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ABSTRACT

This paper describes the advances made in IBM’s Arabic broadcast
news transcription system which was fielded in the 2006 GALE
ASR and machine translation evaluation. These advances were in-
strumental in lowering the word error rate by 42% relative over
the course of one year and include: training on additional LDC
data, large-scale discriminative training on 1800 hours ofunsuper-
vised data, automatic vowelization using a flat-start approach, use
of a large vocabulary with 617K words and 2 million pronunci-
ations and lastly, a system architecture based on cross-adaptation
between unvowelized and vowelized acoustic models.

1. INTRODUCTION

Under the auspices of DARPA’s Global Autonomous Language
Exploitation (GALE) project, a tremendous amount of work was
done by the speech research community toward improving speech
recognition performance. The goal of the GALE program is to
make foreign language (Arabic and Chinese) speech and text ac-
cessible to English monolingual people, particularly in military
settings. A core component of GALE is ASR and research in this
area spans multiple fields ranging from traditional speech recog-
nition to speaker segmentation and clustering, sentence boundary
detection, etc.

In this work, we focus primarily on Arabic broadcast news
transcription although many of the techniques that are expounded
here have been successfully applied to our Mandarin and English
BN systems as well. Research on Arabic ASR has been fertile over
the past few years as attested by the numerous papers published on
this subject [1, 2, 3]. In the following, we describe the key design
characteristics of our system:

• A cross-adaptation architecture between unvowelized and
vowelized speaker-adaptive trained (SAT) acoustic models.
The distinction between the two comes from the explicit
modeling of short vowels which are pronounced in Arabic
but almost never transcribed. Both models exhibit a penta-
phone acoustic context and comprise 5K context dependent
states and 400K 40-dimensional Gaussians. The gains from
cross-adaptation are estimated to be about 1% absolute.

• Large-scale discriminative training on 1800 hours of un-
supervised data. The aforementioned models were trained
with a combination of fMPE and MPE [4] on 135 hours of
supervised data and 1800 hours of TDT4 BN-03 data. The
gains from the unsupervised data are 1.3% absolute after
discriminative training.
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• Automatic vowelization using a flat-start approach. This
results in a 2.0% absolute gain over unvowelized models on
the broadcast news part while having a similar performance
on broadcast conversations.

• Use of a vocabulary of 617K words which for the vow-
elized system translates into roughly 2 million pronuncia-
tions. The gains over a 129K word vocabulary are 1.5%
absolute.

The following sections describe the training and test data (sec-
tion 2), the system overview (section 3) and the vowelization ex-
periments (section 4). Section 5 summarizes our findings.

2. TRAINING AND TEST DATA

For acoustic model training, we used the following corpora:

• 85 hours of FBIS + TDT4 with transcripts provided by BBN

• 51 hours of GALE data (first and second quarter releases)
provided by the Linguistic Data Consortium (LDC)

• 1800 hours of unsupervised data (i.e. without transcripts)
which are part of TDT4 BN-03

The following resources were used for language modeling

• Transcripts of the audio data

• Arabic Gigaword corpus

• Web transcripts for broadcast conversations collected by
CMU/ISL (28M words from Al-Jazeera)

The resulting language model was a 4-gram LM with 56M n-grams
trained with modified Kneser-Ney smoothing. Throughout this pa-
per, we report results on the following test sets:

• RT-04: 3 shows of 25 minutes each (totaling 75 minutes of
BN)

• BNAT-05: 12 shows of 30 minutes each (totaling 5.5 hours
of BN) from 5 different sources (VOA, NTV, ALJ, DUB,
LBC) provided by BBN

• BCAD-05: 6 shows of 30 minutes each (totaling 3 hours of
BC) from ALJ provided by BBN

• EVAL-06: 37 shows of 5 minutes each (totaling 3 hours of
BN and BC) from 9 different sources

The table 1 shows the OOV rates and the word error rates on RT-04
for an ML-trained vowelized system (without pronunciationprob-
abilities) as a function of the vocabulary size. As can be seen, the
benefit from increasing the vocabulary from 129K to 589K words
is 1.5% absolute.



Nb. words Nb. pronunciations OOV WER
129K 538K 2.9% 19.8%
343K 1226K 1.2% 18.6%
589K 1967K 0.8% 18.3%

Table 1: OOV and word error rates on RT-04 as a function of vo-
cabulary size.

System RT-04 BNAT-05 BCAD-05 EVAL-06
SI 24.4% 25.1% 30.3% 40.8%
U-SA 14.4% 15.3% 22.1% 29.7%
V-SA 12.6% 13.7% 21.2% 27.4%

Table 2: Word error rates of the different decoding steps on various
test sets.

3. SYSTEM OVERVIEW

The operation of our system comprises the following steps de-
picted in Figure 1: (1) segmentation of the audio into speechand
non-speech segments, (2) clustering of the speech segmentsinto
speaker clusters, (3) estimation of several speaker compensation
transforms (VTLN, FMLLR and MLLR), (4) decoding with an un-
vowelized speaker adapted model (U-SA), (5) estimation of FM-
LLR and MLLR based on the U-SA output, (6) decoding with a
vowelized speaker adapted model (V-SA). The performances of
the various decoding steps on all the different test tests are sum-
marized in table 2.
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Figure 1: System diagram.

System Nb. leaves Nb. Gaussians
SI 3.5K 150K
U-SA 5.0K 400K
V-SA 4.0K 400K

Table 3: System statistics.

3.1. Speaker segmentation and clustering

We use an HMM-based segmentation procedure very similar to
the one described in [5]. Speech and non-speech segments are
each modeled by five-state, left-to-right HMMs with no skip states.
The output distributions in each HMM are tied across all states in
the HMM, and are modeled with a mixture of diagonal-covariance
Gaussian densities obtained by clustering the Gaussians ofthe
speaker independent system (to 240 Gaussians for speech and16
for non-speech). Hypothesized speech segments are extended by
an additional 30 frames to capture any low-energy segments at the
boundaries of the speech segments and to provide sufficient acous-
tic context for the speech recognizer.

Next, the speech segments are clustered in the following way.
Each segment is modeled by a single diagonal-covariance Gaus-
sian in the speaker independent feature space. The Gaussians are
clustered via K-means to a predefined number of clusters using the
metric:

d(i, j) = (µi − µj)
T (Σi + Σj)

−1(µi − µj)

Additionally, we perform a bottom-up clustering of the result-
ing K Gaussians up to a prespecified maximum merge distance.

3.2. Acoustic modeling

Speech is coded into 25 ms frames, with a frame-shift of 10 ms.
Each frame is represented by a feature vector of 13 perceptual lin-
ear prediction cepstral coefficients which are VTL-warped for the
speaker adapted decoding. Every 9 consecutive cepstral frames are
spliced together and projected down to 40 dimensions using LDA.
The range of this transformation is further diagonalized bymeans
of a maximum likelihood linear transform. Prior to splicingand
projection, the cepstra are mean normalized for the speakerinde-
pendent system and mean and variance normalized for the speaker
adapted systems on a per speaker basis.

We use FMLLR [6] to map the VTL-warped data to a canon-
ical feature space which in turn is transformed via fMPE [4].The
speaker adapted models are discriminatively trained in theresult-
ing space with MPE. All models have pentaphone acoustic context
and the number of context dependent units and 40-dimensional
Gaussians are summarized in Table 3.

3.3. Unsupervised training

The starting point for unsupervised training are 1800 hoursof au-
dio which included in the TDT4 BN-03 dataset. First, we decode
the entire data with an unvowelized speaker adapted system fol-
lowing steps (1)-(4) from section 3 (left-hand side of Figure 1).
Then, we select a subset of the data based on per utterance average
word posteriors. The word posteriors are obtained using consen-
sus processing on the word lattices [7]. We then build the acoustic
models by varying the amount of unsupervised data in addition to
the 135 hours of supervised data (cf. section 2). In table 4, we



Posterior thresh. Nb. of hours WER
1.0 (baseline) 0 17.2%
0.95 751 15.9%
0.9 1321 15.7%

Table 4: Amount of data and word error rates as a function of
posterior threshold.

report the posterior threshold, the amount of unsuperviseddata re-
tained and the word error rates of a vowelized system trainedon
that data. As can be seen, a satisfactory performance can be ob-
tained with only 751 hours of unsupervised training.

4. VOWELIZATION

While most ASR techniques are language independent, there are
a few issues that are unique to Arabic. An excellent introduction
to the Arabic language in the context of ASR can be found in [8].
One of the problems in Arabic speech recognition is the handling
of short vowels and diacritics.

1. Fatha /a/

2. Kasra /i/

3. Damma /u/

4. Shadda (Consonant doubling)

5. Sukun (no vowel)

These five symbols are normally not written in Arabic texts.
Only important religious texts such as the Koran are fully vow-
elized. Most of the training transcripts for the model building are
not vowelized. This leads to a considerable mismatch between the
acoustic data and the training transcripts.

When building vowelized models, it is important to keep in
mind that calculating the error rate is still based on the unvowelized
forms. In other words, we map the vowelized words back to their
unvowelized counterparts prior to scoring (NIST style scoring).
Another reason for using the unvowelized forms for calculating the
error rate is that the translation component used at IBM expects un-
vowelized Arabic text as input in the context of the DARPA GALE
speech-to-text translation program.

One approach to bootstrap vowelized models is by using train-
ing transcripts manually vowelized by Arabic experts. Thisap-
proach was chosen by LIMSI [3]. The obvious disadvantage is
that writing vowelized transcripts is quite labor intensive. BBN
reported in [2] on an automatic procedure based on Buckwalter’s
Morphological Analyzer [9]. Following the recipe in [2], wedis-
cuss our bootstrap procedure and some issues related to scaling up
to large vocabularies.

4.1. Vowelized pronunciation dictionary

We are using the Buckwalter Morphological Analyzer (Version
2.0), and the Arabic Treebank to generate vowelized pronuncia-
tions. The vowelized pronunciations are modeled as variants of
unvowelized word forms, both in training and decoding. An ex-
ample of vowelized and unvowelized pronunciations of the word
Abwh is given below.

Training Method WER (RT-04)
Flat-Start 23.0%
Bootstrap 22.8%

Table 5: Comparison of different Initialization methods for vow-
elized models.

Abwh(deny/refuse/+they+it/him) A a b a w o h u<
Abwh(desire/aspire/+they+it/him) A a b b u w h u<
Abwh(father+its/it) A a b u w h u<
Abwh(reluctant/unwilling+his/its) A b u w h u<
Abwh(01) A b w h

The vowelized training dictionary has about 243368 vowelized
pronunciations, covering a word list of 64496 words. The vow-
elization rate is about 95%. In other words, we couldn’t find vow-
elized forms for 5% of our training word list. For these words, we
back off to the unvowelized forms.

4.2. Flat-Start training vs. manual transcripts

Our flat-start training procedures initializes context independent
HMMs by distributing the data equally among the HMM state se-
quence. We start with one Gaussian per Mixture, and increasethe
number of parameters using mixture splitting interleaved within
30 Forward/Backward iterations.

Now, the problem is that we have 3.8 vowelized pronuncia-
tions per word on average, but distributing the data requires a lin-
ear state graph for the initialization step. To overcome this prob-
lem, we simply select one single pronunciation variant randomly
in this step. It should be noted, that all subsequent training it-
erations operate on the full state graph representing all possible
pronunciations.

We compare this approach to manually vowelized transcripts
where the correct pronunciation variant is given. BBN distributed
10 hours of manually vowelized development data (BNAD-05,
BNAT-05) that we used to bootstrap vowelized models. These
models are then used to compute alignments for the standard train-
ing set (FBIS + TDT4). A new system is then built using fixed
alignment training, followed by a few Forward/Backward itera-
tions to refine the models.

The error rates in table 5 suggest that manually vowelized tran-
scripts are not necessary. The fully automatic procedure isonly
0.2% worse. We opted for the fully automatic procedure in allour
experiments, including the evaluation system.

4.3. Short models for short vowels

We noticed that the vowelized system performed poorly on Broad-
cast Conversational speech. It appeared that the speaking rate is
much faster, and that the vowelized state graph is too large to
be traversed with the available speech frames. One solutionis
to model the three short vowels with a smaller HMM topology.
The results are indicated in table 6. The improvements on RT-04
(Broadcast News) are relatively small, however there is an 1.5%
absolute improvement on BCAD-05 (Broadcast Conversations).

4.4. Vowelization coverage for the test vocabulary

As mentioned before, we back off to unvowelized forms for those
words not covered by Buckwalter and Arabic Treebank. The cov-
erage for the training dictionary is pretty high at 95%. On the other



Topology RT-04 BCAD-05
3state 19.0% 28.9%
2state 18.5% 27.4%

Table 6: Comparison of different HMM topologies for short vow-
els.

Vocabulary OOV Rate WER (RT-04)
129K 2.9% 20.3%
589K 0.8% 19.0%

Table 7: OOV/WER ratio for an unvowelized system.

hand, for a test vocabulary of 589K words, the vowelization rate is
only about 72%.

The question is whether it is necessary to manually vowelize
the missing words, or whether we can get around that by backing
off to the unvowelized pronunciations. One way to test this –with-
out actually providing vowelized forms for the missing words – is
to look at the OOV / WER ratio. The assumption is that the ratio
is the same for a vowelized and an unvowelized system if the dic-
tionary of the vowelized system doesn’t pose any problems. More
precisely, if we increase the vocabulary and we get the same error
reduction for the vowelized system, then, most likely, there is no
fundamental problem with the vowelized pronunciation dictionary.

For the unvowelized system, when increasing the vocabulary
from 129K to 589K, we reduce the OOV rate from 2.9% to 0.8%,
and we reduce the error rate by 1.3% (table 7).

For the vowelized system, we see a similar error reduction
of 1.5% for the same vocabulary increase (table 8). The system
has almost 2 million vowelized pronunciations for a vocabulary
of 589K words. The vowelization rate is about 72.6%. In other
words, 17.4% of our list of 589K words are unvowelized in our
dictionary. Under the assumption that we can expect the same
WER/OOV ratio for both the vowelized and unvowelized system,
the results in table 7 and table 8 suggest that the back-off strategy
to the unvowelized forms is valid for our vowelized system.

4.5. Pronunciation probabilities

Our decoding dictionary has about 3.3 pronunciations per word on
average. Therefore, estimating pronunciation probabilities is es-
sential to increase the discrimination among the vowelizedforms.
We estimated the pronunciations probabilities by countingthe vari-
ants in the training data (incl. unsupervised BN-03 data).

The setup consists of ML models, and includes all the adap-
tation steps (VTLN, FMLLR, MLLR). The vocabulary has about
617K words, and about 2 million pronunciations. The test sets
are RT-04 and BNAT-05 (both Broadcast News), and BCAD-05
(Broadcast Conversations).

Vocab. Variants Vowel. Rate OOV Rate WER (RT-04)
129K 538K - 2.9% 19.8%
343K 1226K 79.5% 1.2% 18.6%
589K 1967K 72.6% 0.8% 18.3%

Table 8: OOV/WER ratio for a vowelized system.

System RT-04 BNAT-05 BCAD-05
Unvowelized 17.0% 18.7% 25.4%
Vowelized 16.0% 17.3% 26.0%

+ Pron. Prob 14.9% 16.4% 25.1%

Table 9: Effect of pronunciation probabilities on WER.

Adding pronunciation probabilities gives consistent improve-
ments between 0.9% and 1.1% on all test sets (table 9). Also,
pronunciation probabilities are crucial for vowelized models; they
almost double the error reduction from vowelization. Further-
more, we investigated several smoothing techniques and longer
word context, but didn’t see any further improvements compared
to unigram pronunciation probabilities.

5. CONCLUSION

In this paper, we presented a set of techniques for Arabic broad-
cast news transcription. While some of them are also relevant for
other languages (like speech/non-speech segmentation, front-end
processing, speaker adaptation, unsupervised training, etc.), the
emphasis has been put on those methods which are specific to
Arabic ASR. Among these, vowelization is a key component in
our system. We opted for a flat-start approach with pronunciations
generated automatically using the Buckwalter morphological ana-
lyzer and studied some aspects related to coverage, HMM topolo-
gies and pronunciation probabilities. Another technique that was
found to be beneficial is to combine a vowelized and an unvow-
elized system through cross-adaptation.
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