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ABSTRACT

This paper describes the 2000 BBN Byblos Large Vocabulary
Continuous Speech Recognition (LVCSR) system. We briefly
outline the training and decoding procedures used in the
system, and explain in detail the new features we have added
to the system in the past year. These new features include
multiple adaptation stages, parallel path rescoring, and a
new word confidence system. Word error rate results for all
of these additions are presented for Hub-5 English test sets
containing both Switchboard IT and CallHome speakers.

1. Introduction

The 2000 BBN Byblos LVCSR system aims for state of the
art performance on decoding spontaneous, conversational
telephone speech. In particular, it is explicitly designed to
achieve low word error rate (WER) on the NIST sponsored
Hub-5 evaluations,; the test sets of which consist of equal
parts of Switchboard II and CallHome conversations [1]. In
the March 2000 Hub-5 evaluation, Byblos achieved a WER
of 29.1%.

This paper has two parts. First, we describe the current
state of the Byblos system by describing the decoding pro-
cedure and the training methods used to create its various
models. Then, we focus on the experiments we have run
on the system over the past year, including those which led
to improved performance over the previous Hub-5 Evalua-
tion system [9]. These experiments include work on parallel
path models, multiple adaptation stages, and a new training
method for the word confidence system. For all of these ex-
periments, error rates will be reported on DevSet98, a subset
of the 1998 Hub-5 evaluation test set consisting of 7 Switch-
board II and 7 CallHome conversations. (Each conversation
contains two speakers and is approximately five minutes in
length). The improvements described in this paper collec-
tively lowered the WER on this development set by 2.1 %.

2. System Description

2.1.

Analysis in the Byblos system starts by breaking up the au-
dio data into overlapping frames, each 25 msec long, at a rate
of 100 frames per second (f/s). Each frame is windowed with
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a Hamming function, and an LPC smoothed, vocal track
length (VTL) and Mel-warped log power spectrum is com-
puted for the frequency band 125-3750 Hz. From this, the
first 14 cepstral coefficients and a frame energy are retained;
these are then normalized by non-causal mean cepstrum and
peak energy subtraction and finally scaled and translated so
that for each conversation side, the resulting feature vector
has zero mean and unit variance in each dimension. For
historical and performance reasons, analysis is run slightly
differently in the gender and VTL warp estimation stages
than it is in decoding stage [12].

2.2,

Decoding takes a collection of audio files (typically 8 kHz,
8-bit p-law encoded) as input, along with a list of utterance
start and end times and a speaker label for each utterance.
These inputs are then put through the following stages: gen-
der estimation, VTL warp estimation, analysis, unadapted
decoding, adapted decoding, word confidence generation,
and finally, system combination. The output is a transcrip-
tion of each utterance, along with start and end times and a
confidence measure for each of the utterance’s words.

Decoding

Gender Estimation The audio is analyzed at VTL warps
0.92, 0.94, ..., 1.06. For each warp, each speaker’s cepstra
is scored with a Gaussian mixture model (GMM). Speakers
with best scoring warps of 0.98 and above are labelled as
female and the rest as male.

VTL Warp Estimation The audio is analyzed at VTL
warps 0.88, 0.90, ..., 1.12. For each warp, each speaker’s
cepstra is scored with a gender dependent (GD) GMM. Fur-
ther, each speaker’s 0.88 and 1.12 warped cepstra are scored
against another GD GMM to estimate the Jacobian com-
pensation factor for these warps; the compensation factors
for the other warps are then linearly interpolated [9]. Fi-
nally, each speaker is given the VIL warp with the highest
normalized score.

Analysis The cepstra to be used in decoding is produced
next using for each speaker the VTL warp estimated in the
previous stage. The cepstra and energy’s first and second
derivatives are added to the feature stream at this time,
resulting in a 45 dimensional feature vector for each audio
frame.



Unadapted Decoding In unadapted decoding, multiple
search passes are performed across successively narrower
search spaces of possible transcriptions of the audio data;
later passes use more detailed acoustic and language models
but use the results of earlier passes to constrain their search.

Specifically, the first pass uses a forward fast match
search with non-crossword, phonetically tied mixture (PTM)
acoustic models and a bigram language model. The second
and third passes perform respectively backward and forward
beam searches with approximate trigram language models
and the same acoustic models; at the end of the third pass,
a word lattice is created. This lattice is then searched in
the fourth pass with crossword, state-clustered tied mixture
(SCTM) acoustic models and a trigram language model; it
produces an N-best list of the top 100 ranked possible tran-
scriptions. Finally, this N-best list is rescored with parallel
path acoustic models and a cross domain, part of speech
(POS) smoothed language model.

Adapted Decoding Three stages of adapted decoding are
performed, each identical to the unadapted decoding stage
described above except in the acoustic models used and in the
lack of parallel path rescoring. Each stage uses the rescored
1-best transcriptions of a speaker’s utterances produced by
the previous stage as the basis for maximum likelihood, lin-
ear regression (MLLR) adaptation. The MLLR transforms
are estimated with 3 iterations of EM. The first and third
adaptation stages both start with diagonal transformation
Speaker Adaptive Trained (DSAT) acoustic models [9], but
the first adapts them using 4 transformations and the third
using 8 transformations. The second adaptation stage starts
with the same speaker independent (SI) acoustic models used
in unadapted decoding, but adapts them with 8 transforma-
tions.

Word Confidence Generation For every word in the
1-best rescored output of the third adapted decode, twenty-
one features are gathered as inputs for a generalized linear
model (GLM) [5]. Features include (in rough order of im-
portance): the word’s frequency in the N-best list, the ut-
terance’s language model score, the likelihood of the trigram
ending at the word, the number of phonemes in the word, the
utterance’s normalized (divided by number of frames) acous-
tic score, the utterance’s average signal power, the number of
words in the sentence, and binary, “am-I-that-word” features
for the words AND, IF, IS, IT, THAT, THEY, WHERE, and
WOULD. The output of the GLM is the word’s confidence
score.

System Combination To generate alternative hypotheses
for system combination, the very last two stages of the third
adapted decode, the lattice transcription and LM rescoring
stages, along with the word confidence generation step, are
repeated with cepstra analyzed at 125 and 80 frames per
second. (Everything else, including the acoustic models,
remains the same). The outputs from these stages, along
with the output of the normal, 100 frame per second, third
adapted decode, comprise the systems to be combined.

The combination is done following a modified ROVER algo-

rithm [3]. First, the outputs of the three systems are aligned,
and then the possible words for each alignment slot are voted
upon. A word’s vote is equal to its confidence score from a
system times that system’s predetermined weight, summed
over all the systems it occurs in, plus a bonus if the word
is hypothesized by a majority of the systems. The winning
words form the final output of the decode; confidences for
the winning words are generated by a GLM with the word’s
votes as features.

2.3.

Acoustic Training Acoustic training takes 120 hrs of
Switchboard and 17 hours of CallHome data, labels it using
forced phonetic alignment with simple bootstrapped mod-
els, uses the labels to grow separate decision tree clusters for
both the Gaussians and their mixture weights (the five state
HMM transition probabilities are unclustered), initializes the
Gaussians via the k-means algorithm, and trains all the pa-
rameters with five passes of the EM algorithm. This process
is done for both the quinphone SCTM and triphone PTM
models, both of which are gender dependent. In the end, the
PTM models contains 53 Gaussian clusters and 12,000 mix-
ture weight clusters, with 512 Gaussians per mixture, while
the SCTM models have 3,000 Gaussian clusters and 25,000

mixture weight clusters, with 80 Gaussians per mixture.

To create the DSAT models used in the first and third
adapted decoding passes, a set of 256 diagonal transforma-
tion matrices are estimated for each training speaker, and
then both the means and variances of the Gaussians are re-
estimated. Both estimations are done with the EM algorithm
so as to maximize the likelihood of the joint transformation;
the entire procedure is repeated three times to create the
final DSAT models.

The parallel path HMM [4] attempts to model the distinct
segment-length trajectories of a phonetic unit using separate
HMM paths. In this work, we used only two path models,
each with a conventional 5-state, left-to-right topology. The
model is initialized from training data in which each phonetic
segment is given a path label based on a bootstrap segment
model (here, a segmental k-means labeler). The path labels
are combined with state labels from our conventional (non-
parallel-path) HMM and used to initialize 1-Gaussian-per-
state models used in clustering. State clustering is accom-
plished using a modification of the usual tree-based, divisive
clustering in which parallel states (states in the same po-
sition on different paths of a model) start out together in
the root of the tree. In the process of generating the next
binary split in the clustering tree, in addition to the usual
splitting along phonetic contexts with linguistic questions,
we allow parallel states to be split or not based on a path
question. In this way, although the complete paths are al-
ways kept distinct (we don’t allow them to merge or cross),
if two parallel states of the path have very similar statis-
tics, their observation distributions can be shared. The total
number of Gaussians used in the parallel-path model was
kept the same as the number used in the system’s SCTM
models. Following clustering, the model is trained using the
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normal HMM forward backward algorithm.

The GMMs used in both gender and VTL estimation are
estimated as follows: first, all unwarped cepstra are used
to create a single, 256 Gaussian mixture model. Next,
for each warp, each training speaker’s warped cepstra are
scored against this GMM. A new GMM is created from each
speaker’s best scoring cepstra, and the process is repeated
three times.

Language Model Training Four different language mod-
els are used by the Byblos system. The first two, a bi-
gram and approximate trigram, are used by the forward
and backwards decoding passes respectively, and are trained
from three million words of Switchboard and eighty thousand
words of CallHome. The trigram used in the lattice pass is
trained from this data plus 140 million words of CNN which
is weighted to reflect the domain mismatch. Finally, the tri-
gram grammar used in N-best rescoring is trained from all
of this data, but the three domains’ contributions are part
of speech (POS) smoothed, with interpolations weights esti-
mated on held out test data.

The 35,000 word dictionary was created from all the non-
name words in the CallHome and Switchboard data, plus
10,000 additional words from the CNN data which were se-
lected as the most similar to those in Switchboard.

Confidence & System Combination Training The
word confidence systems and system combination weights
are trained by performing a complete decode on a develop-
ment (held-out) set of data for which the truth is known.
(The weights used to reorder N-best lists after rescoring are
also trained via the development decode.) Each system’s
GLM is maximum likelihood (ML) trained, with a Bayesian
Information Criterion (BIC) used to guide a greedy search
over possible feature sets. There are 140 available features,
including binary, “am-I-that-word” features for the most fre-
quent 100 words in the acoustic training.

The trained GLMs are then used to generate word confi-
dences for the development decodes, and the system com-
bination weights are numerically optimized using Powell’s
method to maximize WER. [10].

3. Experiments & New Features

3.1.

This is the first year in which Byblos runs multiple adapta-
tion stages; previous attempts to use more stages with SAT
models showed no gain. In [11], Dragon suggested that the
alternating use of different models can give better results.
We find this to be true, and alternating between SAT and
ST models gives us a 1.6% net gain (see Figure 2).

Multiple Adaptation Stages

Jack-knifing the adaptation transcripts is also advocated in
[11]; that is breaking up a speaker’s utterances into mul-
tiple chunks, and then decoding a given chunk with mod-
els adapted to all of the other chunks’ transcriptions. We
find that jack-knifing with seven chunks definitely hurts later
stages and helps early ones only slightly if at all (see Figure
3).

Confidence System NCE
Old GAM/NMI system 0.161
New GLM/BIC system 0.174
GLM + squares 0.175
GLM + word features 0.180
GLM + word & phoneme features | 0.180

Figure 3: Confidence System Improvements

3.2.

Parallel-path rescoring is also new to the Byblos evalua-
tion system this year. Previous work with a triphone-based
parallel-path system showed a .9% WER improvement for
combining the parallel-path with a triphone conventional
HMM in N-best rescoring on DevSet98. The quinphone
parallel-path model estimated for this evaluation gives us
a .3 WER improvement on the unadapted stage. Although
we do not know the reason for this smaller gain, this was the
first time the parallel-path was run with quinphones and we
expect larger improvements with further investigation.

3.3.

In previous years, word confidences were generated by a gen-
eralized additive model (GAM) which was trained to maxi-
mize normalized mutual information (NMI); feature selection
was done by a greedy algorithm evaluated on a held out test
set [5] [8].

The new confidence system uses GLM models (a proper sub-
set of the class of GAM models) which are ML trained using
a BIC criteria for feature selection. In addition, several new
features, including binary “am-I-that-word” features for the
most frequent 100 words, were added. Figure 3 summarizes
the improvements in normalized cross entropy (NCE), the
measure NIST uses to compare confidences between systems,
for these changes. It also reports on two changes which did
not improve NCE and thus did not make it into the final
system: adding squares of all the (non-binary) features (so
as to allow the GLM to more closely approximate a GAM),
and “how-many-times-do-I-contain-that-phoneme” features.
It should be noted that in both of these changes, the feature
selector did choose some of the new features (such as N-best
frequency squared or occurrence counts of DH or ER); the
resulting GLMs merely did not increase the NCE.

3.4.

Our normal SCTM clustering algorithm allocates many mix-
ture models to quinphones with silence as their center phone.
Figure 4 describes results of using only one mixture model
for such quinphones. In this experiment, only forty hours
of training data were used for the acoustic models in these
results. The .4 gain indicates that the large number of si-
lence Gaussian mixtures in the baseline system represents a
suboptimal allocation of parameters. Since this experiment
was run after the evaluation, this feature was not present in
the evaluation system.

Parallel Path Rescoring

New Confidence System

Silence Modeling



Pass | Model | Adapt? | # Xfmations | BW WER | LT WER | Opt WER | Rescore WER
1 SI no n/a 53.6 43.4 42.6 42.1
2 SAT yes 4 45.4 38.6 37.9 374
3 SI yes 8 42.2 36.9 36.4 36.4
4 SAT yes 8 41.3 36.6 36.1 36.0
5 SI yes 8 41.5 36.1 35.6 35.8
Figure 1: Gains on Multiple Adaptation Passes
Pass | Model | Jack-Knifed? | # Xfmations | BW WER | LT WER | Opt WER | Rescore WE R
2 SAT no 4 45.4 38.6 37.9 37.4
2 SAT yes 4 48.0 38.9 38.2 37.1
4 SAT no 8 41.3 36.6 36.1 36.0
4 SAT yes 8 47.5 38.0 37.2 36.9
Figure 2: Jack-Knifing Results
System WER Pass WER
40 hr. train 47.5 Lattice 42.51
”” + only 1 silence model | 47.1 Lattice + per-utterance 42.24
Rescoring 42.08
Rescoring + per-utterance | 42.05
Figure 4: Results of Using Only One Silence Mixture Model Per-utterance w/ POS LM | 42.03

3.5. Per-Utterance LM Adaptation

The idea here is that given separate Switchboard and Call-
Home language models, we can adapt a LM interpolation
parameter to an utterance by maximizing

100
>~ AP(s;|Switchboard) + (1 — A) P(s;|CallHome)

i=1

with s; the sentences in that utterance’s N-best list, and then
using Amax P(-|Switchboard) + (1 — Amax)P(-|CallHome) to
rescore the s;.

This idea was tried in two different ways. First, standard tri-
gram language models analogous to those used in the lattice
pass were trained for Switchboard and CallHome. Perform-
ing per-utterance LM adaptation with these models gave a
.26% gain over the lattice pass WER, but combining the per-
utterance LM adapted scores with the cross domain, POS
smoothed LM scores reduced this gain to only a .02% gain
over using only the latter.

In the second implementation, cross domain, POS smoothed
language models were trained for Switchboard and CallHome
and used for per-utterance LM adaptation. (Note that both
of these language models were trained from Switchboard,
CallHome, and CNN data, but for the Switchboard model,
they were combined so as to minimize the perplexity of the
LM on a held out Switchboard II test set). This gave only a
0.05% gain over the normal rescoring language model WER;
see figure 5. Although we believe this is an interesting and
promising method, due to the lack of improvement in the
complete system, it was not included in the evaluation sys-

Figure 5: Per-Utterance LM Adaptation Results

tem.
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