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ABSTRACT

This paper describes the advances made in IBM’s Arabic loamsid
news transcription system which was fielded in the 2006 GALE
ASR and machine translation evaluation. These advancesiner
strumental in lowering the word error rate by 42% relativerov
the course of one year and include: training on additionaCLD
data, large-scale discriminative training on 1800 hounsnsiuper-
vised data, automatic vowelization using a flat-start apgipuse

of a large vocabulary with 617K words and 2 million pronunci-
ations and lastly, a system architecture based on crogxediten
between unvowelized and vowelized acoustic models.

1. INTRODUCTION

Under the auspices of DARPAs Global Autonomous Language
Exploitation (GALE) project, a tremendous amount of workswa
done by the speech research community toward improvingcbpee
recognition performance. The goal of the GALE program is to
make foreign language (Arabic and Chinese) speech anddext a
cessible to English monolingual people, particularly iditaiy
settings. A core component of GALE is ASR and research in this
area spans multiple fields ranging from traditional speedog-
nition to speaker segmentation and clustering, sentengedaoy
detection, etc.

In this work, we focus primarily on Arabic broadcast news
transcription although many of the techniques that are @xged
here have been successfully applied to our Mandarin anddingl
BN systems as well. Research on Arabic ASR has been fertle ov
the past few years as attested by the numerous papers gabtish
this subject [1, 2, 3]. In the following, we describe the kesigin
characteristics of our system:

e A cross-adaptation architecture between unvowelized and
vowelized speaker-adaptive trained (SAT) acoustic models
The distinction between the two comes from the explicit
modeling of short vowels which are pronounced in Arabic
but almost never transcribed. Both models exhibit a penta-
phone acoustic context and comprise 5K context dependent
states and 400K 40-dimensional Gaussians. The gains from
cross-adaptation are estimated to be about 1% absolute.

Large-scale discriminative training on 1800 hours of un-
supervised data. The aforementioned models were trained
with a combination of fMPE and MPE [4] on 135 hours of
supervised data and 1800 hours of TDT4 BN-03 data. The
gains from the unsupervised data are 1.3% absolute after
discriminative training.

This work was partially supported by the Defense AdvanceseReh
Projects Agency under contract No. HR0011-06-2-0001.

on}@is. i bm com

e Automatic vowelization using a flat-start approach. This
results in a 2.0% absolute gain over unvowelized models on
the broadcast news part while having a similar performance
on broadcast conversations.

Use of a vocabulary of 617K words which for the vow-

elized system translates into roughly 2 million pronuncia-
tions. The gains over a 129K word vocabulary are 1.5%
absolute.

The following sections describe the training and test dsegta-(

tion 2), the system overview (section 3) and the vowelizatz-

periments (section 4). Section 5 summarizes our findings.

2. TRAINING AND TEST DATA

For acoustic model training, we used the following corpora:
e 85 hours of FBIS + TDT4 with transcripts provided by BBN

e 51 hours of GALE data (first and second quarter releases)
provided by the Linguistic Data Consortium (LDC)

e 1800 hours of unsupervised data (i.e. without transcripts)
which are part of TDT4 BN-03

The following resources were used for language modeling

e Transcripts of the audio data
e Arabic Gigaword corpus

e Web transcripts for broadcast conversations collected by
CMU/ISL (28M words from Al-Jazeera)

The resulting language model was a 4-gram LM with 56M n-grams
trained with modified Kneser-Ney smoothing. Throughous fa-
per, we report results on the following test sets:

e RT-04: 3 shows of 25 minutes each (totaling 75 minutes of
BN)

e BNAT-05: 12 shows of 30 minutes each (totaling 5.5 hours
of BN) from 5 different sources (VOA, NTV, ALJ, DUB,
LBC) provided by BBN

e BCAD-05: 6 shows of 30 minutes each (totaling 3 hours of
BC) from ALJ provided by BBN

e EVAL-06: 37 shows of 5 minutes each (totaling 3 hours of
BN and BC) from 9 different sources

The table 1 shows the OOV rates and the word error rates oRT-0
for an ML-trained vowelized system (without pronunciatjmob-
abilities) as a function of the vocabulary size. As can be st
benefit from increasing the vocabulary from 129K to 589K vgord
is 1.5% absolute.



Nb. words | Nb. pronunciations| OOV | WER
129K 538K 2.9% | 19.8%
343K 1226K 1.2% | 18.6%
589K 1967K 0.8% | 18.3%

Table 1: OOV and word error rates on RT-04 as a function of vo-

cabulary size.

System| Nb. leaves| Nb. Gaussiang
Sl 3.5K 150K
U-SA 5.0K 400K
V-SA 4.0K 400K

Table 3: System statistics.

System| RT-04 | BNAT-05 | BCAD-05 | EVAL-06
Sl 24.4% | 25.1% 30.3% 40.8%
U-SA 14.4% | 15.3% 22.1% 29.7%
V-SA 12.6% | 13.7% 21.2% 27.4%

Table 2: Word error rates of the different decoding stepsasious
test sets.

3. SYSTEM OVERVIEW

The operation of our system comprises the following steps de
picted in Figure 1: (1) segmentation of the audio into spesuh
non-speech segments, (2) clustering of the speech segimemts
speaker clusters, (3) estimation of several speaker cosafien
transforms (VTLN, FMLLR and MLLR), (4) decoding with an un-
vowelized speaker adapted model (U-SA), (5) estimation\f F
LLR and MLLR based on the U-SA output, (6) decoding with a
vowelized speaker adapted model (V-SA). The performantes o
the various decoding steps on all the different test tegtsam-
marized in table 2.
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Figure 1: System diagram.

3.1. Speaker segmentation and clustering

We use an HMM-based segmentation procedure very similar to
the one described in [5]. Speech and non-speech segments are
each modeled by five-state, left-to-right HMMs with no skiates.
The output distributions in each HMM are tied across allestan

the HMM, and are modeled with a mixture of diagonal-covazean
Gaussian densities obtained by clustering the Gaussiatiseof
speaker independent system (to 240 Gaussians for speed6and
for non-speech). Hypothesized speech segments are edtégde
an additional 30 frames to capture any low-energy segmetie a
boundaries of the speech segments and to provide sufficiensa

tic context for the speech recognizer.

Next, the speech segments are clustered in the following way
Each segment is modeled by a single diagonal-covariance-Gau
sian in the speaker independent feature space. The Gauss&@&n
clustered via K-means to a predefined number of clusterg tisen
metric:

d(i,5) = (i — p3) " (S + 25) " (e — )

Additionally, we perform a bottom-up clustering of the ritssu
ing K Gaussians up to a prespecified maximum merge distance.

3.2. Acoustic modeling

Speech is coded into 25 ms frames, with a frame-shift of 10 ms.
Each frame is represented by a feature vector of 13 perddptua
ear prediction cepstral coefficients which are VTL-warpadthe
speaker adapted decoding. Every 9 consecutive cepstra$rare
spliced together and projected down to 40 dimensions usivdy. L
The range of this transformation is further diagonalizedrtsans

of a maximum likelihood linear transform. Prior to spliciagd
projection, the cepstra are mean normalized for the speaéer
pendent system and mean and variance normalized for thkespea
adapted systems on a per speaker basis.

We use FMLLR [6] to map the VTL-warped data to a canon-
ical feature space which in turn is transformed via fMPE [Hje
speaker adapted models are discriminatively trained imekelt-
ing space with MPE. All models have pentaphone acoustiesbnt
and the number of context dependent units and 40-dimersiona
Gaussians are summarized in Table 3.

3.3. Unsupervised training

The starting point for unsupervised training are 1800 hofiesu-
dio which included in the TDT4 BN-03 dataset. First, we dexod
the entire data with an unvowelized speaker adapted sysiem f
lowing steps (1)-(4) from section 3 (left-hand side of Figus).
Then, we select a subset of the data based on per utteramegave
word posteriors. The word posteriors are obtained usingeaon
sus processing on the word lattices [7]. We then build theistio
models by varying the amount of unsupervised data in additio
the 135 hours of supervised data (cf. section 2). In tableet, w



Posterior thresh{ Nb. of hours| WER Training Method | WER (RT-04)
1.0 (baseline) 0] 17.2% Flat-Start 23.0%
0.95 751 | 15.9% Bootstrap 22.8%
0.9 1321 | 15.7%

Table 5: Comparison of different Initialization methods f@w-
Table 4: Amount of data and word error rates as a function of elized models.
posterior threshold.

Abwh(deny/refuse/+they+it/him) Aabawo hw
Abwh(desire/aspire/+they+it/him) Aabbuwhu

report the posterior threshold, the amount of unsuperviseal re- Abwh(father-+its/it) Aabuwh
tained and the word error rates of a vowelized system tragmed Abwh(reluctant/unwilling+his/its) Abuw h &«
that data. As can be seen, a satisfactory performance cab-be o Abwh(01) Abwh

tained with only 751 hours of unsupervised training.

The vowelized training dictionary has about 243368 vovesliz
pronunciations, covering a word list of 64496 words. The vow
elization rate is about 95%. In other words, we couldn't fimevv

. . . elized forms for 5% of our training word list. For these wgrde
While most ASR techniques are language independent, there a 5k off to the unvowelized forms.

a few issues that are unique to Arabic. An excellent intrtidnc
to the Arabic language in the context of ASR can be found in [8] . .
One of the problems in Arabic speech recognition is the hiagdl 42 Flat-Start training vs. manual transcripts

4. VOWELIZATION

of short vowels and diacritics. Our flat-start training procedures initializes contextépendent
HMMs by distributing the data equally among the HMM state se-
1. Fatha/a/ guence. We start with one Gaussian per Mixture, and incribase
2 Kasra fi/ number of parameters using mixture splitting interleavethiw
30 Forward/Backward iterations.
3. bamma /u/ Now, the problem is that we have 3.8 vowelized pronuncia-
. tions per word on average, but distributing the data requarén-
4. Shadda (Consonant doubling) ear state graph for the initialization step. To overcoms fhbb-
5. Sukun (no vowel) lem, we simply select one single pronunciation variant oemiy

in this step. It should be noted, that all subsequent trgiitin
These five symbols are normally not written in Arabic texts. erations operate on the full state graph representing abipte
Only important religious texts such as the Koran are fullwvo pronunciations.

elized. Most of the training transcripts for the model biritiare We compare this approach to manually vowelized transcripts
not vowelized. This leads to a considerable mismatch betwee  where the correct pronunciation variant is given. BBN distied
acoustic data and the training transcripts. 10 hours of manually vowelized development data (BNAD-05,
When building vowelized models, it is important to keep in BNAT-05) that we used to bootstrap vowelized models. These
mind that calculating the error rate is still based on theouralized models are then used to compute alignments for the starrdame t
forms. In other words, we map the vowelized words back tarthei ing set (FBIS + TDT4). A new system is then built using fixed
unvowelized counterparts prior to scoring (NIST style sugy. alignment training, followed by a few Forward/Backwardrite
Another reason for using the unvowelized forms for calénipthe ~ tions to refine the models. _
error rate is that the translation component used at IBMetzpen- _The errorrates in table 5 suggest that manually vowelizet tr
vowelized Arabic text as input in the context of the DARPAGAL  SCripts are not necessary. The fully automatic procedummlis
speech-to-text translation program. 0.2% worse. We opted for the fully automatic procedure imatl

One approach to bootstrap vowelized models is by using-train €XPeriments, including the evaluation system.
ing transcripts manually vowelized by Arabic experts. Tajs
proach was chosen by LIMSI [3]. The obvious disadvantage is 4.3. Short modelsfor short vowels
that writing vowelized transcripts is quite labor interesivBBN
reported in [2] on an automatic procedure based on Buckiislte
Morphological Analyzer [9]. Following the recipe in [2], ws-
cuss our bootstrap procedure and some issues relateditogsgal
to large vocabularies.

We noticed that the vowelized system performed poorly oraBro
cast Conversational speech. It appeared that the speakimgsr
much faster, and that the vowelized state graph is too lavge t
be traversed with the available speech frames. One soligion
to model the three short vowels with a smaller HMM topology.
The results are indicated in table 6. The improvements oORT-
4.1. Vowelized pronunciation dictionary (Broadcast News) are relatively small, however there is.&f6l
absolute improvement on BCAD-05 (Broadcast Conversations
We are using the Buckwalter Morphological Analyzer (Vensio
2.0), and the Arabic Treebank to generate vowelized prdaunc
tions. The vowelized pronunciations are modeled as variaht
unvowelized word forms, both in training and decoding. Ar ex As mentioned before, we back off to unvowelized forms foistho
ample of vowelized and unvowelized pronunciations of thedvo  words not covered by Buckwalter and Arabic Treebank. The cov
Abwh is given below. erage for the training dictionary is pretty high at 95%. Oadlther

4.4. Vowelization coverage for thetest vocabulary



Topology | RT-04 | BCAD-05 System RT-04 | BNAT-05 | BCAD-05
3state 19.0% 28.9% Unvowelized | 17.0% 18.7% 25.4%
2state 18.5% 27.4% Vowelized 16.0% 17.3% 26.0%

+ Pron. Prob| 14.9% 16.4% 25.1%

Table 6: Comparison of different HMM topologies for shortwo

els. Table 9: Effect of pronunciation probabilities on WER.
Vocabulary | OOV Rate | WER (RT-04) ) o . ) ) )
120K 2.9% 20.3% Adding pronunciation probabilities gives consistent iova-
580K 0.8% 19.0% ments between 0.9% and 1.1% on all test sets (table 9). Also,

pronunciation probabilities are crucial for vowelized retsd they
almost double the error reduction from vowelization. Ferth
more, we investigated several smoothing techniques argeton

Table 7: OOV/WER ratio for an unvowelized system. : |
word context, but didn’t see any further improvements camga

to unigram pronunciation probabilities.

hand, for a test vocabulary of 589K words, the vowelizatae is
only about 72%.

The question is whether it is necessary to manually vowelize
the missing words, or whether we can get around that by bgckin
off to the unvowelized pronunciations. One way to test thigth-
out actually providing vowelized forms for the missing werdis
to look at the OOV / WER ratio. The assumption is that the ratio
is the same for a vowelized and an unvowelized system if the di
tionary of the vowelized system doesn't pose any problenweM
precisely, if we increase the vocabulary and we get the saroe e
reduction for the vowelized system, then, most likely, ¢hisrno
fundamental problem with the vowelized pronunciationiditary.

For the unvowelized system, when increasing the vocabulary
from 129K to 589K, we reduce the OOV rate from 2.9% to 0.8%,
and we reduce the error rate by 1.3% (table 7).

For the vowelized system, we see a similar error reduction
of 1.5% for the same vocabulary increase (table 8). The syste
has almost 2 million vowelized pronunciations for a vocalbyl
of 589K words. The vowelization rate is about 72.6%. In other [1]
words, 17.4% of our list of 589K words are unvowelized in our
dictionary. Under the assumption that we can expect the same
WER/OOV ratio for both the vowelized and unvowelized system [2]
the results in table 7 and table 8 suggest that the backrategly
to the unvowelized forms is valid for our vowelized system.

(3]

4,5. Pronunciation probabilities

Our decoding dictionary has about 3.3 pronunciations pedwo
average. Therefore, estimating pronunciation probasliis es-
sential to increase the discrimination among the vowelfpeahs.
We estimated the pronunciations probabilities by courttieg/ari-
ants in the training data (incl. unsupervised BN-03 data).

The setup consists of ML models, and includes all the adap-
tation steps (VTLN, FMLLR, MLLR). The vocabulary has about
617K words, and about 2 million pronunciations. The tess set
are RT-04 and BNAT-05 (both Broadcast News), and BCAD-05
(Broadcast Conversations).

(4]

(5]

(6]

(7]

9]

Table 8: OOV/WER ratio for a vowelized system.

5. CONCLUSION

In this paper, we presented a set of techniques for Arabiadsro
cast news transcription. While some of them are also retdean
other languages (like speech/non-speech segmentatant;end
processing, speaker adaptation, unsupervised traintng, ¢he
emphasis has been put on those methods which are specific to
Arabic ASR. Among these, vowelization is a key component in
our system. We opted for a flat-start approach with prontiocia
generated automatically using the Buckwalter morphokigana-
lyzer and studied some aspects related to coverage, HMMaopo
gies and pronunciation probabilities. Another techniche tvas
found to be beneficial is to combine a vowelized and an unvow-
elized system through cross-adaptation.
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