of the word occurrences in BN.
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This paper reports on the development and evaluation of the
combined BBN/LIMSI English systems for BN and CTS. Most
of the development work was focused on the English language, in
part due to the larger amount of audio and textual data available
for this language, and in part because the official progress test
was on English data. However, our experience thus far indicates
that at today’s word error rates, the techniques used in one lan-
guage can be successfully ported to other languages, and most
of the language specificities concern lexical and pronunciation
modeling.

The EARS program led to significant advances in the state-of-
the-art for both BN and CTS transcription, including the develop-
mentofnewtrainingmethodstodealwiththeverylargequantities
of audio data, to semi- or lightly supervised training methods to
reduce the need for manual annotations, and to innovative ap-
proaches for system combination (developing complementary
systems, cross system adaptation, cascade and parallel architec-
tures for combination) to meet the time constraint requirements.

The remainder of this paper is as follows. In the next sec-
tion the training and test corpora used in the experiments are
described. Sections III and IV highlight some of the main
features, development work, and specificities for the BBN and
LIMSI component systems, and Section V discusses other ideas
that were tried but did not become part of the final evaluation
systems. Section VI describes the different strategies that were
explored for system combination, and Section VII gives joint
BBN/LIMSI results on the progress and evaluation test sets.

II. TRAINING AND TEST CORPORA

In the beginning of the EARS program, the available acoustic
training corpora consisted of approximately 230 h of CTS data
(Switchboard-I plus Callhome conversations), and 140 h of BN
data, both carefully transcribed. Since then, the CTS acoustic
training corpus has grown to approximately 2300 h of speech
with incremental additions of Switchboard-II and Fisher conver-
sations [1]. It is worth noting that the reference transcripts for
almost all of the additional material was obtained via quick tran-
scription [2], with time segmentation provided automatically by
the BBN system. The BN acoustic training corpus enjoyed a sim-
ilar increase in size; however, in that case the additional material
was obtained via light supervision methods [3], [4] from a large
pool of closed-captioned TV shows (approximately 9000 h).

Both BBN and LIMSI systems also made use of large amounts
of text data for language model (LM) training. The CTS LM
training included 530 M words of web data released by the Uni-
versity of Washington (UW), Seattle, [5], 141 M words from BN
data, 47 M words of archived text from CNN and PBS, and 2
M words from the closed captions of the Topic Detection and
Tracking 4 (TDT4) database. The BN LM training consisted of
approximately 1 billion words of text, including the American
English GigaWord News corpus, commercial transcripts from
PSMedia, and CNN web archived transcripts.1

Several test sets were used to evaluate system performance
during the EARS program. Although overall system perfor-
mance was benchmarked yearly by NIST on the designated
progress test sets, day to day research was evaluated on certain

1Most of the data are distributed by the Linguistic Data Consortium.

TABLE I
CTS TEST SETS

TABLE II
BN TEST SETS

development sets. In addition, less frequent tests were per-
formed on “evaluation” sets, in order to validate gains from
various modeling approaches. Tables I and II list the character-
istics of the test sets that were used for the experimental results
reported in this paper.

III. BBN SYSTEM HIGHLIGHTS

A. Decoding Architecture

The BBN system uses a multipass decoding strategy in which
models of increasing complexity are used in successive passes
in order to refine the recognition hypotheses [6]. The first pass
is a fast-match search [7] performed in the forward direction,
using a bigram language model and a composite within-word
triphone hidden Markov model (HMM). Tying of the HMM
states is performed via a linguistically guided decision tree for
each phoneme and state position. In one configuration, all tri-
phones of a given phoneme share the same set of Gaussian com-
ponents, while in another, the sharing of Gaussians is done for
each phoneme and state position. In both cases, the mixture
weights are shared based on the decision tree clustering. We
use the terms “phonetically tied mixture” (PTM) and “state tied
mixture” (STM) to refer to these two types of models, respec-
tively. The output of the forward pass consists of the most likely
word ends per frame along with their partial forward likelihood
scores. This set of choices is used in a subsequent backward pass
to restrict the search space, allowing for less expensive decoding
with more detailed acoustic and language models.

The backward pass is a time-synchronous beam search,
employing an approximate trigram language model and
within-word quinphone State clustered tied mixture (SCTM)
HMMs. State tying in the SCTM model is determined based on
a linguistically guided decision tree, similar to the PTM/STM.
In the SCTM case though, the decision tree is grown in two
steps. In the first step, a high threshold on the state cluster oc-
cupancy counts is set, and the resulting state clusters determine
the sharing of the Gaussian components (codebooks). In the
second step, each codebook cluster is divided further by the
decision tree, using a lower occupancy threshold, to determine
the sharing of the mixture weights. The output of the backward
pass is either a hypothesis N-best list, or a word lattice.
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The decoding is completed with a rescoring pass, operating
on the N-best/lattice. This makes use of between-word quin-
phone SCTM acoustic models and more accurate language
models (e.g., fourgrams or part-of-speech smoothed trigrams).

It should be noted that each of the above three passes can
read in acoustic feature and/or model transformations that are
performed on the fly, on a per speaker basis, for the purpose of
speaker adaptation. Thus, a full decoding experiment typically
runs in an iterative manner, interleaving speaker adaptation with
recognition in order to provide the best output.

The decoding process, when operating as a single system, is
repeated three times. First, speaker-independent (and gender-in-
dependent) acoustic models are used in the decoding to generate
hypotheses for unsupervised adaptation. Then, the decoding is
repeated but with speaker-adaptively trained acoustic models
that have been adapted to the hypotheses generated in the first
stage. The last decoding is similar to the second, but acoustic
models are adapted to the second stage’s hypotheses using a
larger number of regression classes.

B. RT02 Baseline Systems

TheBBNRT02baselineCTSsystem[8]usedvocal tract length
normalization (VTLN) [9] operating on LPC-smoothed spec-
trum, producing 14 cepstral coefficients plus normalized energy
perframeofspeech(25-mswindow,10-msframestep).Meanand
covariance normalization were applied to the cepstra on a conver-
sation side basis, to reduce variability due to the channel/speaker.
The base frame features were augmented with their first, second,
and third time derivatives to produce a 60-dimensional feature
vector that was then projected to 46 dimensions using linear dis-
criminant analysis (LDA). A global maximum-likelihood linear
transform (MLLT) [10] was applied to the resulting features in
order to make them more suitable for modeling with diagonal
covariance Gaussian distributions. Gender-dependent (GD) be-
tween word quinphone SCTM models were estimated from the
acoustic trainingdatausingmaximumlikelihood(ML),bothwith
and without speaker adaptive training (SAT) [11]. A special form
ofSATwasemployed, inwhichthematrixapplied to theGaussian
mean vectors was diagonal. This had been shown previously to
work as well as using a full matrix. In addition to the ML models,
a set of maximum mutual information (MMI) models was esti-
mated, using N-best lists to represent the set of confusable hy-
potheses.TheaveragenumberofGaussiansinaGDSCTMmodel
wasabout422k.Compoundwordswereused inbothacousticand
language model training. A trigram LM of about 17 M trigrams
was used in recognition. In addition, a part-of-speech smoothed
trigram LM was used in N-best rescoring.

The BBN RT02 baseline BN system was based on the 1999
10 RT Hub-4 BN system [12] with small changes in the auto-
matic segmentation procedure. GD, band-dependent (BD), be-
tween-word SCTM models were estimated with ML (featuring
approximately 256 k Gaussians per model). No SAT was used.
A small set of compound words were included in the acoustic
and language model training. A trigram LM with 43 M trigrams
was used for both N-best generation and N-best rescoring. To
fulfill the run-time requirement of 10 RT, the BBN system
used shortlists for reducing Gaussian computation, took advan-
tage of memory caching during the Gaussian computation in

the forward pass, and spread the grammar probability to each
phoneme of a word to allow effective pruning with tighter beams
[13].

Recognition results using both BBN RT02 systems were se-
lected as the baselines to measure progress in reduction of the
WER for the EARS program. For the BN task, the baseline
WER, measured on the Progress Test, was 18.0%. For the CTS
task, instead of using the manual segmentation of the test ma-
terial that had been the norm for all pre-EARS CTS research
programs, we used an automatic segmentation generated by an
algorithm developed at MIT Lincoln Laboratory that was avail-
able at that timeframe. The CTS baseline WER was 27.8%.

C. System Improvements

With the beginning of the EARS program, a number of im-
provements were incorporated to the BBN system. In this sec-
tion, we highlight the most notable improvements, and give re-
sults that show their effect on recognition accuracy.

1) Automatic Segmentation: One of the first priorities for
the BBN/LIMSI team in the EARS program was the implemen-
tation of a robust automatic audio segmenter for CTS. Recall
that CTS recordings are done in stereo, with each conversation
side stored in a separate channel. One could try to segment the
two sides independent of each other. However, this approach
often suffers from poor segmentation performance in regions of
crosstalk due to the leakage of speech from one channel into
the other during the recording. To avoid this problem, BBN de-
veloped a segmentation procedure that processes both sides of
the conversation simultaneously [14]. The algorithm uses an er-
godic HMM with four states, corresponding to the four combi-
nations of speech or nonspeech events on each side of the con-
versation. The observations of the HMM consist of joint cep-
stral features from both conversation channels. Experiments on
the CTS Eval02 test set show that this segmentation procedure
degrades WER only by 0.2%–0.4% absolute compared to using
the manual segmentation.

2) Speaker Adaptive Training: Two SAT improvements
were developed during the EARS program. The first one
was to use constrained maximum likelihood linear regression
(CMLLR) [15] adaptation in training, with one transformation
per speaker. The computational advantage of this method, as
described in [15], is that one can apply the speaker transforms
to the observations and then build a regular system in the
transformed feature space. Both ML and MMI estimation can
be used to train the final models. CMLLR-SAT was found to
be better than SAT with diagonal transforms on CTS data, and
it also provided a gain in the BN system. The second SAT im-
provement, called heteroscedastic linear discriminant analysis
(HLDA)-SAT [16], was motivated from initial experiments
that showed an improvement in the HLDA objective function,
when the input feature space was normalized to some extend
in order to reduce interspeaker variability (e.g., through the
use of VTLN). In HLDA-SAT, the base cepstra and energy are
transformed for each training speaker in order to maximize
the likelihood of the data with respect to a canonical model.
This model has the same structure as the one that is typically
used in HLDA estimation, i.e., it consists of a single full
covariance Gaussian for each codebook cluster. Starting with
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TABLE III
SAT RESULTS ON BN DEV03 TEST SET, USING ML MODELS

TRAINED ON 140 h (3-GRAM LM)

speaker-dependent transforms set to the identity matrix, the
procedure runs a few iterations of interleaved transform and
model updates. The resulting canonical model is then used in
the transformed space in order to estimate the global HLDA
projection. After that, a typical CMLLR-SAT is carried away.

HLDA-SAT was shown to provide a significant gain in the
BN system, on top of the gain from CMLLR-SAT, as shown in
Table III. HLDA-SAT was also applied to CTS data, but with no
significant gain over the CMLLR-SAT CTS baseline. We believe
that this is due to the fact that the CTS baseline already applied
speaker/channel normalization techniques (VTLN, covariance
normalization) on the observations prior to the estimation of
the global HLDA projection.

It is worth mentioning that the use of HLDA-SAT eliminated
the need to train gender-dependent and band-dependent acoustic
models. A single HLDA-SAT acoustic model was found to be
as good as GD, BD HLDA-SAT models in BN experiments.

3) Increasing LM Size: Early in the development of the
EARS BBN system, it was found that there was a gain in
recognition accuracy from using unpruned trigram or fourgram
LMs. Based on that result, a procedure was designed that al-
lowed efficient training of a very large LM and fast usage of the
stored LM statistics for exact N-best rescoring. The procedure
enumerates the set of unique -grams found in the N-best
list, and consults the stored LM sufficient statistics in order to
compute a small LM that covers all the observed -grams. A
0.4%–0.5% absolute gain was measured on both CTS and BN
data from this improvement.

4) Adding More Acoustic Training Data: One of the largest
improvements during the development of the EARS system
was due to the use of a large acoustic training corpus. In CTS,
the quickly transcribed data was automatically aligned with
the audio using a version of the BBN system, and the resulting
segments were included in both acoustic and language model
training. Addition of the new data was done in two increments.
In the first phase, approximately 80 h of Switchboard-II data
were included in both acoustic and language model training,
improving the CTS ML baseline from 27.8% to 25.8% (as
measured on the Switchboard-II and Cellular portion of the
2001 Hub-5 Evaluation test set). During the second phase of
the EARS program, a substantial amount of Fisher data was
collected and transcribed, resulting in about 1930 h of speech
(after the BBN post-processing). Including the Fisher data to
the BBN AM and LM training resulted in additional gains, as
shown in Table IV. Note that the WER improved on both the
Switchboard and Fisher portions of the Eval03 test set, even
though only Fisher data were added in training.

In BN, the use of the additional closed-captioned audio re-
quired light supervision methods. The closed captions were first

TABLE IV
ADDING 1930 h OF FISHER DATA TO 370 h OF SWITCHBOARD ACOUSTIC

TRAINING. RESULTS ON CTS EVAL03 TEST SET, WITH ADAPTATION

TABLE V
INCREASING AMOUNT OF BN TRAINING THROUGH LIGHT

SUPERVISION. RESULTS ON BN DEV03 TEST SET, WITH

ADAPTED HLDA-SAT MODELS (4-GRAM LM)

normalized and used to produce a biased LM. A decoding was
performed on the audio data using this targeted LM, and the
resulting 1-best hypotheses were aligned with the closed cap-
tions to identify regions of agreement. Portions of the align-
ment with three or more consecutive word matches were ex-
tracted, along with the corresponding audio, to produce the extra
acoustic training material. The procedure is described in more
detail in [4]. One could argue that the light supervision method
should not provide any significant improvements, since it ex-
tracts segments where the recognition output matches the avail-
able closed captions and, therefore, there are no errors to fix.
This argument would be valid if a generic LM was used in recog-
nition. Using a language model biased to the closed captions
supports a weak acoustic model, and makes possible the accu-
rate recognition of difficult audio portions, where recognition
errors would normally occur with a generic LM.

The effect of increasing the acoustic training corpus in this
way is shown in Table V, where it can be seen that the best re-
sult is obtained with 1700 h of training data, extracted by run-
ning light supervision on closed-captioned audio from all three
TDT databases, as well as from BN material collected in 2003.
Additional results were obtained by increasing the amount of
training up to about 3000 h. However, no significant WER re-
duction was observed from this extra data.

It is important to note that, even though no special mod-
eling techniques were needed in order to take advantage of the
additional acoustic training material (we simply increased the
number of states and/or Gaussians per state in the HMM), signif-
icant speed enhancements were necessary in the acoustic model
estimation. In particular, to minimize input/output operations
from/to the network file server, an effort was made to reduce
the size of the cepstra and probabilistic frame-to-state alignment
(label) files so that these files can easily fit on the local disk of
each compute node in the batch queue. Cepstra files were re-
duced in size by a factor of 4, via linear quantization techniques.
Label files were pruned aggressively to achieve a three-fold re-
duction in size. In addition, a single set of label files were used
for training all three models (STM, within-word SCTM, and be-
tween-word SCTM) needed in our multipass decoding strategy.
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TABLE VI
EFFECT OF DISCRIMINATIVE TRAINING OF ACOUSTIC MODELS.

ADAPTED DECODING RESULTS

These file size reductions allowed distribution of the training
data to each compute node, thereby enabling fast parallel pro-
cessing with minimal network access. Further training speedups
were obtained by implementing certain approximations in the
Gaussian splitting initialization algorithm, such as splitting a
larger number of Gaussian mixture components in each EM iter-
ation, and partitioning the samples associated with a given code-
book HMM state in regions in order to perform splitting within
a region. More details can be found in [17].

5) Discriminative Training: Recall that the BBN RT02
CTS system used MMI training [18], but based on N-best lists
rather than word lattices. During the first year of the EARS
program, BBN implemented lattice-based MMI training, and
obtained significant WER reductions, both on CTS and BN
data, as shown in Table VI. The CTS acoustic models used
in Table VI were trained on 2300 h of speech, while the BN
models used approximately 1700 h.

During the second phase of EARS, minimum phoneme error
(MPE) [19] training was also implemented. A particular form of
MPE training, in which the objective function is smoothed with
an MMI prior [20] was found to give optimal results. MPE-MMI
resulted in 0.5% absolute gain on the CTS data, but no gain on
the BN corpus compared to MMI. The degradation from MPE
on the BN data might be due to overfitting, as the BN system
used more Gaussians per training hour of speech than the CTS
system, and MPE is known to be more sensitive to overfitting
than MMI estimation.

Both MMI and MPE training perform forward–backward
training passes on word lattices annotated with unigram language
model probabilities. Using a weak language model during the
discriminative training process is important, as described in [18],
because a stronger language model trained on the same acoustic
training data would produce excessive bias toward lattice paths
that correspond to the reference transcript. BBN investigated an
alternative approach, termed “held-out MPE” training [17], in
which an initial MMI acoustic model was first trained on a subset
of the CTS training data (800 h), and the remaining (1500 h) was
treated as held-out set. The held-out data were also excluded
from the training of a trigram LM. Word lattices were generated
on the held out set using the initial acoustic model and the trigram
LM, and a conventional MPE training was carried out on the
(trigram) lattices. The idea was to perform MPE training in a
scenario that simulated the recognition process on unseen data.
Although held-out MPE did not improve recognition accuracy
over regular MPE training, it performed equally well while using
significantly smaller acoustic models.

6) Long-Span Features: Another research direction toward
maximizing the benefit from the large acoustic training corpus
was the design and estimation of feature transforms that incor-
porate large acoustic context information. It is well known that

TABLE VII
ADAPTED RECOGNITION RESULTS ON THE CTS DEV04 TEST SET, FOR

COMPARING MODELS TRAINED USING LONG SPAN FEATURES WITH

MODELS TRAINED USING FEATURE DERIVATIVES

humans rely heavily on long acoustic context in order to rec-
ognize speech. HMMs, on the other hand, process speech on
a frame to frame basis, with each frame typically spanning a
range of 70–90 ms (through the use of time derivatives on cep-
stra and energy terms). Instead of simply augmenting the base
frame features with their time derivatives prior to LDA, BBN
explored the use of frame concatenation. Under this scheme,
the observation vector at frame position is constructed by first
concatenating the energy and cepstral coefficients from frames

, and then projecting the
spliced feature vector to a lower dimensional space via LDA. Up
to 30 frames of context were considered. Significant WER re-
ductions were obtained by incorporating context from 15-frame
concatenation, as seen in Table VII.

However, extending the context to longer frame spans using
standard LDA MLLT techniques was found problematic, due
to the suboptimality of the LDA criterion. Thus, a better pro-
cedure was developed that employed discriminative estimation
of the large projection matrix, using the MPE criterion. MPE-
HLDA [21] proved to be more robust than LDA, resulting in
small but consistent WER improvements of about 0.3%–0.4%
absolute on the CTS data.

Long span features were also applied to the BN domain but
provided much smaller benefit. As a result, they were not in-
cluded in the final BBN RT04 BN evaluation system.

7) Miscellaneous Decoding Improvements: Several de-
coding optimizations were implemented during the EARS
program to ensure the decoding time to be within the 10 RT
or 20 RT limits. The typical PTM model was replaced in the
fast-match pass by a more detailed STM model, which, not only
resulted in faster recognition (through tighter pruning), but also
helped reduce the WER in the final rescoring pass. In addition,
an improved method for reducing the Gaussian computation
was implemented, based on [22]. Speaker adaptation was sped
up significantly by using an approximation to the ML criterion,
in which all dimensions of the observation vectors are assumed
to have equal variance. All these optimizations are described in
more detail in [17].

IV. LIMSI SYSTEM HIGHLIGHTS

A. From BN to CTS and Back to BN

The first CTS system developed at LIMSI used the same basic
components as the LIMSI BN system [23]. Given the level of de-
velopment of our BN models, it was of interest to benchmark the
system on conversational telephone data without any modifica-
tions. These first experiments were done using the NIST Hub5
2001 test set (Eval01). Using both the BN acoustic and language
models results in a word error rate of 51%. Keeping the same
word list (the out of vocabulary (OOV) rate of the Eval01 data
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is under 1% with the BN wordlist) and retraining the language
model on the transcriptions of 230 h of Switchboard (SWB) data
reduces the word error rate to 47.0%. Using both acoustic and
LM models trained on the SWB data reduces the word error rate
to 36%. This initial experiment demonstrates that a large part
of the mismatch between the BN system and the SWB data is
linked to the acoustic models, and that simply training models
on the SWB data with our BN recipes was not enough to achieve
good performance on conversational data.

Over the years of the DARPA EARS program, the CTS
system was continually improved by incorporating a number
of important features, in order to deal with the specificities of
conversational telephone speech. The first set of additional fea-
tures were VTLN, multiple regression class MLLR adaptation,
neural-network language model, and consensus decoding with
pronunciation probabilities. VTLN, which had not helped in the
LIMSI BN transcription system, quite significantly improved
the performance of the CTS system. Given that there is only
a single speaker in each conversation side, on average there is
more data available for MLLR adaptation, which is, therefore,
more efficient with multiple regression classes. While for the
BN task it is relatively easy to find a variety of task related
texts, for conversational speech, since the only available source
is the transcripts of the audio data, the generalization offered
by a continuous space neural network LM [24] is of particular
interest. Due to the higher word error rates on CTS data,
lattice rescoring with consensus decoding and pronunciation
probabilities performed significantly better than standard MAP
decoding. The combination of these additional features reduced
the WER to about 26% on the Eval01 test data (RT02 system).

Further improvements were achieved by incorporating
gender-dependent VTLN, discriminative training (MMI),
multiple front-ends, multiple phone sets, improved multipass
decoding, and increasing the acoustic training data to 430 h,
resulting in a WER of 21% (RT03 system, LIMSI component
only).

A main factor for the RT04 evaluation was the availability of
2300 h of CTS data, mostly from the Fisher collection. Since
the RT04 test data was also from the Fisher collection, a new
set of development data (Dev04) was used to measure progress.
Table VIII summarizes the main improvements in the LIMSI
CTS system from RT03. An absolute error reduction of 1.7%
was due to improved acoustic modeling by incorporating fea-
ture optimization (MLLT) and speaker adaptive training (SAT).
An overall improvement of about 2.5% was obtained using the
Fisher data after training better (and larger) acoustic (up to 1 mil-
lion Gaussians) and language models, and updating the dictio-
nary. Modifications to and incorporating acoustic model adap-
tation in a fast decode led to a gain of 0.4% while reducing
the computation time by a factor of 6. Experiments using mul-
tiple phone sets gave an additional small improvement (see Sec-
tion IV-E).

The advances made for the CTS task were ported to the BN
task. The training techniques (MLLT, SAT, MMI), improved
adaptation (CMLLR, MLLR), neural network language mod-
eling, and consensus decoding with pronunciation probabili-
ties were found to carry over. The only exception was VTLN,
which did not consistently improve BN performance. In addi-

TABLE VIII
SUMMARY OF IMPROVEMENTS TO THE LIMSI CTS COMPONENT SYSTEM

FROM RT03. ABSOLUTE WER REDUCTIONS ON THE DEV04 SET AND

OVERALL RELATIVE WORD ERROR REDUCTION

tion lightly supervised training was used to increase the quan-
tity of BN audio training data. Although, at LIMSI, we did not
develop stand alone BN systems for the evaluations, we esti-
mate the annual performance improvements to be on the order
of 20% relative while respecting the decoding time limitations
(under 10 RT).

B. Audio Segmentation and Acoustic Modeling

The LIMSI segmentation and clustering for BN is based on
an audio stream mixture model [23], [25]. First, the nonspeech
segments are detected and rejected using GMMs representing
speech, speech over music, noisy speech, pure-music and other
background conditions. An iterative maximum-likelihood seg-
mentation/clustering procedure is then applied to the speech
segments. The result of the procedure is a sequence of nonover-
lapping segments with their associated segment cluster labels.
The objective function is the GMM log-likelihood penalized by
the number of segments and the number of clusters, appropri-
ately weighted. Four sets of GMMs are then used to identify
telephone segments and the speaker gender.

The acoustic models for BN and CTS use the same model
topology and are constructed in a similar manner (the VTLN
step is skipped for BN), depicted in Fig. 1. Over the duration of
the EARS program, different acoustic feature vectors and phone
sets have been explored, with two aims in mind: optimizing
model accuracy for a given model set and developing acoustic
models that combine well for within and cross-site adaptation
and combination.

Each context-dependent phone model is a tied-state, left-to-
right CD-HMM with Gaussian mixture observation densities.
The acoustic feature vector has 39 components comprised of
12 cepstrum coefficients and the log energy (estimated on a
0–8 kHz band (or 0–3.5 kHz for telephone data), along with
the first- and second-order derivatives. Two sets of gender-de-
pendent, position-dependent triphones are estimated using MAP
adaptation of SI seed models (for each bandwidth for BN). The
triphone-based context-dependent phone models are word-in-
dependent but word position dependent. The first decoding pass
uses a small set of acoustic models with about 5000 contexts
and tied states. Larger sets of acoustic models covering 30 k–40
k phone contexts represented with a total of 11.5 k–30 k states
are used in the latter decoding passes. State-tying is carried out
via divisive decision tree clustering, constructing one tree for
each state position of each phone so as to maximize the like-
lihood of the training data using single Gaussian state models,
penalized by the number of tied-states [25]. There are about 150



MATSOUKAS et al.: ADVANCES IN TRANSCRIPTION OF BROADCAST NEWS 1547

Fig. 1. LMSI CTS acoustic model training procedure.

questions concerning the phone position, the distinctive features
(and identities) of the phone and the neighboring phones.

VTLN is a simple speaker normalization at the front-end
level which performs a frequency warping to account for dif-
ferences in vocal tract length, where the appropriate warping
factor is chosen from a set of candidate values by maximizing
the test data likelihood based on a first decoding pass tran-
scription and some acoustic models (some sites, e.g., BBN,
use GMMs with no need for transcriptions). Following [26],
the Mel power spectrum is computed with a VTLN warped
filter bank using a piecewise linear scaling function. We found
the classical maximum-likelihood estimation procedure to be
unsatisfying, as iterative estimates on the training data did
not converge properly, even though a significant word error
reduction on conversational speech was obtained. This problem
can be attributed to the fact that the VTLN Jacobian is simply
ignored during the ML estimation, although the normalization
of the feature variances should largely compensate for this ef-
fect. Properly compensating the VTLN Jacobian would require
building models for each possible warping value and would
double the computation time to estimate the warping factors,
we therefore investigated changing the procedure to avoid the
Jacobian compensation.

The VTLN warping factors are still estimated for each con-
versation side by aligning the audio segments with their word
level transcription for a range of warping factors (between 0.8
and 1.25), but we use single-Gaussian gender-dependent models
to determine the ML warping factor. By using gender-depen-
dent models (as proposed in [27]) the warping factor histogram
becomes unimodal and is significantly more compact. This ef-
fect and the use of single Gaussian models (as proposed in [28])
significantly reduces the need for Jacobian compensation and
makes the estimation procedure very stable, reducing the abso-
lute WER by 0.4% after adaptation [29].

C. Training on Large BN Data Sets

One of the limitations in obtaining acoustic model training
data is the high cost of producing manual transcriptions. Since
several hundred hours of untranscribed audio data were avail-
able from the TDT corpora for which closed captions were also
available, we used a semiautomatic approach [3] to generate

Fig. 2. Sample rewrite rules to correct the alignment of the closed captions
with the recognizer hypotheses. On the left, the rules correct recognition errors
(the caption is correct), and on the right, the recognizer is correct.

training transcripts for the TDT4 portion of the data. The basic
idea is to use a speech recognizer to generate a hypothesized
transcription which is aligned with the closed captions. When
the recognizer output and the closed captions agree, it is as-
sumed that these words do not need to be corrected. If there
is a disagreement, the recognizer output is given first (if there
is one) followed by the closed caption text given in parentheses
(all in uppercase letters).

In our first usage of the TDT4 data for acoustic training, only
audio segments where the hypothesized automatic transcription
“agreed” with the associated aligned closed captions were used.
Agreement means that the word error between the hypothesis
and the caption was under 20% after applying some normal-
ization rules to account for frequent, but inconsequential, er-
rors. About 120 rules were used to correct some errors in the
merged transcriptions after alignment. Fig. 2 shows two sets of
example rules, one choosing the closed caption (within paren-
theses) as the correct answer, and the second set choosing the
automatic transcription. The left part of the figure shows rules
to correct some common recognition errors, whereas the rules
on the right correspond to differences in the spoken and written
forms. These rules are used to automatically decide (for each
word sequence in uppercase) between the recognizer output and
the closed caption, in order to get a single transcription usable
for acoustic model training.

An alternative method for lightly supervised acoustic model
training was also explored using consensus networks to pro-
vide more flexibility in aligning the system word lattice with the
associated closed captions, thus potentially keeping additional
training data [30].

D. Neural Network Language Model

Connectionist LMs [31], [32] have been explored for both
the BN and CTS tasks. The basic idea is to project the word
indices onto a continuous space and to use a probability esti-
mator operating on this space. Both tasks are performed by a
neural network. This is still an -gram approach, but the -gram
LM probabilities are “interpolated” for any possible context of
length instead of backing-off to shorter contexts. Since the
resulting probability densities are continuous functions of the
word representation, better generalization to unknown -grams
can be expected.

For BN, the neural network LM was trained on a subset of
about 27 M words of data (BN transcriptions, TDT2, TDT3, and
TDT4 closed captions and four months of CNN transcripts from
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2001). The neural network LM is interpolated with a 4-gram
backoff LM built by merging nine component models trained
on, in addition to the above materials, commercially produced
BN transcripts (260 M words); archived CNN web transcripts
(112 M) and newspaper texts (1463 M words). Lattice rescoring
with this NN LM is done in about 0.1 RT. The perplexity of
the Dev04 data is 109.9 for the 4-gram back-off LM alone and
105.4 when interpolated with the neural net LM. This results in
an absolute word error reduction of 0.3% for the LIMSI com-
ponents used in integrated BBN/LIMSI systems.

LIMSI has been using the neural network LM for CTS since
the NIST RT02 evaluation. Although the word error rate of the
complete system has decreased from 24% to under 19% due
to the other improvements in the models and to the decoding
procedure, the neural network LM always achieved a consis-
tent word error reduction of about 0.5% absolute with respect
to a carefully tuned 4-gram back-off LM [32]. In the final in-
tegrated RT04 BBN/LIMSI system for CTS described next, all
three LIMSI components use the neural network LM. The neural
network LM was trained on all of the CTS acoustic training
data transcripts (27 M words) and interpolated with a 4-gram
back-off LM trained on all the available data.

E. Alternative Phone Units

In an attempt to model some of the different speaking
styles found in conversational telephone speech, we explored
the use of pronunciation variants with probabilities, alternate
phone sets, and syllable-position-dependent phone models.
In addition to the standard 48 phone set used in the LIMSI
CTS and BN systems [33], two of the alternate sets change the
number of phones in a word. The reduced phone set [34], splits
some of the complex phones into a sequence of two phones
[35], thereby increasing the number of phones per word and
potentially better matching slow speech. In the extended phone
set, some selected phone sequences are mapped into a single
unit in an attempt to better model heavily coarticulated and fast
speech. These pseudophones can represent consonant clusters,
vowel–liquid or vowel–nasal sequences. The expanded phone
set leaves the number of phones unchanged, introducing syl-
lable-position-dependent models for some phones which may
have significantly different realizations in different syllable
positions. Each model set has about 30 k tied states, with 32
Gaussians per state. The models based on the extended phone
set are somewhat larger, with around 50 k states.

The recognition results on the CTS Dev04 data without MMI
training are given in Table IX. The first three decodes use only
the original phone set and result in a 17.5% word error rate after
two passes of MLLR adaptation using two regression classes
(speech and nonspeech) and four phonemic regression classes,
respectively. The word error rates with the other model sets are
given in the lower part of the table. These decodes are preceded
by a four class MLLR adaptation with the same second-pass
hypothesis. Comparable results are obtained for the three model
sets, even though the extended set appears to have the highest
error rate (17.8%).

No phone set was found to perform best for a majority of
speakers. The standard and reduced phone sets each were best

TABLE IX
WORD ERROR RATES ON THE CTS DEV04 DATA FOR THE FOUR PHONE SETS

for 1/3 of the speakers, with the remainder divided between the
expanded and extended phone sets. Listening to portions of the
data from the speakers who had the lowest word error rates with
the extended phone set, it appears that most of these speakers
have a casual speaking style, with a tendency to slur some of
their words. Despite our expectations that the reduced phone
set would favor slow speakers, no correlation was found with a
global estimate of the speaking rate in words per minute. Com-
bining the models outputs with Recognizer Output Voting Error
Reduction (ROVER) [36] reduces the WER to 16.8% showing the
models to be somewhat complementary. The gain of the com-
bined result was quite large for some speakers (4% absolute)
with no large loss for any speaker [35], and with no notable im-
provement for speakers with slow or fast speech. Models based
on the original and reduced phone sets were used in the LIMSI
components in the combined BBN/LIMSI systems.

F. Decoding Architecture

Decoding is usually carried out in multiple passes for both
the CTS and BN tasks where the hypothesis of one pass is used
by the next pass for acoustic model adaptation. For each de-
coding pass, the acoustic models are first adapted using both
the CMLLR and MLLR adaptation methods. MLLR adaptation
relies on a tree organization of the tied states to create the regres-
sion classes as a function of the available data. This tree is built
using a full covariance model set with one Gaussian per state.
Then, a word lattice is produced for each speech segment using
a dynamic network decoder with a 2-gram or a 3-gram language
model. This word lattice is rescored with a 4-gram neural net-
work language model and converted into a confusion network
(using the pronunciation probabilities) by iteratively merging
lattice vertices and splitting lattice edges until a linear graph is
obtained. This procedure gives comparable results to the edge
clustering algorithm proposed in [37], but appears to be signif-
icantly faster for large lattices. The words with the highest pos-
terior in each confusion set are hypothesized along with their
posterior probabilities.

For the CTS data, the first hypothesis is also used to estimate
the VTLN warp factors for each conversation side. When the
computation time budget is limited (cf. Section VII), Gaussian
short lists and tight pruning thresholds are used to keep decoding
time under 3 RT.

V. NOTEWORTHY RESEARCH IDEAS

Besides the techniques described in the previous sections,
BBN and LIMSI explored several other ideas that seemed
promising, but did not become part of the final evaluation
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systems because they did not improve recognition accuracy
within the allotted time frame.

One such idea was the discriminative initialization of Gaus-
sians in the HMM. In current state of the art systems, discrimi-
native HMM training takes place after the Gaussians have been
already estimated via several iterations of ML training. Under
ML estimation, Gaussians in a given HMM state are positioned
such that they cover the acoustic data aligned to that state. The
allocation of Gaussians is performed independently for each
HMM state, so no particular attention is devoted to optimizing
the decision boundary between different HMM states. More-
over, although significant improvements in the ML criterion
can be obtained by increasing the number of mixture compo-
nents for states with lots of data, this gain typically comes from
more detailed modeling of the interior region of the state un-
derlying distributions, which may not be that useful from a dis-
criminative point of view. In fact, having these extra components
in the state mixtures could lead to overfitting after discrimina-
tive training, causing poor generalization on unseen data. Nor-
mandin [38] showed that by performing the Gaussian splitting
initialization of state mixture distributions based on MMI, rather
than ML, significant improvements in recognition accuracy can
be achieved. A similar initialization procedure was used in the
BBN system, but although the MMI criterion improved signifi-
cantly on the training data, the WER on the unseen test set de-
graded. At that time, we suspected that the degradation could be
explained by MMI’s weak correlation with WER. Indeed, mea-
surements on the training data showed that improvements in the
MMI criterion did not always correspond to improvements in
the WER. We believe that better results can be obtained with
MPE, due to its strong correlation with WER.

Another area of exploration was the more accurate modeling
of speech trajectories. The “conditional independence assump-
tion” is often presented in the literature as a fundamental weak-
ness of the HMM. More specifically, the assumption is that
observation probabilities at a given HMM state depend only
on that state and not on previous states or observations. This
is clearly untrue for speech observations, so researchers have
tried for many years to overcome this limitation of the HMM
through a variety of methods. The easiest and most successful
technique thus far has been to incorporate acoustic context in-
formation, both through the use of context-dependent HMM
states, as well as by extending the observation vector to in-
clude differentials of base energy and cepstral coefficients com-
puted over a window of time (typically 70–90 ms). Other tech-
niques have been the so called “segmental models,” which at-
tempt to model explicitly the dependence of observations within
a phoneme or subphoneme segment. As a compromise between
the standard HMM and a segmental model, we explored the
“convolutional trajectory model,” which assumes that the ob-
servations within a phoneme segment are formed by adding the
outputs of two independent stochastic processes: a segment-
based process, that generates smooth phoneme trajectories, and
a frame-based process, that generates small perturbations. In the
convolutional model, the first process is modeled by a polyno-
mial trajectory model, as in [39], while the residual is modeled
by an HMM. The overall segment likelihood is the convolution
of the (hidden) trajectory likelihood and the HMM likelihood

of the residual between the trajectory and the actual observa-
tions. In the relatively short amount of time devoted to this re-
search idea, we were able to develop a convolutional model that
matched the standard HMM in terms of recognition accuracy
performance on English CTS data. We still believe that there is
promise in this research direction.

Aside from the aforementioned ideas, there were a few that
were considered, but not tried, mostly due to limited amount
of time. One such idea was the use of discriminative criteria
in the decision tree-based HMM state clustering. Most systems
today use a decision tree to group the HMM states into clus-
ters for more robust parameter estimation. States at a given node
(cluster) in the tree are divided into subclusters by asking binary
linguistic questions about the phonetic context of the states; the
question that splits the node with the largest increase in likeli-
hood is selected, and the same process is repeated recursively
on the descendant nodes, until a stopping criterion is met. We
have found that the growing of the decision tree can be modi-
fied to allow both node splits and merges, resulting in significant
likelihood increase, but with no improvement in recognition ac-
curacy. This can be attributed to the fact that maximizing likeli-
hood does not always guarantee improved performance on un-
seen data. Using a discriminative criterion, such as MPE, might
provide better results.

The discriminative training of language models was another
area of investigation that was in our plans but never realized.
This is a particularly challenging area, because in standard

-gram-based LMs, the model parameters are not shared and
there are tens or hundreds of millions of -grams that need
to be estimated. If a small amount of training data is used
for discriminative training, such as the acoustic training data,
overfitting is bound to occur. For this reason, the idea of dis-
criminative training is more appealing in the case of the neural
network LM, where the number of independent parameters is
much smaller compared to a standard LM, and the mapping of
the -grams to a continuous space enables the exploration of
gradient-based techniques.

VI. INTEGRATION OF BBN AND LIMSI COMPONENTS

ROVER has been demonstrated as an effective method for
combining different systems to achieve a WER that is signifi-
cantly better than the result obtained by any of the individual
systems. ROVER requires running two or more systems inde-
pendently and then combining their outputs using voting. Due
to the compute constraints enforced under the EARS program,
combining a large number of different systems using ROVER
was quite challenging. Therefore, we explored novel combina-
tion strategies to effectively combine multiple BBN and LIMSI
systems.

A. Cascade versus ROVER

We explored most of the combination strategies by com-
bining English CTS systems from BBN and LIMSI. As shown
in Fig. 3(a), the baseline systems from both sites consisted of
three recognition stages. The final WERs on the Eval01 test
set of BBN’s and LIMSI’s (stand-alone) systems are 21.6%
(running at 15 RT) and 21.1% (at 20 RT), respectively.
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Fig. 3. Comparing Cascade and ROVER combination. (a) ROVER. (b) Cascade using two regression classes in the adaptation of the BBN system. (c) Cascade
using eight regression classes in BBN adaptation.

Compute time was measured on a 2.8-GHz Pentium 4 Xeon
CPU. The ROVER of these two results produced a WER of
20.3% that requires a total compute time of 35 RT.

In order to reduce the computation, a “cascade” configura-
tion was explored. As shown in Fig. 3(b), (c), instead of the
“parallel processing” nature of ROVER, the decoding process is
sequential in the “cascade” architecture. The BBN system took
care of the very last decoding stage after adapting the acoustic
models to the hypotheses generated by the second stage of the
LIMSI system. When using only two regression classes during
the adaptation of the acoustic models, we obtained a WER of
20.8%, while the overall running time was only 20 RT as
shown in Fig. 3(b).

We have found that cross-site adaptation, i.e., adaptation of
one site’s models with supervision based on the hypotheses
generated by another site’s system, typically requires larger
number of regression classes. In fact, when using eight re-
gression classes, the WER was reduced to 19.8% as shown in
Fig. 3(c). It was clear that the “cascade” configuration outper-
formed the ROVER combination in both WERs (19.8% versus
20.3%) and compute time (20 RT versus 35 RT).

B. Combining Cascade and ROVER

In Section VI-A, the effectiveness of cascading recognition
stages from different systems to exploit the gain from com-
bining different systems without a significant increase in the
compute time was demonstrated. Since we are “cross-adapting”
one system to another in the cascade configuration, we wanted

to evaluate whether performing a ROVER on the cross-adapted
recognition hypothesis with the hypothesis used for adaptation
results in any additional gain. This is depicted in Fig. 4. It is
interesting to see that ROVER produced further improvement
only in the case of using two regression classes for cross-adap-
tation (20.2% versus 20.8%).

C. Lattice versus Full Decode

Acoustic rescoring of word lattices is often used internally
in a multiple-pass single site system to speed-up the decoding
without a significant increase in the word error rate. The same
approach can be envisioned for system combination.

A problem posed by cross-system lattice rescoring is that the
lattices from one system must be transformed to be compatible
with the vocabulary of the other system. One of the main factors
that affects the recognizer vocabularies is the word tokeniza-
tion used by each system, in particular with regards to the use
of multiword sequences (often referred to as compound words)
in order to improve better model reduced pronunciations and
common contracted forms. To handle such differences, system
specific sets of rules need to be developed to convert the lattices
properly. Another issue with lattice rescoring is that the second
decode is restricted to what the first system already explored.
While this is an advantage for speedup, it may also reduce the
possible gain of combination by making the second decode quite
dependent on the first one. With the cascade style combination,
there is even more dependency between the two decodes since
the acoustic models used in the second decode are adapted by
making use of the first pass hypotheses.
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Fig. 4. Combination of Cascade and ROVER. (a) Two regression classes used for adapting the BBN system. (b) Eight regression classes used in BBN adaptation.

An alternative solution for cross-site system combination is
to carry out a full decode after adaptation. This approach has the
advantage of keeping the two decodes more independent, but it
is only viable if very fast decoding techniques are used, which
usually results in higher word error rates.

We carried out a series of experiments to compare these two
solutions and found that cross-site adaptation with a full de-
code was both simpler and more efficient solution than lattice
rescoring. This solution was therefore adopted for the RT04
evaluation.

D. Generic System Architecture

In Fig. 5 we present two different generic architectures for
combining system components. In the first architecture, recog-
nition hypotheses from multiple independent systems are com-
bined using ROVER, then the ROVER output is used to adapt
the same or a different set of systems. The adapted systems are
used for another recognition pass. The compute requirements of
this architecture are significantly higher than that of a cascade
configuration because it requires running multiple independent
systems.

We used the combination architecture described in Fig. 5(a)
for the RT03 BBN/LIMSI English CTS evaluation system [40].
Three systems from BBN and two systems from LIMSI were
first run independently. The recognition outputs of these five
systems were combined using ROVER. The ROVER hypothesis
was then used to adapt the acoustic models of the same five sys-
tems, and the adapted models were used in another recognition
pass. The recognition hypotheses from the five adapted decod-
ings were combined to generate the final output. Since the RT03
English CTS condition did not impose any constraints on the
compute time, we were able to incorporate such large number
of recognition stages. Unfortunately, that was not the case for
the RT04 Evaluation. The RT04 English CTS condition limited
the overall system’s runtime at 20 RT!

The second architecture is a combination of Cascade and
ROVER based on the results presented above, where multiple
systems are run sequentially. As shown in Fig. 5, the output of

Fig. 5. Proposed architecture for combining multiple systems. The
ROVER/Cascade system in (b) is designed for fast combination, whereas
(a) does take compute time into consideration.

the system or the ROVER hypothesis can be used to adapt
system , where

(1)

The Cascade/ROVER combination architecture was first used in
the RT03 BBN/LIMSI English BN system [40]. In that system,
we cascaded two recognition stages from LIMSI and one recog-
nition stage from BBN. Finally, ROVER was used to combine
outputs from BBN and LIMSI recognitions to achieve a WER
that was better than ROVER of independent systems from each
site and still satisfied the 10 RT compute constraints.

Since compute requirements were even more challenging
for the RT04 evaluations, the Cascade/ROVER combination
described in Fig. 5(b) was used in the RT04 BBN/LIMSI
systems for both domains.
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Fig. 6. 2004 BBN/LIMSI CTS system architecture.

VII. DEVELOPMENT AND EVALUATION RESULTS

A. The 2004 BBN/LIMSI CTS System Results

The block diagram of the 2004 BBN/LIMSI CTS tightly in-
tegrated system is depicted in Fig. 6. Systems from BBN are
denoted with prefix “B” and those from LIMSI with prefix “L.”
An incoming arrow into a system indicates that the system’s
models are adapted to the previous result before decoding. Mul-
tiple incoming arrows into a small circle indicate that the results
are combined using ROVER to produce a new hypothesis. It is
worth mentioning that this configuration is a “cross-over” be-
tween the two forms of system combination depicted in Fig. 5.
Key characteristics of each system are tabulated as follows.
B1 BBN PLP long span held-out MPE models.
B2 BBN PLP derivative MPE models.
B3 BBN PLP long span MPE models.
B4 BBN MFCC long span MPE models.
L1 LIMSI PLP GD MMI models.
L2 similar to L1 with a reduced phone set.
L3 LIMSI PLP GI-MAP MMI models.

First, the waveforms were segmented using the BBN CTS
segmenter described earlier. System B1 ran in slightly over
real-time. Then B1’s hypothesis was used to adapt L1’s models
with four fixed regression classes. System L1 decoded, using
the same segmentation, in about 5 RT to generate lattices
and a new hypothesis. Next, B2’s models were adapted to
L1’s hypothesis using a maximum of eight regression classes.
System B2 then ran in about 3 RT to generate a hypothesis to
adapt B3’s models, again using a maximum of eight regression
classes. System B3 then ran a full three-pass decoding at 2.5
RT and also saved the fast-match information (aka the reduced
search space) for later partial two-pass decodings. Hypotheses
from systems L1, B2, and B3 were combined using ROVER to
produce hypothesis R1, which was used to adapt the models of
systems L2, L3, B2, and B4 with a maximum of 16 regression
classes. Systems L2 and L3 rescored L1’s lattices while sys-
tems B2 and B4 performed a partial decoding on B3’s reduced
search space. The lattice rescoring took about 1.2 RT and
the partial decoding took 2.1 RT. Finally, hypotheses from
systems B3, L2, L3, B2, and B4 were combined to produce the
final hypothesis R2.

Table X summarizes the WERs and real-time factors ( RT)
for each decoding stage on both the CTS Dev04 and Eval04
test sets. The notation in the table shows the path producing

TABLE X
WER AND RUN-TIME ON THE CTS DEV04 AND EVAL04 SETS FROM EACH

STAGE OF THE 2004 BBN/LIMSI CTS 20 � RT SYSTEM

Fig. 7. 2004 BBNLIMSI BN system architecture.

the output, thus the name of the system includes the name of
the preceding system, plus the new system that was run (for
example, B1-L1-B2 indicates a system that first ran B1, then
adapted, then L1, then adapted, then B2). Overall, for the CTS
Dev04 and Eval04 test sets, the combined BBN/LIMSI CTS
system performed at 13.4% WER in 18.5 RT and at 16.0%
WER in 18.0 RT, respectively.

The BBN compute platform is an Intel Xeon (3.4 GHz, 8
GB RAM) running Linux RedHat 7.3, with hyperthreading. At
LIMSI the compute platform is an Intel Pentium 4 Extreme Edi-
tion (3.2 GHz, 4 GB RAM) running Fedora Core 2 with hyper-
threading. To take advantage of hyperthreading, the test data was
divided into two sets that were processed simultaneously by two
decoding processes.

B. 2004 BBN/LIMSI BN System Results

Similar to the CTS system, the 2004 BBN/LIMSI BN system
also used both cross-site adaptation and ROVER for system
combination. The system structure, slightly different from the
CTS system, is depicted in Fig. 7. Key characteristics of each
system are tabulated as follows.
B1 BBN PLP MMI SI and SAT system.
B2 BBN PLP MMI SAT system.
L1 LIMSI PLP GI-MAP MMI system.
L2 similar to L1 but with a reduced phone set.

The WERs and real-time factors on both the BN Dev04 and
Eval04 test sets are listed in Table XI. Specifically, on the de-
velopment test set Dev04, in the very first step, system B1 gen-
erated a hypothesis with an 11.0% error rate at less than 3
RT using both unadapted and adapted decoding. Then, system
L1, after adapting to B1’s hypothesis, redecoded and produced
a new hypothesis with 10.1% error rate. In contrast to the com-
bined CTS system, BBN and LIMSI did not share the same
audio segmentation. A ROVER of the hypotheses of systems
B1 and L1 provided a hypothesis of 9.8% WER. System B2
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TABLE XI
WER AND RUN-TIME ON THE BN DEV04 AND EVAL04 SETS FROM EACH

STAGE OF THE 2004 BBNLIMSI BN 10 � RT SYSTEM

TABLE XII
COMPARISON BETWEEN THE RT02 AND RT04 SYSTEMS ON THE

CTS AND BN PROGRESS TEST SETS

then adapted to the ROVER’s result using a maximum of 16 re-
gression classes and redecoded to produce a 9.9% result. Com-
bining the hypotheses of systems B1, L1, and B2 produced a
new result of 9.5% error rate. This latest ROVER’s result pro-
vided supervision for the second LIMSI system, L2, which, in
turn, produced a result of also 9.9% error rate. The final ROVER
of the hypotheses of systems L1, B2, and L2 produced the final
result of 9.3% error rate at 9.2 RT. On the BN Eval04 test set,
a word error rate of 12.7% was obtained at 9.8 RT.

C. Results on the EARS Progress Test Set

As mentioned earlier, two progress test sets, one for BN and
the other for CTS, were designated by NIST to benchmark
the system performance yearly. The results on these two sets
are given in Table XII. The BBN RT02 CTS and BN systems
achieved 27.8% WER on the CTS progress test set and 18.0%
WER on the BN progress set. These two systems were chosen
as baselines against which progress was measured in the EARS
program. The WER and real-time factor (RTF) obtained with
the RT03 and RT04 BBN/LIMSI systems are reported in
Table XII along with the baseline BBN RT02 numbers. The
improvement is very significant with WERs for the RT04
systems reduced to 13.5% for the CTS data and to 9.5% for the
BN data. Compared to the RT02 baseline systems, the relative
WER reduction is 51% on the CTS data and 47% on the BN
data. Furthermore, the compute time of the CTS system was
also dramatically reduced. These results exceeded the EARS
targets both in terms of recognition performance and decoding
time constraints.

VIII. CONCLUSION

This paper has described the combined BBN/LIMSI system
and the component systems developed at each site as part of
the DARPA EARS program. Large word error rate reductions
are reported for both the CTS and BN tasks, obtained by im-
proving acoustic and language models, developing new training

methods, exploiting unannotated training data, and developing
innovative approaches for system combination.

By providing significantly larger amounts of audio and tex-
tual training materials, along with regular performance bench-
marks, the program has fostered research in many directions
and substantially improved the state-of-the-art in transcription
of broadcast news data and conversational telephone speech in
English, Arabic, and Mandarin.

The availability of the data, as well as the tools developed
to process them, will enable numerous corpus based studies in
the future. We believe that adding more training data will con-
tinue to help in improving recognition accuracy. However, the
effect of additional data is expected to be limited unless a sub-
stantial amount is provided (e.g., tens of thousands of hours
of speech). Given that, our focus is still concentrated on algo-
rithmic and modeling improvements. Potential candidates for
future research are as follows:

• better feature extraction (long span features, discrimina-
tive feature projections);

• improved speaker adaptive training;
• more detailed covariance modeling;
• adaptive pronunciation and language modeling;
• automatic training of complementary models to aid in

system combination.

Our experience with the non-English languages addressed
in the EARS program is that the same basic technologies and
development strategies appear to port well from one language
to another. However, to obtain optimal performance, language
specificities must be taken into account. It may be that as word
error rates are lowered, the language-dependent issues will be-
come more important, and language-specific knowledge will
help to improve performance.
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